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Many groups want to use magnetic fields ) b
to relax inertial fusion stagnation requirements
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“Z" is the world’s largest pulsed-power facility
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We are working toward the evaluation of the i
Magnetized Liner Inertial Fusion concept

= Aninitial B,~10-40 T flux is compressed to ~5-15 kT (~50-150 MG)

= to reduce thermal electron conduction losses

= toenable low pR;,, ignition (B,R;,, and pR, .., required instead)
= The fuel is preheated using the Z-Beamlet laser in order to reduce:

= the convergence ratio (CR) needed to obtain T, , > 4 keV

= the implosion velocity needed to < 100 km/s

= the stagnation pressure needed to a few Gbar (not 100s Gbar)
=  Thermonuclear yields have been measured on Z

Liner (Al or Be)
* azimuthal preheated |

drive field fuel
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Z is used to compress a liner containing )
pre-magnetized and pre-heated D, gas

Liner
(1cm
height)

Magnets

ey

current
delivery

Applied-B Capacitors |




The first fully-integrated MagLIF experiments g
successfully demonstrated the concept
* I DD yicld
= Thermonuclear neutron 3| on Temp o
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An integrated model seeks to realistically
simulate experiments as they would occur on Z
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Electrode e

(anode)

Self-consistently integrated

into one simulation: Electrode

(1) Laser (cathode)

(2) Laser entrance hole (LEH)
and window

(3) Liner and circuit

(4) Electrode end caps

(5) Component interactions,

timing, and optimization




An integrated model seeks to realistically e
simulate experiments as they would occur on Z

And 3D is required for helical (B,+B,) magneto-RT growth and any 3D laser effects
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Laser-energy coupling reduction for ) s
near-term integrated experiments on Z

Full coupling
10"'14_'1 Lot Il Lol ‘]l il‘,.l,l FETE PPN POV P9 9 PSP PHeSt PO ol ‘|.”J”l| e

If the energy absorbed by the gas is
less than the optimal amount (due
to low window transmission and/or
LPI), temperature and yield
reductions would be expected.

L

The effect is approximated with a
series of integrated calculations
wherein the main pulse energy is
decreased from full to none.

The experimental yields may be
consistent with low transmitted R — | ; 3 1
laser energies measured in related i .Nolaser, justP._.. -shc)ck ,,,,,,,, S -
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Estimate for laser depositions through a e
3.4 um window transmission is ~200 J
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Estimate for laser depositions through a ) i
3.4 um window transmission is ~200 J

Te and T; (log10[eV]), t (ns) : 85.0035
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Current and implosion time agree within error

Data (BIAVE) PCD (x-rays)
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Radiographs of magnetized liners were
helically perturbed and suggested enhanced stability

B.o=7T
72480-t1: CR=2.7, 1=3094.3 ns
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Comparison of stagnation column shape, ) ks,

not accounting for liner instability or opacity
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Variation in self-emission and liner opacity ) e,
contribute to observed structure

Integrated self-emission
Example 2D simulated radiograph accounting for liner opacity
and detector resolution
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However, helical emission and radiographs require 3D simulations
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In 3D with B,, simulations show helical perturbations
grow as well as improve stability due to m=0 suppression

BEE

Imposed helical perturbation grows w/ constant pitch and enables high convergence ratio implosions




Full 3D with helical instability growth is needed @&z
to correctly simulate the stagnation column
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Trend of helical perturbation with imposed B, iz
as predicted by first principles PIC simulation

B,=+10T B,=+7T B,=0T

¢~ 7.5-8.2° ¢~ 5.2-5.8°
B, up

¢~-7.5-82°
B, down

XUV emission on COBRA,
L. Atoyan et. al. (Cornell)
APS-DPP 2014 Poster >
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The ~0.2 and ~1.0 mm modes have implications

FFT of axial modes FFT of azimuthal modes
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e Short axial A, ~¥0.2 mm mode gives the helical straitions in radiographs
* Long axial A, ~1 mm mode imprints at the liner/gas interface and gives the
helical self-emission image at stagnation

Perturbation depends on load configuration, V/I, and material.




