

1 Perrhenate Incorporation into Binary Mixed Sodalites: The Role of
2 Anion Size and Implications for Technetium-99 Sequestration

3 Johnbull O. Dickson^{*1}, James B. Harsh¹, Wayne W. Lukens², and Eric M. Pierce³,

4 ¹Department of Crops and Soil Sciences, Washington State University, P. O. Box
5 646420, Pullman, WA 99164, USA

6 ²Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
7 94720

8 ³Environmental Sciences Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak
9 Ridge, TN 37831.

10 *Corresponding Author: J.dickson@wsu.edu

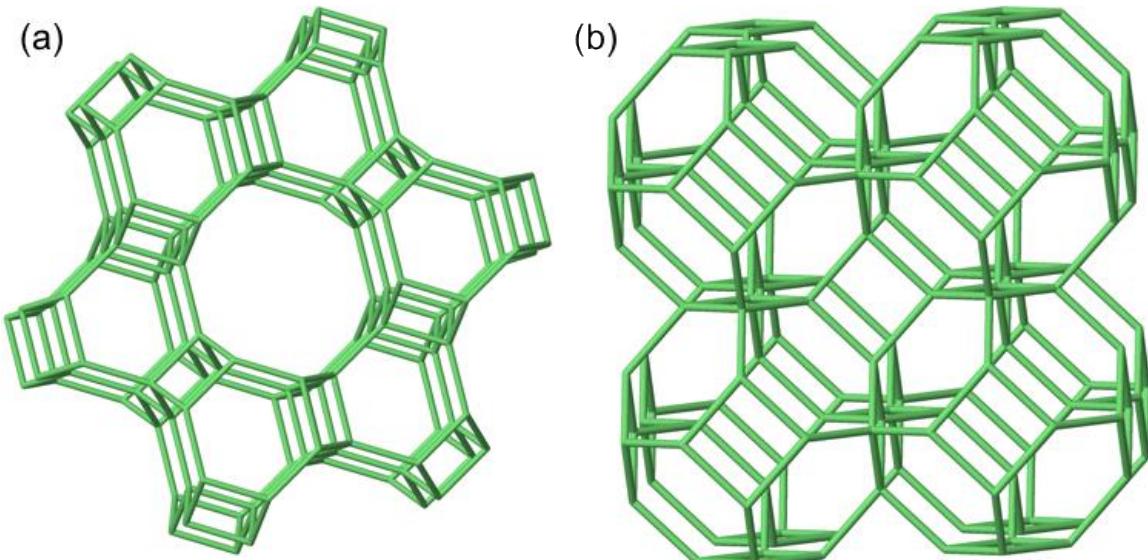
11 **Abstract**

12 Perrhenate (ReO_4^-), as a TcO_4^- analogue, was incorporated into mixed-anion sodalites
13 from binary solutions containing ReO_4^- and a competing anion X^{n-} (Cl^- , CO_3^{2-} , SO_4^{2-} ,
14 MnO_4^- , or WO_4^{2-}). Our objective was to determine the extent of **solid solution formation**
15 and the dependence of **competing ion selectivity** on ion size. Using equivalent aqueous
16 concentrations of the anions (ReO_4^- / X^{n-} molar ratio = 1:1), we synthesized mixed-anion
17 sodalites from zeolite and NaOH at 90°C for 96 h. The resulting solids were
18 characterized by bulk chemical analysis, powder X-ray diffraction, scanning electron
19 microscopy, and X-ray absorption near edge structure (XANES) spectroscopy to
20 determine crystal structure, chemical composition, morphology, and rhenium (Re)
21 oxidation state. Rhenium in the solid phase occurred predominately as $\text{Re(VII)}\text{O}_4^-$ in the

22 sodalites, which have a primitive cubic pattern in the space group $P\bar{4}3n$. The refined
23 unit-cell parameters of the mixed sodalites ranged from 8.88 to 9.15 Å and showed a
24 linear dependence on the size and mole fraction of the incorporated anion(s). The
25 ReO_4^- selectivity, represented by its distribution coefficient (K_d), increased in the
26 following order: $Cl^- < NO_3^- < MnO_4^-$ and $CO_3^{2-} < SO_4^{2-} < WO_4^{2-}$ for the monovalent and
27 divalent anions, respectively. The relationship between the ReO_4^- distribution coefficient
28 and competing anion size was nonlinear. When the difference in ionic radius (DIR)
29 between ReO_4^- and X^{n-} ($n = 1$ or 2) was greater than ~12%, then ReO_4^- incorporation
30 into sodalite was insignificant. The results imply that anion size is the major factor that
31 determines sodalite anion compositions. **Given the similarity in chemical behavior or**
32 **anion size when redox is not concerned** ReO_4^- is likely to serve as a suitable analogue
33 for TcO_4^- where $Tc(VII)$ is the stable oxidation state.

