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Big challenges require new materials

¥

Material innovation process
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The key to success is to integrate knowledge into
efficient design strategies
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a Challenge

Design modeling frameworks to optimize the
mechanical response as a function of
N microstructural attributes. Y

Key aspects:
1. Quantify the mechanical response driving force.

2. Determine an adequate domain to assess the driving
force.
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Agenda

- Mesoscale Modeling of Microstructurally Small
Fatigue Cracks

» Mesoscale-sensitive crystal plasticity models

 Sources of Variability in Components
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Mesoscale Modeling of
Microstructurally Small Fatigue Cracks

Gustavo M. Castelluccio

David L. McDowell%2
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Integrated Computational Materials Engine@mg

Boeing 787
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Integrated Computational Materials Engine@mg

Turbine disks failures

Airbus A380

_.Nar - | © Reuters

http://webcommunity.ilvolo.it/ http://www.dailymail.co.uk/
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Integrated Computational Materials Engine@rig

Bimodal microstructure in turbine disks
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Early Stages of Fatigue Damage

Microstructurally Small Cracks (MSCs)
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Early Stages of Fatigue Damage

Hierarchical approach to estimate fatigue life:
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Fatigue Indicator Parameter (FIP)

FIPs quantify transgranular fatigue driving force
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Crystal Plasticity Model

Crystal plasticity + Elastic damage for RR1000 @ 650C
B. Lin et al. Mater. Sci. Eng. A, 527, 3581-87, 2010

* 12 octahedral and 6 cube slip systems
» Isotropic damage coupled with elasticity along critical

planes
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Framework Assumptions

Main Assumptions:

1. Perfect crystallographic crack growth (Stage I).

2. A few computed loading cycles for a given crack configuration result
in fatigue indicator parameters (FIPs) that correlate with the crack
growth within the next grain (albeit neglecting transient cyclic
hardening or softening details).

3. FIPs averaged over mesoscale domains are more useful than

pointwise computed values: (i) physical process zone and (ii)
numerical regularization.
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Fatigue Damage Domain

For trangranular failure, FIPs are averaged along bands parallel to slip
normal directions.
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Finite Elements Simulations

* 52 grains (~65 elements)
* 1% strain along Z axis

* Periodic boundaries

* 3375 elements

*R.=0.1
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Modeling Crack Nucleation

Sandia
m National
Laboratories

Statistical characterization of crack nucleation:
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Modeling Crack Nucleation

FIP variability within grains
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Modeling Crack Nucleation

Non-local grain influence:
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Modeling Crack Growth )iz

Apply a few loading cycles
l 15t grain (Nucleation)
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Modeling Crack Growth bz

Initial microstructure Nucleation MSC i=1 MSC j=2 MSCi=3 MSC i=4
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ing Crack Growth

As large as (ALA) grains

Model
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Fatigue life predictions for different ALA grain size
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Mesoscale-sensitive crystal plasticity models

Gustavo M. Castelluccio

David L. McDowell
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Cyclic Mesoscale Dislocation Structured?

Approximate dislocation substructures as a function of crystal orientation

¢ [-111] promotes multiple slip
and cross slip leading to cells
with low misorientation.

[001] promotes double slip

(labyrinth) and deformation .
is carried by screw [
dislocation on two <111> 5 i [1221‘1;
planes independently.

[011] to [-112] promote
single slip PSBs and walls

Lietal 2011. (]

. . : [012] ,mm ¥ and deformation is carried
Progress in Materials .~ o I b dis| "
Science 56 (3): 328- L S y S.CI'eW ISIocations
77. gliding along <111> plane.

High strain amplitudes and mean stresses and large
number of cycles tend to promote cells.
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Mesoscale-Sensitive Crystal Plasticity

Interaranular Mesoscale structure Atornisti
granu constraint and rotation omistic

Wall thickness
controls back stress
softening

>

Dislocation bow-outs
control dislocation
production

Cross slip and
annihilation
(H-dependent)
control dislocation
depletion

Pile-ups (H dependent)
control isotropic hardening
to avoid resolving polar
densities within structures.
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Mesoscale-Sensitive Crystal Plasticity

The approach includes:

* Dislocation multiplication, annihilation and cross slip.
« Athermal stress based on dislocation pile-up.

» Back stress based on Eshelby’s inclusion approach.

