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ABSTRACT 

Cinnabar dissolution is an important factor controlling mercury (Hg) cycling as this process 

makes the originally stable Hg more reactive and bioavailable, increasing the possibility of Hg 

transport, methylation and bioaccumulation in aquatic environments. Recent studies have 

suggested the co-occurrence of released Hg re-adsorption during the course of cinnabar 

dissolution. However, this process has neither been quantitatively assessed nor taken into account 

when measuring cinnabar dissolution rate, mainly due to the lack of a feasible technique that can 

differentiate the dissolution and re-adsorption processes. The lack of the quantification of re-

adsorption could result in insufficient evaluation of the importance of cinnabar dissolution. In this 

study, a new method, based on isotope tracing (202Hg2+) and isotope dilution (199Hg2+) techniques, 

was developed to decipher the role of re-adsorption of released Hg in estimating cinnabar 

dissolution. The developed method includes two key components: 1) accurate measurement of 

both Hg released from cinnabar and the spiked 202Hg2+ in aqueous phase and 2) estimation of re-

adsorbed Hg on cinnabar surface via the reduction in the amount of spiked 202Hg2+. Finally, the 

developed method was applied to investigate cinnabar dissolution and re-adsorption of released 

Hg under both aerobic and anaerobic conditions. The results showed that the released Hg for 

trials purging with oxygen could reach several hundred µg L-1 while no significant dissolution of 

cinnabar was detected under anaerobic condition. Spiked 202Hg2+ was observed to be adsorbed on 

the cinnabar surface rapidly, supporting the observation of co-occurrence of re-adsorption during 

cinnabar dissolution. Cinnabar dissolution rate with the consideration of Hg re-adsorption using 

the newly developed method (0.0208 h-1) was estimated to be much higher (~2 times) than that 

calculated with the Hg detected alone in the aqueous phase (0.0109 h-1). Results of this study 

suggest that ignoring the re-adsorption of Hg on cinnabar surface can significantly underestimate 
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the importance of cinnabar dissolution, highlighting the necessity of applying the developed 

method in future cinnabar dissolution studies.   
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INTRODUCTION 

Cinnabar (HgS), a major ore mineral, is one of the largest mercury (Hg) sinks in 

contaminated sediments and soils.1 It has been considered as the most insoluble and least 

leachable Hg species due to its low solubility product constant (ksp =10-55.9 ~ -50.9).2 The formation 

of cinnabar in the environment plays a major role in restraining Hg biogeochemical cycling. 

However, previous studies showed that cinnabar can also serve as a continuous source of 

inorganic Hg in natural environment due to the fact that a variety of environmental factors can 

facilitate the dissolution of cinnabar. These factors include the presence of iron(III) in acidic 

water,3 sulfide in water,4 and dissolved organic matter (DOM).5-7 The enhanced dissolution of 

cinnabar could be an important process controlling Hg cycling in aquatic environments as this 

process would make the originally stable Hg more reactive and bioavailable, increasing the 

possibility of Hg transport, methylation and bioaccumulation, posing a great risk to humans and 

wildlife. This process is particularly important at areas where soils and sediments are heavily 

contaminated with Hg since even the release of a small fraction of sequestered Hg would 

remarkably increase the amount of Hg available in aquatic environment.8  

Dissolution of cinnabar in aquatic environment is very complex and the process could be 

conceptually simplified in two steps, 1) elimination of dissolution products (S2- and Hg2+) in the 

aqueous phase and 2) the subsequent dissolution of cinnabar (Table S1, Figure S1).2, 9, 10 A 

variety of environmental factors are expected to enhance or inhibit cinnabar dissolution via 

affecting the fate of cinnabar dissolution products. These factors include pH, redox potential (Eh), 

and Hg binding ligands.3, 6, 11, 12 Sulfide (S2-), one of the cinnabar dissolution products, could be 

eliminated from the system via oxidation to SO4
2- under aerobic condition at pH 5-8 3, 10, 12-14 or 

conversion to HS- and H2S under anaerobic condition.2 The former pathway may play a more 

important role as quicker dissolution of cinnabar was observed in the presence of O2.3, 10, 11 Hg2+, 
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the other product, could bind with organic ligands, in particular thiol-containing moieties in 

dissolved organic matter (DOM).6, 9, 15 The binding process is expected to reduce the amount of 

free Hg2+ in aqueous phase and thus enhance cinnabar dissolution. Contrary results were 

sometimes observed regarding the effects of organic ligands on cinnabar dissolution. For instance, 

minor changes in cinnabar dissolution were observed in the presence and absence of organic 

ligands (salicylic acid, acetic acid, EDTA, or cysteine).5-7, 14 These inconsistent results were 

speculated to be attributed to the differences in binding strength between those ligands and Hg 

and the possible re-adsorption of released Hg on cinnabar.6  

Hg2+ ion can be adsorbed on a variety of solid phases in natural environments, e.g., particles 

in water,16 soil,17 sediment18 and minerals19. The adsorption process may involve one or several 

possible mechanisms, including physisorption (Van der Waals interaction) and chemisorptions 