34 **Highlights**

35 • Mixed-anion sodalites were synthesized from zeolite and NaOH at 90°C
36 • Solid solution formation and ion selectivity were studied
37 • Solid phases were characterized by chemical analysis, XRD, SEM, and XANES
38 • Perrhenate selectivity for the mixed-anion sodalite cages increased in the
39 following order: $Cl^- < NO_3^- < MnO_4^-$ and $CO_3^{2-} < SO_4^{2-} < WO_4^{2-}$
40 • The influence of anion size on mixed-anion sodalite compositions was
41 documented


42 **Keywords**

43 Mixed-anion sodalites; Anion selectivity; Distribution coefficient; Perrhenate;
44 Pertechnetate, Technetium-99; Nuclear waste

45 **1. Introduction**

46 The safe disposal of nuclear waste generated by the nuclear fuel cycle remains one
47 of the most challenging and potentially costly environmental endeavours facing the
48 nuclear energy industry (Ewing, 2006). Additionally, disposal of reprocessed waste
49 generated as a result of the Cold War legacy remains a challenge for numerous
50 industrialized nations (Ewing, 1999). The application of versatile porous framework
51 materials (feldspathoids) as a selective medium for sequestration of long-lived anionic
52 radionuclides (e.g., $^{99}\text{TcO}_4^-$, $^{129}\text{I}^-$, $^{75}\text{SeO}_4^{2-}$) represents a key component of a closed
53 nuclear fuel cycle. Furthermore, advanced knowledge of factors governing anion
54 selectivity in feldspathoids is critical for their potential application in anion-sequestration
55 processes (Custelcean and Moyer, 2007).

56 Feldspathoids such as cancrinite and sodalite (Fig. 1) have crystalline microporous
57 framework structures. They can be represented by the general formula: $\text{A}_8[\text{TO}_4]_6\text{X}_2$
58 where T is Al and/or Si, and A and X are monovalent or divalent cations and anions,
59 respectively (Taylor and Henderson, 1978). Sodalite, a high-temperature, low pressure
60 phase, consists of corner sharing SiO_4 and AlO_4 tetrahedra constructed into four and
61 six-membered rings that form the cuboctahedral cages referred to as sodalite β -cages.
62 The sodalite framework can be considered as a space-filling arrangement of the
63 sodalite β -cages directly linked via the six-membered rings to form the semi-condensed
64 sodalite structure. In the center of the cage is an anion that is tetrahedrally coordinated
65 to four cations, forming A_4X clusters (Trill, 2002). Because anions are strongly trapped
66 within the cages natural or synthetic sodalite phases constitute highly durable waste
67 forms for immobilization of key anionic radionuclides (Maddrell et al., 2014).

68

69 **Fig. 1.** (a) Cancrinite structure (ABABAB.... stacking sequence). (b) Sodalite structure
 70 (ABCABC... stacking sequence of the six-rings)(Baerlocher and McCusker, 2014). For clarity
 71 cage oxygen, anions and cations were omitted.

72 Feldspathoids with guest ions in their structure have been widely studied (Johnson
 73 et al., 1999). Most studies have been devoted to mixed cation substitutions in sodalite
 74 frameworks (Brenchley and Weller, 1994; Stein et al., 1992) and to single anion
 75 sodalites (Weller and Wong, 1989; Weller et al., 1990), but the substitution of multiple
 76 guest anions in mixed sodalite phases is not well understood. **Research into** sodalite
 77 selectivity for anionic species of varying sizes is important for elucidating anion
 78 **substitution into** mixed sodalites with more complex structures, especially those
 79 sodalites containing key anionic radionuclides ($^{99}\text{TcO}_4^-$, $^{129}\text{I}^-$, $^{75}\text{SeO}_4^{2-}$). **Significant gaps**
 80 exist in our current understanding of the role of sodalite selectivity as a driving force for
 81 controlling anion incorporation into the structure.