102 m
» Physics-based rather than fitting-based. 103 m

4
» Calibration based on single-crystals 10°m

106 m

105 m
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Mesoscale-Sensitive Crystal Plasticity

» Mesoscale frameworks are feasible computational tools to assess the
resistance against fracture and fatigue.

 The key to success is to simplify lower length scales and model explicitly
those microstructural attributes that control the resistance.

» Experimental and modeling efforts should be balanced to convey efficient
integrated computation approaches.
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Sources of Variability in Components

Gustavo M. Castelluccio
Matthew Brake
John Emery

Joe Bishop
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Sources of Uncertainty in Components

Microstructural, geometrical and in-service conditions impact the
variability of the mechanical response in components

Geometry Material Mechanics Methodology
(Dimensions, (Anisotropy, stiffness, (Friction, environment, (Test and model
discontinuities) plasticity) deformation rate) assumptions)
N\ \ 4
> Response
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Sources of Uncertainty in Components

Example: Fasteners
« Highly nonlinear: geometry discontinuities, friction, plastic deformation.
« Manufacturing and installation variability.

Outputs

Force

Screw

\

Nut

Max VM
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Kmax
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Displacement
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Sources of Uncertainty in Components

Variability induced by friction and pre-loading conditions
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Z . .
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800 - =5 material or mechanical
o- = 15° .
600 o= 30° \ propert1es? )
400 j1=0
u=0.15
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Sources of Uncertainty in Components

Example: I-beams
Microstructural attributes induce local variability in the mechanical response.

Initial microstructure
b

Can we estimate
microstructural response

without brute force
von Mises stress simulations?

\_ J

Bishop J. et al., Comput. Methods Appl. Mech. Engrg, 287,262-289, (2015)




Sources of Uncertainty in Components™ &=

Statistical characterization of mechanical response

stress magnitude
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Crystal plasticity framework

Atomistic scale .
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Determination of parameters

Constants from atomistic models
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Athermal stress formulations

Mesoscale

Boc:|: fw 2“(1_2S1212) :|Dp:(soc ®moc)
1- £, (1+4H51212in11)

B : Back stress rate

D’ : Plastic rate of deformation tensor

Eshelby tensor for prolate spheroid under shear Mura (1987)
2 -1
ﬂnstrucz + (T’strucz —-1.75 _2Vpnstrucz + 2Vp)cl2 27tnstruc (nstruc (nstruc _1) —cosh (nstruc ))
Si212 = ) Cra= 3
Sﬂ(l_vp)(nstruc _1) \/(nstrucz _1)
| Sy, varics from 0.3215(PSB) to 0.238 (Cell) |
3 éeﬂ
== f 24 2
T = fw)z G o v +3.U(1+V)inlz _ V/
u, =—r> 14 (1+v) f, g
_ . p
P 2u s Hill

Hill (1965) Estrin (1998)
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Mesoscale-Sensitive Crystal Plasticity

W A,},Hirth(maw) > 'Yﬁ
Yes¢

N = Niabyr
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How long does it take to envision, design and put on the market a
new product?

Examples:

* Nuclear submarines: Multiple decades.

» Space satellite or rocket: About a decade.
* F35: About a decade

Commercial products can develop much faster:
» Medical devices: Years
 Electronic components: Months

The key to success is to integrate knowledge into efficient design
strategies



Mesoscale Fatigue Model ) ..

Calibration: Mesoscale experimental data

Nucleation MSC
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ABAQUS FEM algorithm
Pass F;
at time t

Mesoscale Fatigue Model

Implementation: Abaqus subroutines

‘ Estimate Fyina¢ J

>

UMAT Subroutine

\ Begin analysis \

Sandia
National
Laboratories

-

Calculate @ t + At:
FP, Fed
Update Euler angles
Update ISV:

shear strains,

slip resistance,

back stress, etc

‘ Call UEXTERNALDB ‘

Y

< Next time increment

Return stress and

Jacobian matrix

\ Es

Define initial conditions

¥

Start of step

UEXTERNALDB

!

Start of increment

Y

Solve FE

Write output
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Mesoscale Fatigue Model ) ..

Normalized FIP within grains in polycrystals

FIP )
30 realizations = [1 - p,a’ ]
Initial value 157 FIP,
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Mesoscale Fatigue Model

Implementation: Abaqus subroutines

[ UMAT

 Contains RR1000 constitutive model.
 Degrades the elastic stiffness for cracked elements.