(ion exchange or surface complexation). Surface complexation was considered to be the possible 

mechanism of Hg2+ ions adsorption on HgS in most studies.10, 20 Surface of cinnabar (with a 

pHpzc of 3-4) is expected to be negatively charged in natural aquatic environments with a pH of 6-

8 due to the deprotonation of exposed sulfhydryl groups.6, 21 Since the dominant dissolved Hg(II) 

species in aquatic environments are often uncharged complexes, inorganic or organic complex 

formation, ion exchange should not be the major mechanism of Hg adsorption on cinnabar.22 

Experimental results have provided both direct and indirect evidences for the occurrence of Hg 

re-adsorption on cinnabar surface.6, 10, 11, 13 For instance, the amount of Hg released was found to 

be much lower than that of S (normally represented by SO4
2-), in strong disagreement with the 

stoichiometric estimation, indicating the adsorption of released Hg back on cinnabar particles.6 

Hg2+ added into cinnabar suspension were observed to decrease quickly, further proving the 

occurrence of this process.10 Nevertheless, this process has not yet been taken into account when 

measuring cinnabar dissolution rate in previous studies,6, 7, 10, 11, 14 mainly due to the lack of a 
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feasible technique that can differentiate the dissolution and re-adsorption processes. It is almost 

impossible to determine the re-adsorption rate of released Hg on cinnabar using traditional Hg 

addition method in consideration of the simultaneous dissolution of Hg from cinnabar. Hg 

adsorbed on cinnabar is expected to be very different in comparison with that of HgS in their 

environmental behavior, therefore, resulting in insufficient evaluation of the importance of 

cinnabar dissolution in the environment.  

Mercury isotope tracer technique has been widely applied in studying transport and 

transformation of Hg (e.g., methylation/demethylation and oxidation/reduction23, 24) in recent 

years mainly due to the virtues of high precision and ability of simultaneously determining the 

rates of multiple processes. It has also been successfully used to quantify the adsorption and 

desorption of Hg in sediments.18 The objective of this study was to decipher the role of re-

adsorption of the dissolved Hg in cinnabar dissolution. It is expected that the application of 

isotope tracer technique would make it feasible to simultaneously differentiate the dissolution and 

re-adsorption processes. An experimental approach, using both isotope tracing and isotope 

dilution techniques, was developed to monitor Hg released into the solution as well as Hg re-

adsorbed on cinnabar during the course of cinnabar dissolution. Equations were then derived to 

calculate the rates of cinnabar dissolution and Hg re-adsorption. The major virtue of the 

developed method is its ability to decipher the re-adsorption of released Hg on cinnabar during 

cinnabar dissolution. This method was then applied to investigate the dissolution of cinnabar and 

re-adsorption of released Hg under both aerobic and anaerobic conditions.  

MATERIALS AND METHODS 

Reagents 

202Hg metal (202Hg(0), 99.20%) was purchased from Cambridge Isotope Laboratories 

(Andover, MA). Enriched 201HgO (atomic percentage, 96.17 ± 0.56%) and 199HgO (atomic 
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percentage, 91.09 ±0.05%) were from Oak Ridge National Laboratory (Oak Ridge, Tennessee). 

202Hg(NO3)2 (measured atomic percentage, 99.70%) was prepared by dissolving 202Hg metal in 

concentrated HNO3, while 201HgCl2 (measured atomic percentage, 96.17%) and 199HgCl2 solution 

(measured atomic percentage, 90.66%) were prepared by dissolving 201HgO and 199HgO in 10% 

HCl (v/v). Cinnabar (HgS, 99%) was purchased from Sigma-Aldrich. Concentrated nitric acid 

and hydrochloric acid were trace metal grade (Fisher Scientific). Stannous chloride (SnCl2·2H2O, 

99.2%) and other chemicals were all reagent grade or higher (Fisher Scientific). Argon, nitrogen 

and oxygen (ultra high purity) were purchased from Airgas. NaNO3/NaOH solution was prepared 

by adding 0.01mol L-1 NaOH into 10 µmol L-1 HNO3 solution until achieving pH 8.0.  