Explanation of helical stagnation mechanism

Early-time inner boundary

density
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Long axial A, ~1 mm is from early-
time feedthrough and imprints at
the liner/gas interface
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Explanation of helical stagnation mechanism

Early-time inner boundary
density

Long axial A, ~1 mm is from early-
time feedthrough and imprints at

@ the liner/gas interface

Since the interface is magneto-Rayleigh-

Taylor stable, the gas is high 3, and flux pile-
up occurs there, A, also imprints on B,

Inner boundary
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Explanation of helical stagnation mechanism

Early-time inner boundary
density

Long axial A, ~1 mm is from early-
time feedthrough and imprints at
@ the liner/gas interface

Since the interface is magneto-Rayleigh-

Taylor stable, the gas is high 8, and flux pile- |::>

up occurs there, A, also imprints on B,

: As in helical perturbation on |
: <: rear side of liner, inner surface

helix persists and grows as well

Inner boundary

5
i3 t : 5 B4

Late-time inner boundary
density
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Explanation of helical stagnation mechanism

Early-time inner boundary

density Long axial A, ~1 mm is from early-

time feedthrough and imprints at
<: the liner/gas interface
Since the interface is magneto-Rayleigh-

Taylor stable, the gas is high B, and flux pile- |::>

up occurs there, A, also imprints on B,

As in helical perturbation on |
: <: rear side of liner, inner surface

helix persists and grows as well Exp Sim

Resulting structure does not |:>
strongly modify 2D physics

Inner boundary
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Late-time inner boundary
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Explanation of helical stagnation mechanism

Early-time inner boundary
density

Long axial A, ~1 mm is from early-
time feedthrough and imprints at
<:| the liner/gas interface

Since the interface is magneto-Rayleigh-

Taylor stable, the gas is high B, and flux pile- |:>

up occurs there, A, also imprints on B,

As in helical perturbation on
<:| rear side of liner, inner surface

helix persists and grows as well Exp Sim
Resulting structure does not |:>
strongly modify 2D physics ‘
Resulting weakly helical (dr << dz)
<:| emitting stagnation column

remains quasi-2D such that
P, ep~p_3D~p_ 2D~1 Ghgr

Inner boundary

Late-time inner boundary
density B

stag stag stag
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Explanation of helical stagnation mechanism

Early-time inner boundary
density

Long axial A, ~1 mm is from early-
time feedthrough and imprints at
<:| the liner/gas interface

Since the interface is magneto-Rayleigh-

Taylor stable, the gas is high B, and flux pile- |:>

up occurs there, A, also imprints on B,

As in helical perturbation on
<:| rear side of liner, inner surface

helix persists and grows as well Exp Sim
Resulting structure does not |:>
strongly modify 2D physics T
Resulting weakly helical (dr << dz)

<:| emitting stagnation column

remains quasi-2D such that
P, ep~p_3D~p_ 2D~1 Ghgr

Inner boundary

Late-time inner boundary
density B

4

stag stag stag

Analysis suggests the MagLIF platform is stable to

high convergence, produces the expected P, , and is
not dominated by 3D physics in the hot spot.
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Experimental neutron spectra from 22591

primary secondary

D+D - He® (0.82 MeV) +n (2.45 MeV) D+T — He* (3.52MeV)+n (14.1 MeV)

D+D = T (LO1MeV)+p (3.02MeV)
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Particle (PIC) simulations are used to ) i
generate synthetic neutron spectra AN
ft/cc Be/D D keV :
4e24gle2d4 8§ pummmmcan 6.5
7
LSP simulations are initialized o L >
with HYDRA output (n, T, B) . 45
. . 6e23 ~
just before stagnation, and rera ) g, 35 _
then run through burn. RSN L
le24 2623 2 s
5e2301e23 1
All jons are evolved kinetically 1e23hieny o S— . 0
D+D — He? (0.82MeV)+n (2.45 MeV) R (um) R (um)
50% #/cc T #/cc He3 .
D+D o T (1.01 MeV) +p (3.02 MeV) 6c17 8 P ‘ 6el7 8
D+T — He* (3.52MeV)+n (14.1 MeV) 7 7
Sel7 Sel7
6 6
4e17,.\5 . 4e17A5
g g
Synthetic neutron detectors del7 £ 4 Jel7E4
are located to the side, top, 2el7 2e17
and bottom of the stagnation o o
column N !
tel>0.g540" 0 40 80 tel> 05040 0 40 80
R (um) R (um)