UEXTERNALDB

* Controls averaging volume and grain connectivity.
» Calculates local and non-local FIPs and life.
 Keeps track of failed grains and crack extension.
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Mesoscale Fatigue Model ) .

* 1% shear strain
. R8.=O.1 ' . -
* Oriented for single slip Plasticity (] Crack path
* FIP averaged along bands o
I 7 OO T
6x1o"
¢ Damaged
5[ + No damage fk“.‘\
Fatigue driving force with 4
and without crack growth i
in single crystals -
2,
il

| | | | | | | |
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Model

igue

FIP variability across grains prior to cracking

Mesoscale Fat
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Early Stages of Fatigue Damage

Previous models

Navarro and de los Rios Hobson et al.
(1987) (1982,1986)

Crossing of grain boundaries

da’, ~(ly,c)d-a)a"

-10 -05 00 05 10 15

Log (Normalized plastic displacement)

! ‘ ' ‘ ' 4 6 8
0.0 0.5 1.0 15 2.0
Normalized crack tip position (Log a/0.5D) Crack Iength
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Miller’s regimes
(1997)

MFM
da
2 AAY (d -
o = Aar®(d-a)

EPFM
da BAyPa-D
dN

LEFM




Laboratories

Multiaxial loading

0%
S0
b

(0%

)
WO

%

K

o

A0

o

%

%

Dimensions:

)
%

BOOCKCRN
O

95x95x95um

Smooth

£
B
g
=

g
o0
—

specimen

/N
i

Element size;

Spm

Hole radius:
72pum

Notch radius:
72um

Stress

Dimensions:

concentration

Dimensions:

432x432x108pum

432x432x108um

specimens

Mean grain size:

18um

=-n~.~-
AN

N

Mean grain size:

18pm

Element size:

Spum

Element size:

Sum




Laboratories

=1

R=-1
R

R=

10°

0

10°
R=
R=i

Cycles
Cycles

10

10°
0.5
0.5

]
T
xe,

R
R

10°

o

. Tension—Compnessig
+ Tension-Compression
+ Tension/Compression

* Shear
10°
« Shear

60 e Shear

70+
60

0
60 -

[wri] yyBusy yorI) [wi] yyBus) doeun [wm] yybus) doein

Multiaxial loading

Smooth
specimens
Notched
specimens
Through-hole
specimens

10 realizations for each

loading condition

10° 10°
Cycles

10*

10°




National

Multiaxial loading .

Nominal mean stress effect on crack nucleation

Smooth specimens

[ R =-1 R =0 R =0.5 e Ac = 0.4%

: ¢ Ae = 0.8%
3 10"} ‘ S — - €. H. Wang, K. J. Miller.
5 | ‘\" Fat. Frac. of Eng. Mat. & Struc.
o | . 16, 181-198, 1993
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Multiaxial loading h) i,

Smooth specimens stress-strain curves

10 realizations — Smooth specimens R=0.5-4e=08% 10 realizations — Smooth specimens - R=0-4e=08% 10 realizations — Smooth specimens Re-—1 - Ae = 0.8%
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Computing the Crack Path ) .

Element-by-element cracking

o Shakedown

% —~ N cycle

: Y \
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< ! Computatlonal cycles
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Crack 1% grain cracked
completely
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least in one element
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Computing the Crack Path ) .

Band-by-band (mesoscale) cracking

uQ'; Shakedown
2
o
D -
< 1 i3
E.. E.I E.I
m s HoEGy e
5 o0 -0k 0-B0AAnE
No Cracks 15t band ond hand 3" band

The bands intersect at
least in one element
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Computing Fatigue Crack Driving Forc&® .

Element-by-element vs. Mesoscale cracking
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Main Assumptions ) 2.

« Calibration of the irreversibility constant.