Pretreatment of cinnabar and selection of filters  

The surface of cinnabar was cleaned prior to use by soaking and shaking the cinnabar powder 

(0.02 g) in 1 mol L-1 HNO3 at 150 rpm (Orbital shaker, Henry Troemner LLC) for 3 days and 

subsequently filtering though a 0.45 µm PVDF membrane (Millipore).7 Cinnabar on the filter 

membrane was washed until the filtrate reaching neutral using approximately 2.5 L DI (de-

ionized) water (>18.2 MΩ) and then transferred to a 250 mL Teflon bottle containing 200 mL 

NaNO3/NaOH solution (pH 8.0). The final concentration of cinnabar in the suspension was 

approximately 100 mg L-1 as HgS. The average size of cinnabar was approximately 3,272 nm 

determined by dynamic light scattering (DLS) (Malvern Zetasizer Nano-ZS, Westborough, MA) 

(Supporting Information Fig. S2). DI water and NaNO3/NaOH solution used were purged 

overnight with N2 to eliminate O2. All procedures were performed in a N2 glove box to avoid the 

exposure to air. Experiments were conducted to examine the adsorption of Hg on four types of 

filters (0.22 µm PTFE, 0.45 µm PTFE, 0.22 µm PVDF, and 0.45 µm PVDF). 0.22 µm PTFE filter 
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was chosen in this study since it had the best recovery for Hg with minimum adsorption on the 

filter (Supporting Information, Table S2).  

Simultaneous determination of cinnabar dissolution and Hg
2+
 re-adsorption in the presence 

of N2 and O2 

Experiments using isotope tracer were designed to monitor the adsorption of Hg2+ on 

cinnabar during the course of cinnabar dissolution experiments. 202HgNO3 (215 μL, 46.6 mg L-1 

as Hg) was spiked into a 250 mL Teflon bottle with 180 mL NaNO3/NaOH solution. Pretreated 

cinnabar (0.02 g wt.) was then added into the solution. The volume of the suspension solution 

was adjusted to 200 mL by adding NaNO3/NaOH solution. The final concentrations of 202Hg2+ 

and cinnabar were 50 µg L-1 as Hg and 100 mg L-1 as HgS, respectively. After shaking vigorously, 

2.5 mL suspension was immediately sampled from each bottle using a 2.5 mL syringe and 

filtered through a 0.22 µm PTFE membrane (representing time 0). Bottles with the remaining 

suspensions were then shaken at 125 rpm with the purging of N2 (~55 mL min-1, treatment 1) or 

O2 (~55 mL min-1, treatment 2). Triplicates (three independent Teflon bottles) were prepared for 

each treatment. An aliquot of suspension (2.5 mL) was sampled from each bottle at 1, 2, 4, 6, 8, 

10, 23, 30, 47, and 54 h, respectively, then filtered and preserved in a 4 oC refrigerator prior to 

analysis. Dissolved 201Hg and 202Hg in the filtrates were analyzed using an isotope dilution 

method. Upon analysis, 44.2 μL 199HgCl2 (453 µg L-1 Hg) was spiked into 2 mL filtrate, mixed 

thoroughly, diluted to 20 mL and then stabilized for 1 hour. 199Hg2+, 201Hg2+ and 202Hg2+ in the 

solutions were detected by a flow injection mercury analysis system (FIAS, from PerkinElmer) 

coupled with inductively coupled plasma mass spectrometry (ICP-MS, Elan DRC-e from 

PerkinElmer) following the method of isotope dilution technique.25 Details can be found in the 
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Supporting Information. Concentrations of spiked 202Hg2+ and Hg2+ released from the HgS in the 

aqueous phase were calculated, as detailed below in Results and Discussion section. 

Thermodynamics of Hg adsorption on cinnabar 

Thermodynamic experiments were further conducted to evaluate the adsorption capacity of 

Hg2+ on cinnabar. Adsorption of spiked 202Hg2+ on cinnabar was observed to achieve equilibrium 

after 6 hours according to the results of preliminary experiments. The procedures for the 

adsorption experiments used here were identical to treatment 1 of the above experiment (purging 

with N2). 202Hg2+ was spiked into the cinnabar suspension at the final concentrations of 0, 10, 20, 

50, 100, 200, and 400 µg L-1. After shaking the bottles at 125 rpm for 6 hours, 2.5 mL sample 

was collected from each bottle, filtered through a 0.22 μm PTFE membrane, and stored at 4°C for 

analysis. Concentrations of the spiked 202Hg2+ were then analyzed using the aforementioned 

isotope dilution method.  