82 Previous work with NO_3/ReO_4 -sodalites suggests that selectivity might be anion
 83 size-dependent (Dickson et al., 2014), but **there is lack** of experimental evidence

84 demonstrating the selectivity of different ions for incorporation into sodalites. Therefore,
85 we investigated under oxidizing conditions the competitive incorporation of ReO_4^- into
86 mixed anion-bearing sodalites in the presence of these competing anions (X^{n-}) ranging
87 in size and charge: Cl^- , CO_3^{2-} , SO_4^{2-} , MnO_4^- , and WO_4^{2-} .

88 We used Re as a nonradioactive analogue for Tc because both elements occur
89 primarily under oxidizing conditions as oxyanions (ReO_4^- and TcO_4^-), which have
90 similar metal oxygen bond lengths ($\text{Tc}-\text{O} = 1.702 \text{ \AA}$; $\text{Re}-\text{O} = 1.719 \text{ \AA}$) and ionic radii
91 ($\text{TcO}_4^- = 2.52 \text{ \AA}$; $\text{ReO}_4^- = 2.60 \text{ \AA}$) (Icenhower et al., 2010; Marcus, 1991; Moyer and
92 Bonnesen, 1979). However, in reducing environments, the redox chemistry of Re and
93 Tc significantly differs due to the difference in standard electrode potentials (E_h) of the
94 two species ($\text{ReO}_4^-/\text{ReO}_2 = 0.510 \text{ V}$ and $\text{TcO}_4^-/\text{TcO}_2 = 0.738 \text{ V}$), and ReO_4^- being more
95 difficult to reduce than TcO_4^- (Darab and Smith, 1996; Lukens et al., 2007; Wakoff and
96 Nagy, 2004). For example, at pH 8, the E_h would have to drop below 0.25 V before
97 $\text{TcO}_2 \cdot 2\text{H}_2\text{O}(\text{s})$ would form in the presence of $10^{-8} \text{ M} \text{ TcO}_4^-$ (Icenhower et al., 2010) but
98 Re(VII) reduction would require a lower E_h . Thus, the use of Re as a Tc analogue is
99 only applicable under aerobic conditions where both species are expected to remain as
100 an oxyanion (+7 oxidation state).

101 This study highlights the dependence of selectivity on ion size and charge.
102 Additionally, the variation of the sodalite structural parameter as a function of
103 composition (anion mixing) will shed light on the extent of anion incorporation into mixed
104 sodalites formed in environmentally relevant conditions such as subsurface and
105 engineered wastes, vitrification products, and materials formed by chemical weathering.

106

107 **2. Materials and Methods**

108 **2.1. Hydrothermal Mineral Synthesis**

109 Mixed-anion sodalites with ReO_4^- and one other anion (X^{n-}) were hydrothermally
110 synthesized based on modification of a method previously described by Liu and
111 Navrotsky (2007): sodium hydroxide (Alfa Aesar) was mixed with zeolite 4A
112 ($\text{Na}_{12}\text{Al}_{12}\text{Si}_{12}\text{O}_{48}\cdot x\text{H}_2\text{O}$, W.R. Grace & Co.) and sodium salts of the appropriate anions.
113 The zeolite supplied a 1:1 molar ratio of Si/Al. The mixed sodalites were synthesized in
114 a 60-mL Teflon digestion bomb filled with 20 mL of deionized water, one gram of NaOH
115 pellets (1.25 M NaOH) and 0.5 g of zeolite. To these basic solutions, 0.88 M of NaReO_4
116 was added and 0.88 M of Cl^- , CO_3^{2-} , SO_4^{2-} , MnO_4^- , or WO_4^{2-} was added as the
117 competing anion. The rationale for the concentrations used in this experiment was that
118 we wanted to produce pure sodalite phases to determine anion selectivity in a mixed
119 system. All chemical reagents were used as received.

120 **To perform hydrothermal syntheses**, the bombs were capped, and **reagents were**
121 **aged for 96 h in a 90 °C oven**. After decanting the basic supernatant solutions, the solid
122 **precipitates were washed three times with deionized water (0.054×10^{-3} dSm $^{-1}$) by**
123 **centrifugation**. The solids were dialyzed in deionized water until the electrolytic
124 **conductivity was ≤ 0.01 dSm $^{-1}$, dried for 24 h, and weighed**. Solid yield after dialysis
125 **ranged from 0.5 to 0.6 g**.