¢ = <|>()€(_%T)(0-9t1 +t, + 0.1t3)<%_§)

t1 to ts t1 time
Intergranular _ B (89)
— E - Lq
4 T?ia(xfgalar &  Triangular Intergranular
+  Fast-Slow + Fast-Slow
& g5k X Slow-Fast o 10* ; Slow-Fast
. Dwell = Dwell
&) <
~ ~
E) El
Z, = 10°
= <
10t =
= = Transgranular
10-6 -
650°C, AK=40MPay/m 725°C, AK=40MPay/m
7 L " i i L
10 01 1 10 100 1000 1 10 100 1000
0.9t1 + t2 + 0.1¢3 [S] 0.9t +t2 + 0.1t3 [S]

Tong, J., Dalby, S., and Byrne, J., J. Mat. Sci., 40, 5, 1237-1243, 2005.
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Intergranular life is assessed Alccuplulat(.ed Stress normal
for each grain boundary sector plastic strain to the GB
A A
[ | N ( |
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a a GB
Vo o, o,
FIPint - Z 7 1+ ktrans
* Y Oy
GB sector betw inter
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1\ inter l elem
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o expl— €7 BOmal | \oropp
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grains 1 and 4, in grain 1 N
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Transgranular-Intergranular transition of ALA grains

Bore 15um ALA grain 70pm
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Smooth specimens — Displacement controlled

Dimensions:
95x95x95um

Mean grain size:
18um

Flement size:
Sum




Computing Fatigﬁga éﬁ%@@?ﬂfﬂfg%‘?c@@ﬁ@

Variability of the band averaged FIP within grains prior to crack nucleation

Width of averaging band =

element size: fine 2 um, coarse 5

« Coarse and refine meshes compared.

« All plots correspond to different
microstructural realizations.

™
QO 2 25 25 25 25 25 25 25
= Coars
>< z : : : —— T, 2 //_\ ’ : : \/\'/\\\ Oa
D_ 15 15 15 15 15 15 15 15 e
E 1 1 1 1 1 1 1 1
D.) 0 05 1 [ 05 1 0 05 1 0 05 1 0 05 1 0 0.5 1 0 05 1 0 0.5 1 m es h
>
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C 25 25 25 25 25 25 25 -
ccg . . , 1 . . ) . Fine
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Hiihest FIPs in various realizations
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FIP distributions after 3 loading cycles - 50 realizations

Element Band avg.
x 10° x 10°
)
0 1 2
Fl X‘1é%
element

- 15000

10000
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FIP averaged along bands prior to crack nucleation

1/7 of grain 2/7 of grain 3/7 of grain 4/7 of grain 5/7 of grain 6/7 of grain 717 of grain
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FIPgnu'n FIPgmjn FIPgrajn R
0.001< FTPower <0.01 0.01< FIPo <0.1 0.1< T Poer <1 eferences
50 200 500 FI By esn = max(fl Brain)/10°
FI By uin.= FIP average in a grain
100 7/7 grain .
FIRuna = FIP auerage in a band
0 0 0
Model details
400 1000 4000 Number of grain: 239
200 500 2000 . Number of elements:27000
. I 6/7 grain Applied nominal stain range:0.8
0 0 0 Number of cycles:7, R,=0
1000 2000 4000
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Increasing FIP
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Appendix

Band avg.

d,. = \/Cross Section

x 10*

Frequency
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* 50 microstructural realizations, but the same crystallographic
orientation and location is imposed to grain #1.

* Crack nucleation is assessed for the different bands in grain #1.
periodic
* Nominal tensile applied strain: Ae=0.8, R_=0.

e Case 1: Grain #1 oriented for multiple slip.
Max. Schmid factor=0.408

=

7
m—— /]

/1
71
y 7/

]
'
I
|

Iy

» Case 2: Grain #1 oriented for single slip.
Max. Schmid factor=0.487

- ). Vi
7 %)
e T o
SRS

[T7
7717
7

Grain #1

All sides free except top and bottom
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Maximum FIPs in Grain Case 1
#1 out of 50 realizations *[ ‘
15
Nucleation FIPs s
(Elements) s

1 15 2 1 2 4 5 6
FIPelement before crack nucleation x 10
15— ‘ ‘ ‘ 15
Nucleation FIPs 210 10
(band avg.) E 4 5
0 ‘
0.5 1 15 2 1 2 4 5 6
FIPban g before crack nucleation x 103
15— \ \ \ 20
. 310t 1
Nucleation FIPs 5 "
(grain avg.) 2 s

5

0 1 1 1 n
1 1.5 4 5 6

: 0
.o . . . 0.5 2 1. 24
Graln IS flxed in Orlentatlon FIP ., before crack nucleation x 10
and neighbors are changed  Multiple slip Single slip
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Early Stage Fatigue Processes )

Microstructurally Small Cracks (MSCs)

Small cracks Long cracks

ECCI, contrast represents dislocation structures

Ahmed J. et al.. Philos. Mag. A, 81, 6, (2001), 1473-1488.
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Early Stage Fatigue Processes LUE

