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1.  Introduction 
 
During the period 1998-2013, research under the auspices of the Department of Energy was 
performed on RF waves in plasmas.  This research was performed in close collaboration with  Josef 
Preinhaelter, Jakub Urban, Vladimir Fuchs, Pavol Pavlo and Frantisek Zacek (Czech Academy of 
Sciences),  Martin Valovic and Vladimir Shevchenko (Culham). 
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RF plasma wave interactions with plasmas 
 
A.  Quasi-optical grill research [1-4] 
 The use of lower hybrid (LH) waves is considered very important for the control of current 
profiles in the outer plasma regions of tokamaks.  This is especially true for the proposed ITER fusion 
device currently under construction in Cadarache, France.  The design for the launch of high power LH 
waves in the 5-8 GHz range is difficult because of the required cooling of the launcher as well as 
structural stability since the grills are very narrow with thin walls separating the waveguides.  One 
possible design for this standard multijunction grill is to consider the quasi-optical grill (QOG). The 
QOG is both a relatively simple design and gives robust performance.  A pioneer of such a device is 
Preinhaelter.  In particular, Preinhalter has suggested placing rods in an oversized waveguide (a 
hyperguide) and irradiate them obliquely by a wave emerging as a higher mode in an auxiliary 
oversized waveguide.  The confining walls now become an intrinsic part of the structure, and one 
avoids mirrors and point-like sources.  The reflected power can be handled by standard waveguide 
techniques. 

          
Fig. 1    A perpendicular cross section of the 2 rows of rods in the QOG, showing the ray trajectories in 
the auxiliary waveguide. 
 
 
One of the first findings were that 
(a)  even though conducting walls surrounded the QOG, it does not prevent the rods from being  proper 
irradiated, 
(b)  the resonant rod length   ℓ4 , Fig. 1, in the main row of rods ensures a highly efficient structure, even 
when designed with just one row of rods. 
(c)  the overloading of the QOG is not that severe, and the E-field only becomes about 3 times higher 
than in the ideal case. 
(d)  the number of structure elements in the QOG are significantly less than those in the standard 
multijunction grill. 
     The weighted directivity for a QOG consisting of 2 rows of rods is shown in Fig. 2, while the 
spatial power spectrum from a QOG with 2 rows of 27 rods is given in Fig. 3. 
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Fig. 2 The Nz-weighted directivity, with 2 rows of rods. 

 
Fig. 3  The power spectrum from QOG from 2 rows of 27 rods. 
 
 
 
 There is currently a renewed interest in QOG antennas, and so we reconsidered the 
multijunction grill [5] and developed an efficient full wave code [OLGA] to study the coupling of the 
lower hybrid grill to the tokamak plasma.  This code considers the full 3D geometry of the grill structure 
so as to efficiently determine the power density spectrum of the emitted waves, the wave reflection 
coefficient, the power lost by the waves that were launched into the inaccessible region as well as the 
directivity of the transmitted waves into the accessible region.  OLGA can determine the 3D E-field in 
front of the grill.  One theoretical difficulty is that there arises a very large number of 2D k-space infinite 
integrals that need to be evaluated for the coupling elements.  The complexity of these integrals can be 
dramatically reduced by clever use of symmetry. High order Gaussian quadratures are employed 
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together with 2D B-splines.  OLGA can handle very large structures and many modes since the 
computational time is only weakly dependent on the size of the problem. 

  
Fig. 4  Equatorial cross section of the Electric field just in front of an 8 waveguide grill (COMPASS 
plasma) .  

  
Ez x,0,z( )  is shown in units of the incident TE10 amplitude. 