Data analysis 

Calculation of parameters relevant to the thermodynamics of Hg adsorption on cinnabar 

Langmuir (Eq. (1)) and Freundlich isotherms (Eq. (2))26-32 were the two most commonly used 

adsorption isotherm equations which have been utilized to describe the adsorption of metal ions 

(including Hg) on solid adsorbents. Both models were adopted here to calculate the 

thermodynamic adsorption parameters of Hg adsorption on cinnabar. Nonlinear regression of qe 

against Ce was conducted using OriginPro 8 (OriginLab) to calculate the parameters related to the 

Hg adsorption on cinnabar (qm and KL, KF and n).  

�� = �����	


����	
  (1) 

	�� = 
���

/� (2) 
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where qe is the adsorption capacity at equilibrium (µg g-1), qm is the maximum monolayer 

adsorption capacity (µg g-1), KL is the Langmuir constant (L µg-1), Ce is the concentration of 

residue 202Hg ions in the solution after equilibrium (µg L-1), KF is the Freundlich adsorption 

capacity constant (μg g-1), n is the Freundlich constant related to the surface heterogeneity. 

Calculation of parameters relevant to the kinetic adsorption of Hg on cinnabar and kinetic 

dissolution of cinnabar 

The kinetic adsorption of Hg2+ on cinnabar can be described as a pseudo-second order 

reaction (Eq. (3))33
 while first order reaction (Eq. (4))34 has been previously used to describe 

cinnabar dissolution. These models were selected and tested in this study. By integrating Eq. (3) 

and (4), variations in qt and C with time can be described as Eq. (5) and (6), respectively. 

Nonlinear regression was conducted to calculate the adsorption rate constants (K2) and 

dissolution rate constant of cinnabar (k). 

���

��
= ����� − ���	�	 (3) 

	��

��
= ���� − �� (4) 

	 �

��
= 


���		�
+ 


�	
t (5) 

� = ��. �1 − #$��� (6) 

where qt is the adsorption capacity at time t ( μg g-1), K2 is the adsorption rate constant (g μg-1 h-1), 

C0 is the concentration of released Hg after equilibrium (µg L-1), C is the concentration of 

released Hg at time t (µg L-1), and k is the apparent dissolution rate constant (hour -1). 

RESULTS AND DISCUSSION 

Developing a method for simultaneously monitoring Hg adsorption and dissolution using 

isotope dilution and isotope tracer technique 

Page 11 of 30

ACS Paragon Plus Environment

Environmental Science & Technology



12 

 

A portion of the released Hg can be re-adsorbed on cinnabar surface after dissolving from 

cinnabar particle, resulting in the coexistence of two forms of Hg in the cinnabar suspension, the 

released Hg present in the aqueous phase and released Hg re-adsorbed on cinnabar surface (Fig. 

1). Concentration of the released Hg present in the aqueous phase can be determined readily, 

whereas it is still a challenge to directly measure the released Hg re-adsorbed on cinnabar surface. 

Without considering Hg re-adsorption can result in underestimation in Hg dissolution rate since 

only a portion of the released Hg (in the aqueous phase) is counted. To quantify the sum of Hg 

released from cinnabar (in the aqueous phase and re-adsorbed on cinnabar surface), a new 

method based on isotope tracer technique was developed. The rationale is that re-adsorbed Hg on 

cinnabar surface (NHg2+(ads)) can be estimated by decreased amounts of the spiked isotope-

enriched Hg (202Hg2+(aq)) in aqueous phase. Developing such a method includes two key steps: 1) 

measuring both released Hg in the aqueous phase (NHg2+(aq)) and the residual 202Hg2+ 

(202Hg2+(aq)) in the aqueous phase, and 2) developing an approach that can estimate re-adsorbed 

Hg on cinnabar surface (NHg2+(ads)) by the reducing amount of spiked 202Hg2+ in the aqueous 

phase (202Hg2+(aq)). 

Hg isotopes in the filtrate were analyzed using isotope dilution technique. Prior to analyzing 

the samples, a known amount of 199Hg2+ was spiked into the filtrate to serve as an internal 

standard. Abundances of 202Hg2+, 199Hg2+, and 201Hg2+ (N202, N199, N201) in the final solution were 

analyzed and the ratios of 201Hg/199Hg and 202Hg/199Hg (%
&&
��
 and %
&&

���) were determined. Hg 

isotope ratios in the filtrates were different from the natural abundance of Hg because of the 

addition of 202Hg2+ at zero time. These isotope ratios also changed over time accompanying Hg 

dissolution from cinnabar and adsorption of the spiked 202Hg2+. Therefore, traditional isotope 

dilution method for analyzing samples with the natural abundance of Hg isotopes35-39 is not 

applicable here for calculating Hg concentrations in the filtrates. A new method was developed in 
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order to simultaneously calculate Hg originated from cinnabar dissolution and residual spiked 

202Hg2+ in the filtrates. 