126 **2.2. Powder X-ray Diffraction**

127 X-ray diffraction data were obtained with a Panalytical Xpert Pro diffractometer
128 (XRD) scanning at 1.5 °/min over 5 – 90° 2θ. We used CoK_α radiation ($\lambda = 1.789010$ Å)
129 and an X'Celerator silicon strip detector equipped with an Fe filter. Scans used ¼° fixed

130 divergence slits and $1/2^\circ$ anti-scatter slits. Jade and/or High Score Plus software, and the
131 ICDD database were used for mineral identification (Kabekkodu, 2012). Rietveld
132 refinements of the XRD data were performed in High Score Plus and/or GSAS with
133 EXPGUI interface (Toby, 2001) using the reported structures of the following phases:
134 $\text{Na}_8(\text{AlSiO}_4)_6(\text{NO}_2)_2$, $\text{Na}_8(\text{AlSiO}_4)_6(\text{ReO}_4)_2$, and $\text{Na}_6\text{Ca}_{1.5}(\text{AlSiO}_4)_6(\text{CO}_3)_{1.5}(\text{H}_2\text{O})_{1.75}$ (Buhl
135 et al., 1996; Hackbarth et al., 1999; Mattigod et al., 2006). The following parameters
136 were allowed to vary: the background (8 parameters), unit cell, Na position, peak shape
137 (5 parameters: U, V, W, and two peak shape parameters), overall thermal parameter
138 (B), and preferred orientation.

139 **2.3. X-ray Absorption Near Edge Structure (XANES) Spectroscopy**

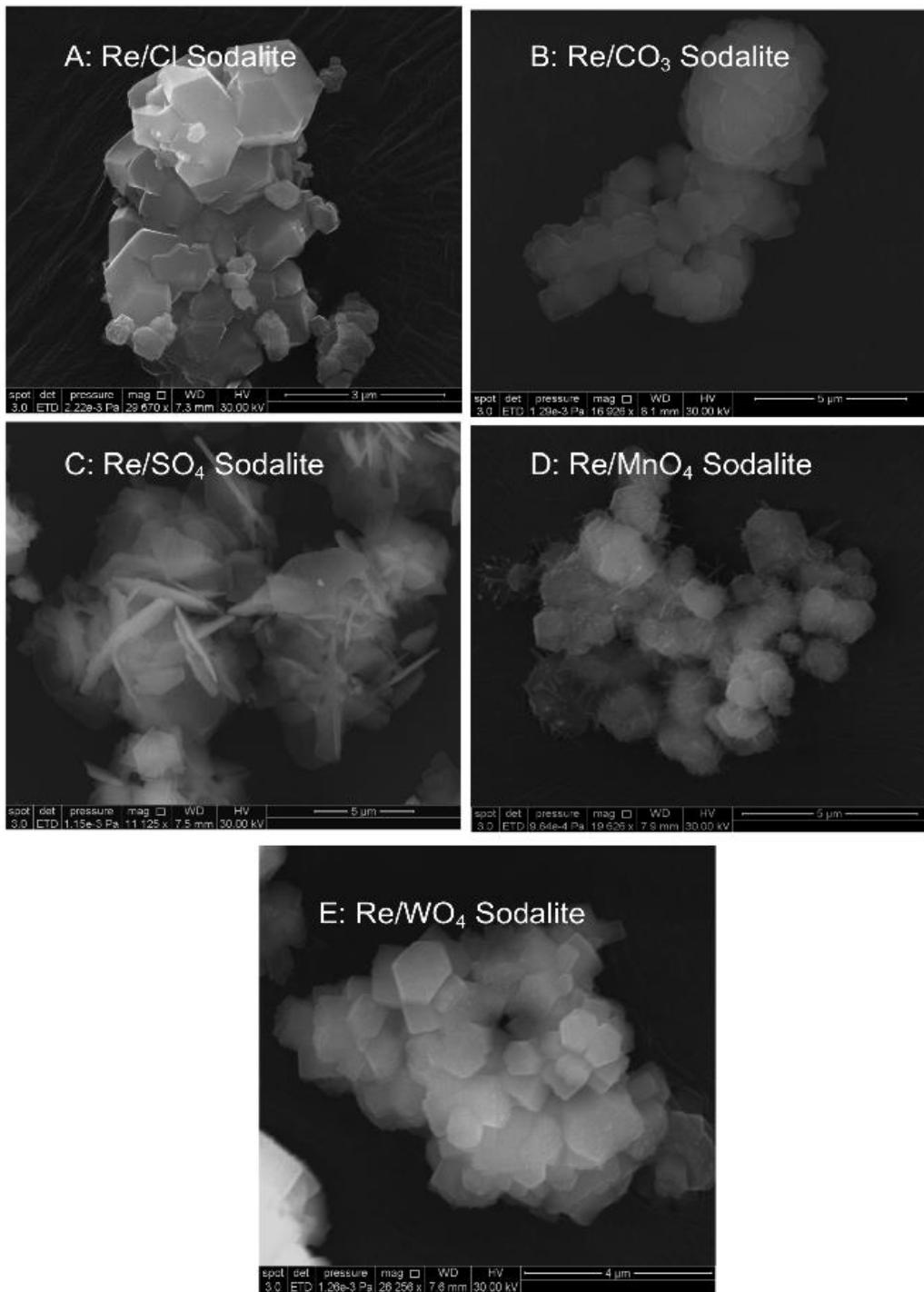
140 Powdered sodalite samples were mixed with boron nitride and mounted on an
141 aluminum holder with Kapton windows. The XANES spectra were obtained at the
142 Stanford Synchrotron Radiation Lightsource (SSRL) using the 11-2 beamline equipped
143 with a Si (220) double crystal monochromator ($\Phi = 90$ crystals) detuned 50% to reduce
144 the harmonic content of the beam. The spectra from 0.2 keV below to 10 keV above
145 the Re L₂-edge (11.959 keV) were collected either in transmission mode using nitrogen-
146 filled ion chambers or fluorescence mode using a 100-element Ge detector and
147 corrected for detector dead time. We converted raw data to spectra and normalized with
148 SixPack and Artemis (Ravel and Newville, 2005). Normalized XANES spectra were fit
149 using standard spectra in the locally written program 'fites', which utilizes a non-linear
150 least squares approach to fitting data (Li et al., 1995). Two reference spectra, $\text{ReO}_2(\text{s})$,
151 and pure ReO_4 -sodalite, were used for data fitting. The XANES spectra of the samples
152 were allowed to vary in energy during fitting, and the spectral resolution is 7 eV based

