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Is Stress Concentration Relevant for Nanocrystalline Metals?
Sandeep Kumar, Xiaoyan Li," Aman I—[aquve:,‘*fr and Huajian Gao*"

Nanocrystalline Al

10.52% strain g

“experimental evidence of extreme stress homogenization”
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Microstructure versus Flaw: Mechanisms of Failure and Strength in
Nanostructures

X. Wendy Gu,” Zhaoxuan Wu,} Yong-Wei Zhatlg.§ David J. Srolovitz,! and Julia R. Greer®

“no consensus exists on the effect of flaws on fracture at the nanocale”
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Nanocrystalline Pt
Notches are no worse than microstructure!

True Strain

Neither of these studies mention the ratio of notch size
to grain size, or the “sampling volume” of the notch...




‘Nanocrystal Thin Film Notch Fatigue ) s,




Result: Effect of notch on S-N fatigue
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Notch effects diminish as two length scales converge (g i,
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Notches obey

>
elastic stress 1 E\is st:ldy e Lukas, Kunz, Svoboda, MSEA, 2005
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Nanocrystalline metals are more sensitive to stress
concentrations than their coarse grained counterparts!!!




Models go where experiments can not: )
nominally identical grain topology
but different grain sizes

Grain size = 15 nm Grain size = 10 nm Grain size =5 nm
Notch:grain = 1:3 :grai Notch:grain = 1:1

F f “=
P /

tensile axig

A

Unlike conventional Vornoi tesselation construction for virtual microstructure,
a phase field approach to grain growth enables realistic grain curvature and
triple junctions.
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Do small grain sizes really provide Sani
extreme stress homogenization”???

10 nm grain size
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The ratio of two length scales matter!!! ()i,
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Fractography and FIB cross-section e

conf/rm gram growth at the source o crack initiation_
- ﬁacture edge o S -3‘
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A nagging question: were these
large grains caused by deposition
or sample preparation, not
fatigue?
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X-rays, Diffraction, & Synchrotrons

I i B l Storage rin
Wilhelm Konrad Roentgen’s 1896 x-ray image ge ring

of his wife’s hand, Nobel Prize 1901




Diffraction-based grain size measurements (g, s,
rely on observation of peak broadening
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Scherrer Formula (1918) Bcosf =

avg

Williamson-Hall (1953) BcosO = + nsind

davg
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Warren-Averbach (1959) AL=AEA f=Af exp[ —2 W2L2g2<8§.1)]




Can we observe the large grains using in-situ (g, s,
transmission synchrotron x-ray diffraction ?
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fatigue sample
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(111) ring

area detector

Ni-20Fe
X-ray energy =12729.6 eV
Working Distance = 151.8 mm
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The crux of the problem: needle-in-a-haystack:
the onset of abnormal grain growth
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has an imperceptible effect on the average grain size
Before abnormal grain growth  After abnormal grain growth
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A hypothesis: a large grain in a sea of small grains  _ .
should diffract like a single crystal superimposed on a@ i
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Preliminary Observation: A ‘spike’ in the diffraction ring 7 i
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How do we know these spikes are truly statistically
significant anomalies and not just noise?




An abnormal intensity spike is the single crystal signc@,mm.
that stems from an isolated large grain
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Confirmation: the intensity spike occurs in the known leggtion

of grain growth and nowhere else e
(b) Sample 13f-A 100 um (200) ring
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We’ve identified 1 large grain in a sea of 10x10° small grains. The |

large grain occupies ~0.00001% of the interrogation volume, and is
identified with a statistical confidence >>99.9999998% (6G).
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The definitive experiment:

Detecting the onset of grain growth during fatigue
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Watching fatigue-induced grain evolution directly.... M) Y

in situ
dynamic loading

R HYSITRON”

See Poster by Khalid Hattar: observing grain growth through mechanical, thermal, and irradiation stimuli




How could abnormal grain growth occur
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at such low temperatures???

What causes these few grains to grow so quickly
at room temperature?

Hypothesis: a few grain boundary types have a 001 101
distinct mobility advantage




Hypothesis: a small fraction of grain boundaries have i) e
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Mechanisms of antithermal grain boundary motion

Commonly presentin >3 and Y7 boundaries, which contain a common (111) plane, but not all behave

antithermally, nor is this motion mechanism exclusive to these orientations
The mechanism is qualitatively different from that encountered in thermally activated boundaries

Mechanism is based on the coordinated motion of many atoms

Often involves shuffling or rotation on a common (111) plane (or nearly co-planar)

n
Often involving rotation around a common center, even out-of-plane
The existence of out-of-plane coordinated motion may make it difficult to establish a simple rule governing

whether or not a boundary moves in a non-thermally activated manner.
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From Someone Else’s Work: Srikanth Patala and Eric Homer’s
revelation on representing grain boundary properties.
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lamental Zone representation:
Prog. Mater. Sci., 2012
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1. Stress concentrations are relevant for

nanocrystalline metals, but when the Is Stress Concentration Relevant for Nanocrystalline Metals?
fea ture size approaches the grain size, Sandeep Kumar,” Xiaoyan Li," Aman Haque,*" and Huajian Gao*”

the effects can be swamped by
microstructural effects.

For this reason, nanocrystalline metals o .-. S
actually have an increased sensitivity to -
votanefect! e

2. A new x-ray diffraction modality combined with the localizing effect of notches
allows the observation of dynamic abnormal grain growth during fatigue testing.

=

Summary

3. While there is still controversy about the mechanisms for low-temperature
mechanically-driven abnormal grain growth, the cause is likely linked to the existence
of a few ‘special’ anti-thermal grain boundary types which move by a coordinated

motion of many atoms simultaneously.
28
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