  
 Considerable research effort [6-19] has gone into the study of Electron Bernstein Waves 
(EBW) propagation in spherical tokamaks -  like NSTX at Princeton and MAST (Culham).  In these 
spherical tokamaks, the plasma is overdense because of lower toroidal magnetic fields.  As a result of 
this overdenseness the standard launching of electron cyclotron (EC) transverse O- and X- modes fail 
to penetrate the plasma:  the waves experience a cutoff and cannot penetrate into the plasma.  Thus 
these EC waves cannot be used for either heating or current drive in spherical tokamaks.  On the other 
hand, EBW are a quasi-electrostatic kinetic EC which can propagate and be strongly absorbed in an 
overdense plasma.  But since the antenna emits electromagnetic waves we must have mode 
conversion in order to excite these electrostatic waves which cannot propagate in a vacuum.  One thus 
requires the incident electromagnetic wave emitted from the antenna to be mode-converted within the 
plasma to an electrostatic wave.  Preinhaelter, in 1973, promoted the O-X-B mode conversion process.  
The O-mode converts to a slow X-mode at the upper hybrid resonance (UHR).  This occurs near the 
plasma edge (actually the O-mode is first converted to the fast branch of the X-mode which propagates 
towards higher density where it smoothly converts to the slow X-mode branch.  This then propagates 
back towards the edge of the plasma towards to the upper hybrid resonance).  This then converts to 
the EBW.  An alternate mode conversion scheme is the XB scheme:  but this scheme is typically 
efficient for lower frequencies and requires specific density scale lengths.  On the other hand, the OXB 
scheme is more universal in terms of frequency and density length scales.  In Fig. 5 we plot the radial 
profiles in the midplane of the characteristic frequencies for various NSTX and MAST plasmas.  The 
simulated frequency ranges are shown shaded and these bound the EBW propagation regions from 
the UHR at the plasma edge to the cold EC resonance.  The plasma is overdense  and the first three 
EC harmonics are inaccessible- and X- modes in NSTX and MAST ω pe > nω ce( ) .  We consider the 
first two EC harmonics as we expect the higher harmonics will be overlapping due to Doppler 
broadening. 
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Fig. 5  The accessible frequencies for EBW propagation in various spherical plasma experiments.  
The dashed vertical is the last closed flux surface (LCFS). 
 
In Fig. 6 we consider the effect of 2 different vertical launch positions for an NSTX L-mode plasma, 
using 17 GHz on the ray trajectories and the evolution of N|| 

 
Fig. 6  Ray trajectories and the evolution of N|| for NSTX L-plasmas at 17 GHz from 2 different launch 
positions:  0, and 0.3 m. 
 
Those rays that are launched close the midplane propagate straight to the magnetic axis, and the 
central ray’s N|| do not change appreciably until the ray approaches resonance (around R = 1 m).  
Now N||  will start to increase exponentially and the beam splits into two parts that propagate 
vertically in opposite directions.  The rays are finally absorbed.  For off-midplane launch the wave 
N||  steadily increases and the waves are absorbed at the Doppler-broadened EC resonance.  In this 

case, since all the N|| now have the same sign, one achieves high current drive efficiency. 
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4.  Qubit unitary lattice algorithms for the Nonlinear Schrodinger equation [20-38] 
 Quantum entanglement is the vine from which the branches of the fields of quantum 
computing and quantum information theory spring using qubits as their building blocks.  Unlike the 
classical binary bit, which can take on the value of “0” or “1”, the qubit state exists as a superposition 
of these classical states “0” and “1”.  In particular the qubit q  

 q = γ 0 0 + γ 1 1 , with γ 0
2 + γ 1

2   
where γ 0 and γ 1 are complex probability amplitudes.  For quantum entanglement we must entangle 
at least two qubits 
 q1q2 = γ 00 00 + γ 01 01 + γ 10 10 + γ 11 11 , with γ 00