153 on the width of the white line at the Re L₂-edge. Henceforth, we will refer to “ReO₄⁻” in
154 the mixed sodalites as “Re” because no other “Re” species are significant in this study.

155 **2.4. Electron Microscopy**

156 Scanning electron micrographs (SEM) were obtained with platinum-palladium
157 sputter-coated powder **sodalite** samples. The coated samples were examined using a
158 **field emission scanning electron microscope (FESEM)** with an accelerating voltage of
159 **30 keV**, and a resolution of 1 nm. The FESEM was equipped with a field emission gun
160 (FEI Quanta 200F, FEI Co., Hillsboro, OR) and Everhart-Thornley detector.

161 **2.5. Chemical Analysis**


162 The powder **sodalite** samples digested in 3% nitric acid were analyzed for Na
163 concentrations by atomic emission and absorption spectrophotometry (Varian 220
164 Flame Atomic Absorption Spectrometer, Varian Ltd., Mulgrave, Australia). The Si, Al,
165 Mn, W, and Re concentrations in the solids were determined by inductively coupled
166 plasma-mass **spectrometry** (Agilent 7700 ICP-MS, Santa Clara, CA), and
167 concentrations of Cl⁻ and, SO₄²⁻ by ion chromatography (HPLC-10Ai, Shimadzu Inc.,
168 Canby, OR). Total carbon concentration was determined by dry combustion from
169 TruSpec C/N analyzer (Leco Corporation, St. Joseph, MI) equipped with a high
170 temperature combustion method and infrared detection technique.

171 **3. Results**

172 **3.1. Synthesis Product Morphology**

173 The SEM images of the mixed-anion sodalites are shown in **Fig. 2**. The mixed-anion
174 sodalites formed in the presence of Cl⁻, CO₃²⁻, MnO₄⁻ and WO₄²⁻ were hexagonal
175 crystallites (**Fig. 2A-B, D-E**). The observed morphology differs from the lepispheric

176 morphology (i.e., thin disks or blades) reported by Deng et al. (2006) for precipitates
177 formed from simultaneous additions of two or more anions (Cl^- , NO_2^- , NO_3^- , CO_3^{2-} ,
178 SO_4^{2-} , PO_4^{3-}) to starting solutions of Na hydroxide, aluminate, and silicate. In contrast,
179 our experiments used zeolite as the source for Al and Si. The crystalline solids formed
180 in the presence of SO_4^{2-} anions were dominated by lepispheric and/or lenticular-shaped
181 crystal structures (Fig. 2C). The observed Re/ SO_4 -sodalite morphology was similar to
182 those reported by Deng et al, (2006) for precipitates formed in binary or multi-anion
183 solutions.