50%

D+ D — He® (0.82 MeV)+n (2.45 MeV)

D+D —
50%
primary
Side nTOF
12 - Bottom nTOF 12
10 - Simulation 10
go.g ~ (with n=>Be % os
£ scattering) g
é 0.6 * i 0.6
g 04 g 0.4
0.2 0.2
0.0 0.0
1.6 1.8 2.0 2.2 24 2.6 2.8
Neutron energy (MeV)
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Y PO =2.5e12
Y DP/Y DT =49

Comparison of neutron spectra

primary

T (1.01 MeV) +p (3.02 MeV)

secondary

Side nTOF
Simulation J
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secondary

D+T — He* (3.52MeV) +n (14.1 MeV)

secondary

Bottom nTOF
Simulation |
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Comparison of liner emission

Normalized Amplitude
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Comparison between observables and ) i
post-shot degraded 2D & 3D simulations
Parameter Measured/inferred [z2591] Post-shot simulations
o . 19 + 1.5 MA 19 MA
R +90 £ 1 ns +90 ns (~70 km/s)
Mo 450 + 150 um 450 + 150 um
. Egasa"’s ~100-300J 200+ 50
o P 44 + 13 um 40 um  (rg, """ 53 pm, CR,l"er 44)
« <T>PD,<T, sPec> 2.5+0.75,3.0£0.5keV  3.0£0.5,2.7+0.5 keV
* Pgas, My 0.310.2gcm3, ~70% 0.4+0.2gcm3,61%
* PRys PRjne ™ 211,900 + 300 mg cm™ 2.6 +1.0, 900 mg cm?
o <Pstasy, EgasStag 1.0 £ 0.5 Gbar, 4 + 2 kJ 1.5+ 0.3 Gbar,7 + 2 kJ
* <B,rg..> (4.5%0.5)e5 G cm (r,./r, ,1.7) 4.8e5 G cm (r,,/r, ,1.8) (<B,™> 91 MG)
e Y_DD (2.0£0.5)e12 (2.5%0.5)e12
« Y_DD/y DT 40 %20 41-57
* DD, DT spectra isotropic, asymmetric isotropic, asymmetric
- [ T e (“g;g zss1, Y,>2e121 1.6 + 0.2 ns (neutrons and x-rays)
* Liner emission bounce & peak emission: t . +5 Ns bounce & peak emission: t,,. +5 ns
* Az, ., shape 6 mm, helical 6 mm, helical
* mix 10 + 10 %, not = 20% 0% (by design), {Recent expts: ~ < 5%}
T ——
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Without phase plates or beam smoothing, )
unstable laser-plasma interaction expected!

OMEGA-EP ZBL (Z-Beamlet [NIF prototype])
750um DPP No DPP (representative)
POINT SPREAD FUNCTION
o energy majority
N\
3
'
t

In the beginning, we had to make progress without this critical technology
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Laser-only experiment: ) s
Blastwave measurements via VISAR

Dashed: Data
Solid: HYDRA simulation

o
i

Velocity (km/s)

Time (ns)

Inferred: 330 J or less coupled to the gas (of ~2.8 kJ)




Laser-only experiment: )
Shots in Z chamber with x-ray diagnostics

Two separate diagnostics confirmed heating:
Inferred peak <T_>~500 eV (equilibration value lower)

Bent crystal imager
Log Color Scale Linear Color Scale CRITR-AR as XRPHC
— 0.1
{0.08
{0.08
0.07

0.06

0.05

0.04

Axial (mm)
Axial Position [mm)]

0.03

0.02

0.01

-2 0 2
2 3 4 5 b6 2 3 4 5 6 Transverse Position [mm)
Radial (mm) Radial (mm)
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Radial and axial extents of heated plasma region ) e
match up on both linear and log scales

Linear Linear Log
experimental simulated Log experimental  simulated
transmission transmission transmission transmission