Since all 7 natural Hg isotopes were present in the used isotope-enriched Hg (202Hg2+ and 

199Hg2+)  because of impurities contained, Hg isotopes in the final filtrates originated from three 

sources, including cinnabar dissolution (with natural abundance of Hg isotopes, Cd�aq�), spiked 

202Hg2+  (Cx�aq�), and added 199Hg2+ (Cy�aq�). In consideration of all these sources, the ratios of 

201Hg/199Hg (%
&&
��
) and 202Hg/199Hg (%
&&

���) can be described using the following functions (Eq. 

(7)-(8)): 

%
 	= 	%
&&
��
= 

)�*+

)+,,
 = 

�-�./�	01	
�*+�	�2�./�0�*�	

�*+ �	�3�./�0+,,
�*+

�-�./�01
+,,�	�2�./�0�*�

+,,	�	�3�./�0+,,
+,,   (7) 

%� 	= 	%
&&
���= 

)�*�

)+,,
 = 

�-�./�01
�*��	�2�./�0�*�	

�*� �	�3�./�0+,,
�*�

�-�./�01
+,,	�	�2�./�0�*�

+,,	�	�3�./�0+,,
+,,  (8) 

where %
&&
��
 represents the ratio of 201Hg to 199Hg in the final solution;  %
&&

��� represents the ratio 

of 202Hg to 199Hg in the final solution; Cd(aq)(µg L-1) represents the concentration of natural Hg 

(from HgS dissolution) in the solution; Cx(aq) (µg L-1) represents the residual concentration of 

spiked 202Hg in the solution; Cy(aq) (µg L-1) represents the concentration of 199Hg added after 

filtration in the solution; 45	
6  represents the abundance of i isotope of Hg in natural Hg; 4���

6  

represents the abundance of  i isotope Hg in spiked 202Hg-enriched Hg; 	4
&&
7  represents the 

abundance of i isotope Hg  in the used 199Hg-enriched Hg. 

By solving Eq. (7) and Eq. (8), the concentrations of released Hg present in the aqueous 

phase Cd�aq� and residual spiked 202Hg Cx�aq� in the solution can be calculated by Eqs. (9) and 

(10), respectively. This isotope dilution method provides a precise tool to determine the 

concentrations of both released Hg and residual spiked 202Hg2+ in the filtrates 

(Cd �aq�	and	 Cx �aq� ) at each sampling time of the dissolution experiment. Both 
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Cd�aq�	and	Cx�aq� are necessary for the later calculation of cinnabar dissolution rate and re-

adsorption rate of released Hg. 

�: =	
;+�3�./�<01

+,,	
0+,,

�*�$01
�*�0+,,

+,,=�;��3�./�<01
�*+0+,,

+,,$01
+,,0+,,

�*�=��3�./��01
�*�0+,,

�*+$01
�*+0+,,

�*��

;+<01
�*�0�*�

+,,$01
+,,0�*�

�*�=�;�<01
+,,0�*�

�*+$01
�*+0�*�

+,,=��01
�*+0�*�

�*�$01
�*�0�*�

�*+�
	  (9) 

�> = 	
;+�3�./�<	0+,,		

+,, 0�*�
�*�		$	0�*�

+,,0+,,
�*�=�	;��3�./�<0+,,

�*+0�*�
+,,$	0�*�

�*+0+,,
+,,=�	�3�./��0+,,

�*�0�*�
�*+$0+,,

�*+0�*�
�*��

;+<	01
�*�0�*�

+,,		$	01
+,,0�*�

�*�=�;�<01
�*+0�*�

�*+$	01
�*+0�*�

�*�=�	�01
+,,0�*�

�*�$01
�*�0�*�

+,,�
  (10) 

The second key step of the proposed method is to calculate the amount of released Hg re-

adsorbed on cinnabar (Cd�ads�). Since the total amount of spiked 202Hg (Cx�tot�� is a known 

value, the amount of spiked 202Hg adsorbed on cinnabar (Cx�ads��	at each sampling time can be 

obtained by subtracting Cx�aq� from Cx�tot�. If Cd�ads� can be related to Cx�ads�, it would be 

feasible to calculate Cd�ads� by Cx�ads�	and Cd�aq�. Isotope ratios of Hg adsorbed on cinnabar 

surface are controlled by the adsorption/desorption process, while both adsorption/desorption and 

dissolution processes determine the ratios of Hg in the aqueous phase. As adsorption/desorption 

of Hg on cinnabar is expected to be much faster than cinnabar dissolution,17 it is reasonable to 

assume that the isotope ratios of Hg in the aqueous phase is approximately equal to that adsorbed 

on cinnabar (Eq. (11)) due to the quick exchange of Hg isotopes between the aqueous and the 

particulate phases. This assumption was verified by the experiments described later. 