184

185 **Fig. 2.** SEM images of mixed-anion sodalite formed in an equimolar $\text{ReO}_4^- / \text{X}^{n-}$ solution. Images

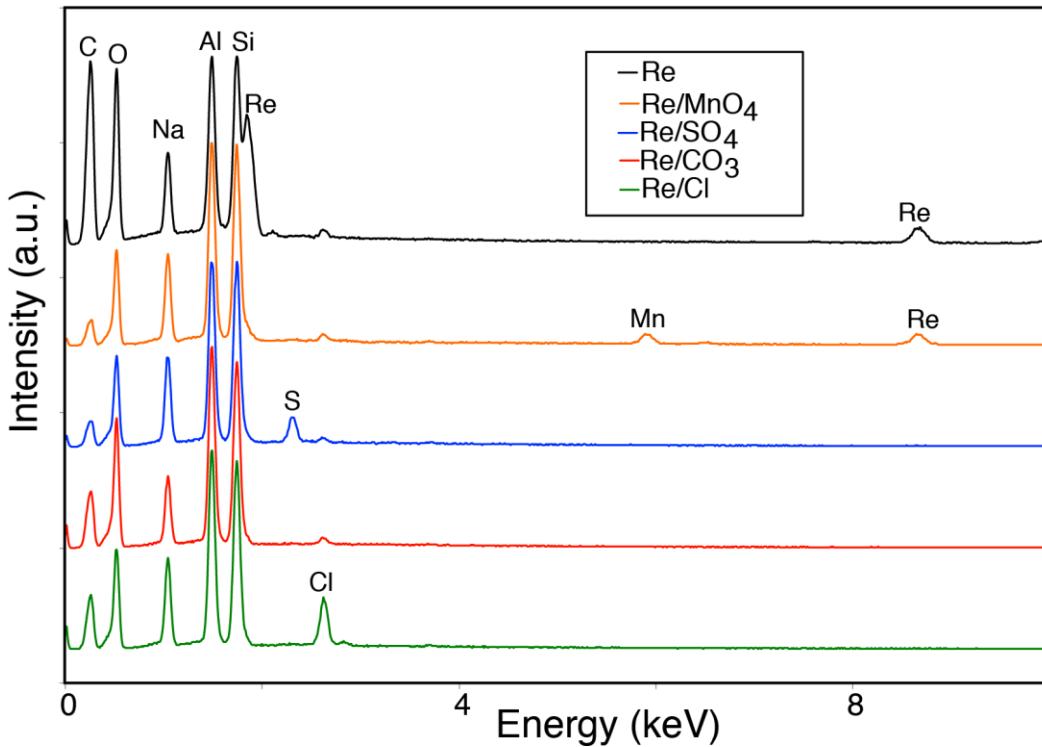
186 scale bars are between 3 – 5 μm

187

188

189 **3.2. Composition Analysis**

190 The chemical composition of the **synthesized** products is shown in Table 1. The
191 mixed-anion sodalites contained from 0.02 – 1.90 **moles** of ReO_4^- and 0.04 – 2.10
192 moles of X^{n-} per formula unit. The **sodalites**, synthesized in the presence of ReO_4^- and
193 Cl^- , CO_3^{2-} , or SO_4^{2-} incorporated negligible amounts of ReO_4^- . In contrast, the sodalite
194 cages exhibited strong preference for ReO_4^- over WO_4^{2-} with ~95% ReO_4^- occupancy
195 of available sites. Further evidence of ReO_4^- incorporation into sodalite is shown in the
196 energy-dispersive X-ray spectroscopy (EDS) patterns (**Fig. 3**). Perrhenate was best
197 incorporated into the Re/MnO_4^- and Re/WO_4^- -sodalites whereas insignificant
198 incorporation occurred for the Re/Cl^- , Re/SO_4^- and Re/CO_3^- -sodalites.