18

Integrated transmission
RN |

Integrated transmission
R AR AR

1 6 0875 1 6

14 5 14

12 " g 12
L E

10 | S 10
Q3T >

A0 %o 0B 0 <C R
X(cm) 8 X(cm)
6
4
2 3 4 5 6 2 3 4 5 6
Radial (mm) Radial (mm)
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Normalized x-ray images from two diagnostics @)
compare favorably to calculated distribution

Simulation Bent-crystal Imager CRITR-AR as XRPHC

Integrated transmission Roosevelt 7, Laser-only shot #1 Roosevelt 7, Laser-only shot #1
Ll L L]

0.10

X (cm) X (cm)

Inferred: Only ~200 J coupled through 1.5 um foils (of ~2-3 kJ)
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Simulations suggest the LEH channel is a
source of undesirable levels of non-fuel mix

In high-resolution calculations, mix threats
from the window and LEH are present due to
radiation ablation and shockwaves, and high-

Z materials can move into the gas quickly.

ireg,t(ns): 14.7612

_ RN PN RN

“regen” (ZBL unamplified)

dr ~ 350 um of inner LEH
material ablated, 0.2—
interacts with blastwave

0.1 —
window material E o0 B O Do) <172
jets forward into gas - -
~0.1 —
dr ~ 100 um of inner 02— -
liner wall ablated - -
- L L L L L L IO IR B L B -
-15 _1| 0 —(;.5 0.0
z (cm)
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In the absence of significant mix, ) e
simulations suggest > 103 yields are possible on Z

Simulations: Full coupling
Increasing laser energy (E.,) 10+14 oo oL
9001 sbeorbed 10 > 1L i St e i et S N
should dramatically increase
yield (in absence of mix)

100 20 50. 100.0 200. 500. 1000. 2000.

abs ()

Egas



To date, increased laser energy has reduced yield, (@&,
consistent with Z*>1 mix from the window and LEH

Simulations: Full coupling
Increasing laser energy (E,...) 10+14_I wornnbotasl u.l sottabitotal u-l S
should dramatically increase
yield (in absence of mix)

Experiments to-date:

Target changes thought to
increase laser absorption into
gas have all decreased the yield.

—| \1|ru.u]\|[|u|lnrrrlr|||r|||'|'|llt'«||—

100 20.  50. 1000 200.  500. 1000. 2000.
Egas?PS (J)




To date, increased laser energy has reduced yield,
consistent with Z*>1 mix from the window and LEH

YDD

n

~1.9ell

Simulations:

Increasing laser energy (E,...,)
from 200 J absorbed to > 1 kJ
should dramatically increase
yield (in absence of mix)

Experiments to-date:

Target changes thought to
increase laser absorption into
gas have all decreased the yield.

Laser-produced mix (direct or
indirect via blastwave or
radiation) appears to be the
culprit.

Axial Position [mm]

Must stay unmixed for ~60 ns!
We can dud the top of the
stagnation plasmal
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Upcoming experiments will test a redesigned
target meant to reduce laser-produced mix

Old target:

1.5 mm standoff
between window
and imploding region

1.5-3.5 micron window
. thicknesses

* 3 mm ID LEH

CH and/or Al components
in LEH and beam dump

Either no phase plate
or 1.8 mm phase plate

Sandia
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New target (cryo):

5.0 mm standoff
(window has to
move farther to mix)

0.25-0.4 micron
(3-9x mass reduction)

4.6 mm ID LEH

0.4—

None
(laser only sees Be)

02—

S 00—
R

0.7 mm phase plate _,

_04—




Summary ) e,

We seek to understand and improve the MagLIF platform, and
demonstrate expected yield scaling (laser energy, B, field, current, etc.)

MagLIF enables ICF yields at Magnetized laser-preheating focused experiments
Z using slow and stable implosions, help us understand heating and mix
with large >40 convergence ratios Exp sim

Axial (mm)
Z (cm)

3 vasher
Radial (mm)

Laser entrance
hole with 10 nm
Ti coating

CH tube with CI
doped layer

10 mm

Figure 1: a) Proposed target design; b) experimental framing camera images showing the propagation of a 4 ns long, 3 kJ
OMEGA EP beam through a pure Ar gas at several times; c) Simulated images of the experiment from HYDRA.

See talk by A. J. Harvey-Thompson

at this conference
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