�-�.>A�

�2�.>A�
= �-�./�		

�2�./�	
         (11) 

By resolving Eq. (11), the amount of released Hg2+ that was re-adsorbed on cinnabar surface 

can be calculated from the released Hg in the aqueous phase and the distribution of spiked 202Hg 

between the aqueous phase and cinnabar adsorbed phase using Eq. (12). 

�>�ads� = �2��B��$�2�./�			

�2�./�
�>�aq�	       (12) 
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Accordingly, the total amount of Hg released from cinnabar (Cd�tot�) can be calculated by 

summing measured dissolved Hg in the aqueous phase (Cd�aq�) and estimated Hg adsorbed on 

cinnabar surface (Cd�ads�). 

�>�tot� = �>�aq� + �>�ads� = �>�aq� + �2��B��$�2�./�			

�2�./�
�>�aq�	   (13) 

Application of the developed new technique in monitoring cinnabar dissolution and Hg
2+
 

re-adsorption  

The developed new technique was applied in determining concentrations of Hg re-adsorbed 

on cinnabar surface (Cd�ads�) and total amount of Hg released from cinnabar (Cd�tot�). The 

results showed that spiked 202Hg2+ was adsorbed on cinnabar surface quickly under both oxic and 

anoxic conditions, illustrated by the rapid decrease in dissolved 202Hg2+ concentrations in the first 

6 hours (Fig. 2A and 2B). For the treatment of purging with N2, the variation in both the released 

Hg present in the aqueous phase and total amount of released Hg was observed to be insignificant 

(p>0.1, one-way ANOVA) during the course of experiment (54 hours), indicating that dissolution 

of Hg from cinnabar was negligible under anaerobic condition. In the presence of O2, detectable 

amount of Hg was dissolved from cinnabar, indicated by the continuous increase of both Cd�aq� 

and Cd�tot�	with time (Fig. 2D). The concentration of total released Hg was estimated to be more 

than 300 μg L-1 after 54 hours. A number of previous studies also suggested that O2 can enhance 

the dissolution of cinnabar.10-13 Oxygen is expected to oxidize S2- (one product of cinnabar 

dissolution) to SO4
2-, and thus facilitating the dissolution of cinnabar.  

As shown in Fig. 2A, natural Hg2+ in the solution was approximately 6 μg L-1 at the 

beginning of the experiment (0 hour), while the concentration for the control treatment  (without 

the addition of 202Hg2+ ) was approximately zero. The abnormal high concentration of natural Hg 

after the addition of 202Hg2+ could be caused by the instant adsorption of spiked 202Hg2+ on 
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cinnabar and the subsequent replacement of natural Hg from cinnabar surface. Although cinnabar 

particles were cleaned for several times with 1 mol L-1 nitric acid and DI water prior to the 

experiment, there could be still some Hg ions adsorbed loosely on the surface. This assumption 

was further tested by measuring the replacement amount of Hg with different initial 

concentrations of 201Hg2+ spiked. As shown in Fig. S3, the concentrations of Hg were less than 1 

μg L-1 before 201Hg2+ was spiked. An instant increase in Hg2+ was observed after the spike of 

201Hg2+ for all treatments. In addition, the concentration of natural Hg2+ increased gradually with 

the increasing concentration of spiked 201Hg2+ (more 201Hg2+ was instantly adsorbed on cinnabar). 

These results indicate that the initial increase of Hg concentration may be due to the isotopic 

replacement of residual adsorbed Hg on cinnabar with the spiked isotope-enriched Hg, rather 

than the cinnabar dissolution. Therefore, this Hg was deducted from the measured �>�aq�		when 

calculating the total released Hg from cinnabar (�>�tot�). 

Importance of Hg re-adsorption on cinnabar dissolution estimation was evaluated by 

comparing the amount of released Hg from cinnabar with and without the consideration of the re-

adsorption of released Hg on cinnabar. As shown in Fig. 2D, concentrations of total dissolved Hg 

were found to be much higher than that in the solution (~ 2 times), suggesting that a large 

proportion of released Hg from cinnabar was re-adsorbed on cinnabar surface. To further 

evaluate the importance of Hg re-adsorption on cinnabar dissolution, parameters relevant to the 

adsorption of Hg and the dissolution of cinnabar were calculated using Eq. (5) and Eq. (6). 