200 **Table 1.**

201 Chemical composition data for mixed-anion sodalites (mol/formula unit).

Structural Formula	Na	Al	Si	Re/X	ReO_4	X*
$\text{Na}_8[\text{Al}_6\text{Si}_6\text{O}_{24}](\text{Cl}_{(2.1)}\text{ReO}_{4(0.003)})$	7.96 ± 0.16	6.00 ± 0.05	6.06	0.00	0.003	2.14
			± 0.11		± 0.001	± 0.07
$\text{Na}_8[\text{Al}_6\text{Si}_6\text{O}_{24}](\text{CO}_{3(1.0)}\text{ReO}_{4(0.02)})$	8.00 ± 0.30	6.01 ± 0.11	6.00	0.02	0.021	1.01
			± 0.10		± 0.005	± 0.10
$\text{Na}_{7.6}[\text{Al}_6\text{Si}_6\text{O}_{24}](\text{SO}_{4(0.96)}\text{ReO}_{4(0.08)})$	7.61 ± 0.07	6.02 ± 0.07	6.08	0.08	0.080	0.958
			± 0.07		± 0.002	± 0.12
$\text{Na}_8[\text{Al}_6\text{Si}_{5.9}\text{O}_{24}](\text{MnO}_{4(1.1)}\text{ReO}_{4(0.97)})$	8.09 ± 0.17	6.09 ± 0.05	5.92	0.89	0.965	1.09
			± 0.02		± 0.015	± 0.03
$\text{Na}_{7.9}[\text{Al}_6\text{Si}_6\text{O}_{24}](\text{WO}_{4(0.05)}\text{ReO}_{4(1.9)})$	7.94 ± 0.10	6.02 ± 0.08	6.00	39.7	1.904	0.048
			± 0.17		± 0.03	± 0.004

202

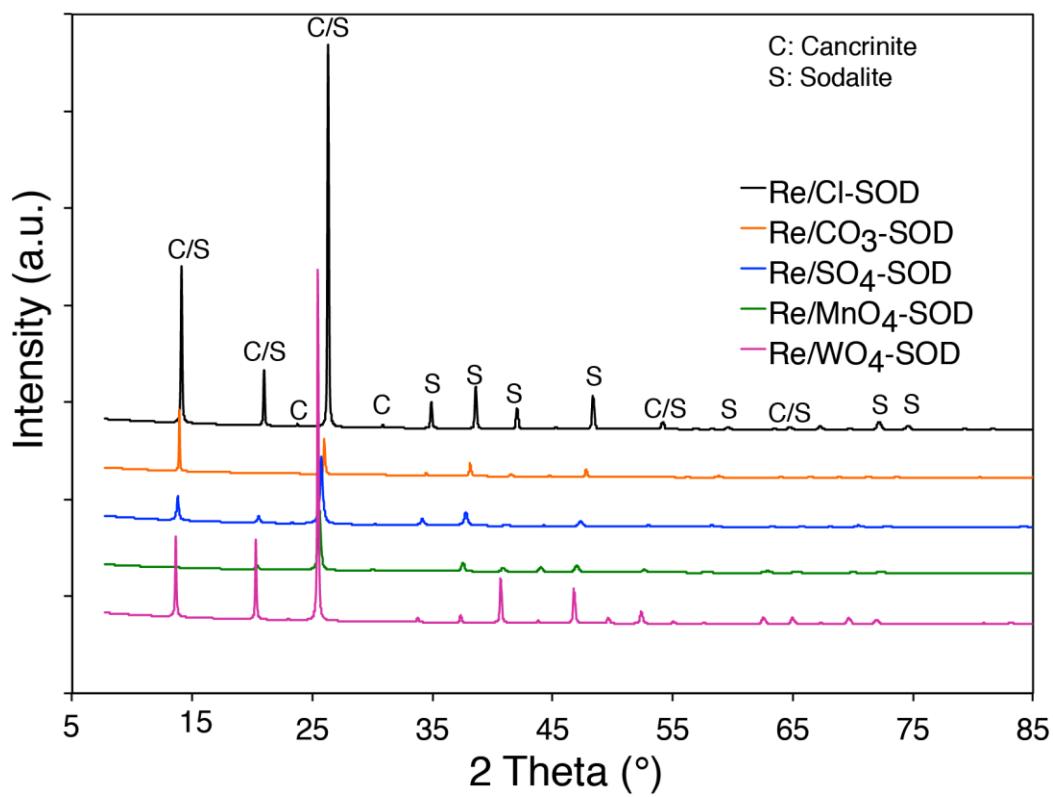
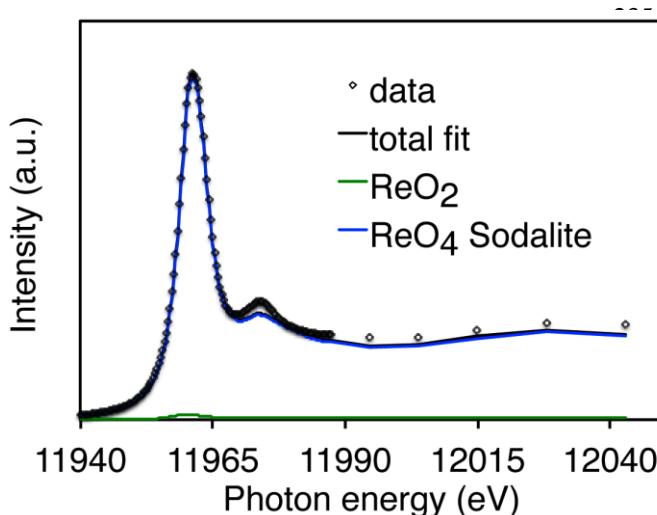