2 + γ 01
2 + γ 10

2 + γ 11
2 = 1  

    
While the more traditional approach to quantum dynamics is through the Hamiltonian or Lagrangian, 
Feynman first introduced the approach of qubit dynamics.  An important advantage of these qubit 
representations is that they are close to ideally parallelized (since their structure is a collide-
sequence on a lattice, similar to its non-unitary cousin lattice Boltzmann) and can be encoded onto a 
quantum computer. 
 The quantum lattice gas (QLG) is one of the earliest unitary algorithms that is based on an 
interleaved sequence of unitary collide-stream operators on qubit probability amplitudes.  Again this 
is a mesoscopic representation, and in the Chapman-Enskog limit one desires to recover the 
nonlinear physics equations under consideration.  Since the QLG is a mesoscopic perturbative 
approach, the algorithm must be benchmarked.  We present here some benchmarking on the 
inelastic vector soliton collisions, governed by the coupled (1D) nonlinear Schrodinger equations: 

 i ∂Q1
∂t

= − ∂2Q1
∂x2

− 2µ Q1
2 + B Q2

2( )Q1  

           i ∂Q2
∂t

= − ∂2Q2
∂x2

− 2µ Q2
2 + B Q1

2( )Q2   

for the electric field polarization amplitudes for single mode propagation in an optical birefringent 
medium.  B is the cross phase birefringence modulation coefficient.  Interestingly, these equations 
also show up for the mean field approximation of Bose-Einstein condensates at T = 0. 
For these Manakov solitons there are some initial vector soliton amplitudes which will result in an 
inelastic collision:  one of the soliton post-collision amplitudes will be zero.  This is not possible in 
scalar soliton collisions since we have the normalization constraints 

 
  

dx Qi x,t( ) 2
= ci = (constant)i∫ , i =1 , 2   

This type of inelastic collision fuels the thought that these inelastic Manakov solitons can be used for 
digital information processing in a nonlinear optical medium without radiation losses. 
 In QLG, the unitary mesoscopic lattice algorithm with interleaved collision-stream 
operators:  the unitary collision operator locally entangles the qubit amplitudes while the unitary 
stream operators transport that entanglement throughout the spatial lattice.  The local unitary 
collision operator is that determined by Yepez in his work on QLG for the 3D relativistic Dirac particle 
dynamics, and then extended it by adding an effective potential as a Lorentz mass scalar: 

 

  

CD , j =
cosθ j x( ) −i sinθ j x( )
−i sinθ j x( ) cosθ j x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, θ j x( ) = π
4
− 1

8
Ω j

2 x( ) , j =1,2   

where the nonlinear interaction terms 

 
  
Ω1 x( ) = 2µ Q1 x( ) 2

+B Q2 x( ) 2⎛
⎝

⎞
⎠ , Ω1 x( ) = 2µ Q1 x( ) 2

+B Q2 x( ) 2⎛
⎝

⎞
⎠   
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The unitary streaming operator, though written in terms of the Pauli spin matrices, is just a shift 
operator, where   SΔx , j is that shift by   Δx = ±1.  With the interleaved non-commuting stream-collide 
sequence 
   Ixj =S−Δx , jC SΔx , jC  
one can then define the unitary evolution operator. 
 
An inelastic Manikov vector soliton is shown in Fig. 7 
          

 
        (a)   pre-collision solitons                                           (b)  inelastic post-collision solitons 
Fig. 7    The pre-collision states (a) at t = 0, 10k, 20k, with the post-collision states (b) at t = 25k, 35k, 
45k.  The   Q1 polarization is in blue, while the   Q2  polarization is in red.  For the specially chosen 

initial amplitudes, one of the   Q1 -post collision solitons is eliminated 
 
 
 
A plot of the soliton peaks is shown in Fig. 8.   There is only inelastic collision – the first collision – 
since the requirements on the collision amplitudes are very stringent.  There is a quasi-inelastic 
collision around time step 280k. 
 

 
Fig. 8  The plot of the maxima amplitudes of the polarization solitons. 
     
It is important that the maximum stable amplitude that can be run in QLG with the Dirac-based 
collision operator is an order of magnitude greater than that from the square-root-of-swap collision 
operator. 
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