Variation of spiked 202Hg fitted well with the pseudo-second order model, as indicated by the 

high value of R² (0.9999) (Fig. 3A). Dissolution of cinnabar could be well predicted by the first 

order reaction equation (R2 = 0.9898, Fig. 3B).34 Cinnabar dissolution rate constant was 

estimated to be 0.0208 h-1 when considering the re-adsorption of Hg on cinnabar surface by using 
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the new method developed in this study (Table 1). If only dissolved Hg in the aqueous phase 

(Cd�aq�) was taken into account, this rate constant would decrease to 0.0109 h-1 (Fig. 3C), 

indicating that ignoring the adsorption of Hg on cinnabar surface would significantly 

underestimate the dissolution rate of cinnabar. 

Dissolution of cinnabar can serve as a continuous source for bioavailable Hg2+ in the 

environment, and subsequently facilitates the methylation process and increasing the amount of 

more toxic methylmercury. A number of previous studies have made efforts to quantify the 

importance of this process in the environment.3, 6, 7, 10 Due to the lack of a feasible technique for 

measuring Hg adsorbed on cinnabar, only the Hg detected in the aqueous phase was considered 

to be dissolved from cinnabar in previous studies 11, 12 although several of which have speculated 

that dissolved Hg from cinnabar surface could be re-adsorbed on cinnabar surface.10-12 A number 

of ligands are present in natural waters and they are expected to be involved in cinnabar 

dissolution by either affecting the release of Hg from cinnabar or adsorption of Hg on cinnabar 

surface via complexing with the dissolved Hg2+.6, 7 It should be noted that experiments in this 

study were conducted in a dilute NaNO3 solution system without the addition of any inorganic or 

organic ligands. Future work of applying the developed method in determining cinnabar 

dissolution in natural waters would be helpful for better understanding the importance of cinnabar 

dissolution in Hg cycling.  

Thermodynamics of Hg adsorption on cinnabar and Validation of the Hypothesis of the 

Proposed Method 

Thermodynamics of Hg adsorption on cinnabar were further investigated by using the 

isotope-tracer method. As shown in Fig. 4A, percentage of 202Hg adsorbed on cinnabar decreased 

from 94 to 48% with the increase of initial 202Hg2+ concentration from 0 to 400 µg L-1, while the 

equilibrium adsorption capacity increased from 94 to 1930 µg g-1. At higher concentrations of 
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initial Hg, adsorption sites on cinnabar may be over occupied which could explain the negative 

relation of Hg removal efficiency with initial Hg concentration.40 The increasing equilibrium 

adsorption capacity at higher Hg concentrations could be attributed to the higher adsorption rate 

at higher concentration and the fully utilization of available active sites.28 Nonlinear regression of 

the equilibrium adsorption capacity qe (µg g-1) against the equilibrium concentration of 202Hg2+ Ce 

(µg L-1) using both Langmuir and Freundlich models were conducted to estimate the relevant 

parameters of adsorption. Langmuir model predicted the experimental data better than Freundlich 

model, indicating by its higher R2 (Table 1, and Fig. 4B). 

In order to derive the equation for calculating the total released Hg (�>�tot�), it was assumed 

that the isotope ratio of Hg in the solution was identical with that adsorbed on cinnabar (Eq. (11)). 

This assumption was formulated based partially on that rates of Hg adsorption/desorption were 

much higher than cinnabar dissolution. As shown in Fig. 2B and 2D, the dissolution of cinnabar 

has not achieved equilibrium at the end of the experiments (54 hours), while the equilibrium time 

for Hg adsorption was determined to be less than 6 hours, supporting this assumption. In order to 

further verify the hypothesis, concentrations of dissolved Hg in the solution	�>�tot� were also 

calculated based on the thermodynamic model (Langmuir model). Total Hg ions detected at t 

time can be considered as Ce ( i.e. Cd(aq) + Cx(aq)). Parameters (KL and qm) obtained from the 

thermodynamic experiments in the presence of N2 were adopted. By using Langmuir model, total 

adsorbed Hg on cinnabar can be calculated (Eq. (1&2)) as �>�:�ads�. Then, the total amount of 

dissolved Hg can be estimated as: 

�>�tot� = �>�aq� + �>�ads� = �>�aq� + ��>�:�ads� − �:�ads��  (14) 