CTD as a fundamental magnitude

Dislocation emission-annihilation

Horton J. A. and Ohr S. M., Scr. Farkas D. et al. Phys. Rev. Lett.
Metall., 16, (1992), 621-626. 94, 16 (2005),165502 1-4.
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RR1000 Ni-base superalloy for turbine disks @650C:
» Extended fatigue Stage I crack growth
* Octahedral slip dominant

* Planar slip

Li, K., Ashbaugh N. E., and Rosenberger A. H. .4
Superalloy conf. 251-258, 2004. IN100: Grains 10-70 um 20pm




A method to extend the crack ) e,

* Crack growth is modeled by degrading the elastic stiffness tensor
element-by-element.

C=(0-d,cC, 0<d, <0.99

* The elastic stiffness is fully degraded independently from the fatigue
crack driving force:

d0) = 49 + vAt

» Also, an anisotropic damage model has been developed and partially
implemented.
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Example of the elastic stiffness degradation

Max. Principal Stress

+1.979+03
[ +1.822e+03
+1.6666+03
B &
+1.353e+ —(1_
+1.196+03 C=(1-d)C
+1,039+03
i
+/. e+
+5.697e+02 0<d, <0.99
+4.132e+02
+2.5666+02

+1.000e+02
-1.907e+02
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Appendix

FIP calculation
Ay, o’
FIP* = —Z | 1+ k2
2 o
Yy
o . B Afygyc AYateh
o, : Stress normal to the slip plane AN T 1,
y, - Plastic shear strain in slip plane « (
Aya cyc: Aya :)ri/ae);cycle _Aya ratch
2 74 %
A max Plastic shear

over cycle . strain
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Appendix

The crack grows along bands following
the path of minimum MSC life.

Each color represents a grain.

Uncracked model.
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The crack length is estimated as the square root of the total number of
elements damaged, i.e., semicircular crack (Murakami, 2002)

Y. Murakami, Metal fatigue: effects of small defects and
nonmetallic inclusions, Elsevier, 2002.
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Crack growth is the result of an irreversible change of crack tip

displacement (CTD)
— = VA Driving
an force

Crack tip
irreversibility

Based on Tanaka (1984,86,99) and related to dislocation emission via J-
integral Rice (1992)
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Crystal plasticity for RR1000 Ni-base superalloy @ 650C
B. Lin et al. Mater. Sci. Eng. A, 527, 3581-87, 2010
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Grain size distributions
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Grain size [um] (based on sphere volume)




Stress [MPa]

Stress [MPa]

Appendix
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Zhan, Z., PhD thesis, University of Portsmouth, UK, 2004.
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Strain localization rh) s

Mesoscale structures

persistent
slip bands

C ——

Adapted from Klesnil M. and Lukas P. Fatigue of Metallic Materials, Elsevier, (1992).
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The open literature seems to agree that in Ni base superalloys, cube slip is
mainly due to zig-zag cross slip in octahedral planes, and starts at around
700°C.

100 1
g

D. Bettge and W. Osterle, Scripta Materialia 40, 4, 1999: 389-395.
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Cross slip can occur when the following is satisfied:

1. Two slip systems must have the same slip direction.
2. The resolved shear stress should have the same direction on both slip

systems.

iy’ interface /\

leading segment

(100)-channel trailing segment

~/

T. Tinga et al, Cube slip and non-Schmid effects in single crystal Ni-
base superalloys, Modell. Simul. Mater. Sci. Eng 18, 1 (2010): 015005.
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U-notch specimen under bending

* Bending load 10.4KN (12.5x12.5x80 mm)
* 60 realizations

e Irregular mesh

* RR1000 alloy

* R=0.1

III 111

——
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Mesoscale model - Mesh refinement

Mesh effect for Bore 15um

70r

» Refined mesh

» Coarse mesh
60

w
o
T

50 realizations
40+
Element size:
* Refined: 5um
 Coarse: gum

Crack length [um]

In(a) =c,N

Cycles

o

x10

Refined simulations have an average correlation coefficient of R=0.9127
with the crack length logarithm!!
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As large as (ALA) grains
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Transgranular-Intergranular transition of ALA grains

Bore 15um ALA grain 70pm
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FIP evolution within grains

x10° 30 realizations

Number of cracked grains in sequence (a)
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with shortest MSC life
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