The comparisons of total dissolved Hg calculated by both methods were shown in Fig. 5. Total 

dissolved Hg estimated by Langmuir model (Eq. (14)) was observed to be higher than that 
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estimated using the newly developed method at the first 6 hours and then became very close in 

the presence of O2 (Fig. 5B). This is reasonable since the adsorption of spiked Hg had not 

achieved equilibrium at the beginning of the experiment and was expected to result in the 

overestimation of Hg adsorbed on cinnabar if Langmuir model was adopted. Dissolved Hg 

estimated using both methods were observed to be similar (p>0.05, two-way ANOVA), 

especially after 6 hours (p>0.1, two-way ANOVA, with an average RSD of 9.9% (2.4-16.6%) 

when Hg in the aqueous phase and cinnabar surface was expected to be equilibrated. These 

results further support the hypothesis that the isotope ratio of Hg in the solution is approximately 

identical with that adsorbed on cinnabar, suggesting the reliability of the proposed method in 

estimating the real dissolution of cinnabar. On basis of these validations, the errors originated 

from the assumption should be reasonable and the proposed method is expected to be a reliable 

technique in studying the dissolution of cinnabar.  

ENVIRONMENTAL IMPLICATION 

In this study, an isotope tracer based method was developed to investigate both dissolution 

and re-adsorption of Hg during the course of cinnabar dissolution. By using this method, re-

adsorption of Hg on cinnabar surface was found to play an important role in accurately evaluating 

cinnabar dissolution, and the rates of cinnabar dissolution could be significantly underestimated 

without considering the re-adsorption process. Cinnabar dissolution is deemed to be an important 

factor in Hg cycling as this process could serve as a continuous source for reactive Hg in aquatic 

environments, increasing the possibility of Hg transport, methylation and bioaccumulation in 

aquatic environments. Results of this study suggest that the re-adsorption of released Hg on 

cinnabar surface is more important than previously expected in Hg cycling and this process 

should be taken into account in future studies of cinnabar dissolution.  
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SUPPORTING INFORMATION 

Additional information as noted in the text. This material is available free of charge via the internet at 

http://pubs.acs.org 
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Figure legends  

 

Figure 1 A schematic showing the procedure of simultaneously monitoring the dissolution of 

cinnabar and re-adsorption of released Hg using isotope tracer and isotope dilution techniques. 

 

Figure 2. Variations of spiked 202Hg2+ in aqueous phase (�C�aq�), Hg dissolved from cinnabar in 

aqueous phase (�>�aq�), and the total Hg dissolved from cinnabar (�>�tot�). A and C, purging 

with N2; B and D, purging with O2. Since	�>�aq� at time 0 was likely resulted from the isotopic 

replacement of natural Hg adsorbed on cinnabar by the spiked 202Hg2+, rather than the cinnabar 

dissolution,  this Hg was deducted from the measured �>�aq�		when calculating the total released 

Hg from cinnabar (�>�tot�). 

 

Figure 3. Nonlinear regressions of spiked 202Hg (A), total dissolved Hg (B), and dissolved Hg in 

the aqueous phase (C) against time. 

 

Figure 4. The thermodynamic of 202Hg2+ adsorption on cinnabar. A, variation of  equilibrium 

concentrations of 202Hg (μg L-1) at 24 h with different initial 202Hg2+ concentrations (0, 10, 20, 50, 

100, 200, 400 μg L-1). B, non-linear regression of qe against Ce using Langmuir and Freundlich 

models (T = 20 °C). 

 

Figure 5. Comparisons of total dissolved Hg estimated by the thermodynamic equilibrium using 

Langmur model (eq.14) and by the new method developed in this study (eq.13). A, without O2 

(purging with N2); B, with O2 (purging with O2).  
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Figure 1  
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Figure 2  
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Figure 3   
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Figure 4  
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Figure 5     
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Table 1 Parameters of adsorption kinetics and isotherms of Hg on cinnabar using different 

models (in the absence of O2) and dissolution (in the present of O2) 

Kinetic models Parameters Values R
2
 

The pseudo-second order rate equation 

���

��
= �
��� − ���	�    �

��
= 


���		�
+ 


�	
D 

qe (µg g-1) 485.4 
0.9999 

K2 (g μg-1h-1) 0.00663 

Dissolution kinetic model 

� = ��. �1 − #$��� 

C0 (tot)(μg L-1) 430.26 
0.9898 

K (tot)(hour-1) 0.0208 

C0 (aq)(μg L-1) 217.55 
0.9851 

K (aq) (hour-1) 0.0109 

Langmuir model 

�� =
�E�F��

1 + �F��
 

qm (µg g-1) 2137.1 
0.9952 

KL (L µg-1) 0.0450 

Freundlich model 

�� = 
���

/� 

KF (μg g-1) 275.89 
0.9390 

1/n (g L-1) 0.375 
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