203 *X: Anions (Cl^- , CO_3^{2-} , SO_4^{2-} , MnO_4^- , WO_4^{2-}).

Fig. 3. EDS spectra of select mixed-anion sodalites. The Re/WO_4 spectrum is not shown. The additional Cl^- peaks in some of the samples are from the epoxy matrix used in thin section preparation.

3.3. Mineral Structure

The calculated XRD patterns obtained from the Rietveld refinements of the mixed-anion sodalites are displayed in Fig. 4. The refined lattice parameter (a) and index of agreement (χ^2) for the mixed-anion sodalites are shown in Table 2. The lower the χ^2 term the better the fit. The space group $\text{P}\bar{4}3\text{n}$ was adopted for the mixed-anion sodalites with (a) ranging from $8.8885(2)$ to $9.1527(1)$ Å. The Rietveld refinements indicate that minor amounts of cancrinite (<2 wt%) were formed along with the dominant sodalite phase(s).

220 **Fig. 4.** Refined (calculated) powder X-ray spectra for mixed-anion sodalites.222 **Table 2.**


223 Refined powder X-ray data for mixed-anion sodalite.

Sample Type	Structural Formula	a (Å)	esd	χ^2
Re/Cl-SOD	$\text{Na}_8[\text{Al}_6\text{Si}_6\text{O}_{24}](\text{Cl}_{(2.1)}\text{ReO}_{4(0.003)})$	8.8885	± 0.0002	2.76
Re/CO ₃ -SOD	$\text{Na}_8[\text{Al}_6\text{Si}_6\text{O}_{24}](\text{CO}_{3(1.0)}\text{ReO}_{4(0.02)})$	8.9691	± 0.0002	8.07
Re/SO ₄ -SOD	$\text{Na}_{7.6}[\text{Al}_6\text{Si}_6\text{O}_{24}](\text{SO}_{4(0.96)}\text{ReO}_{4(0.08)})$	9.0785	± 0.0004	3.60
Re/MnO ₄ -SOD	$\text{Na}_8[\text{Al}_6\text{Si}_{5.9}\text{O}_{24}](\text{MnO}_{4(1.1)}\text{ReO}_{4(0.97)})$	9.1258	± 0.0005	1.32
Re/WO ₄ -SOD	$\text{Na}_{7.9}[\text{Al}_6\text{Si}_6\text{O}_{24}](\text{WO}_{4(0.05)}\text{ReO}_{4(1.9)})$	9.1527	± 0.0002	6.05

225 a – unit cell parameter, esd – estimated standard deviation, and χ^2 – index of agreement.

226 **3.4. Rhenium Oxidation State**

227 The spectra fitting were performed as described by Lukens et al. (2005). The Re L₂-
228 edge XANES data were fitted using only the spectra of ReO₂(s) and ReO₄-sodalite
229 (Pierce et al., 2014, submitted). The spectrum of Re/MnO₄-sodalite is presented in Fig.
230 **5**. In the mixed-anion sodalites, the spectrum of ReO₄-sodalite contributes significantly
231 ($\geq 92\%$) to the fit and only in the presence of Cl⁻ does the spectrum of ReO₂(s)
232 contribute significantly to greater than 2σ of the fit (Table 3). Thus, the ReO₄⁻ species is
233 considered the dominant rhenium species in these solid phases.

244 **Fig. 5.** Rhenium L₂-XANES spectral data for Re/MnO₄-sodalite; data are represented by dots,
245 and the fit is shown by the black line. Results indicate that the Re(VII) oxidation state
246 dominates.

247

248

249

250

251 **Table 3.**252 Rhenium L₂-edge XANES spectral fitting results for mixed-anion sodalites.

Sample	ReO ₂ ‡	p*	ReO ₄ -sodalite‡	p*
Re/Cl-SOD	0.18(6) [†]	0.017	0.82(5)	<0.001
Re/CO ₃ -SOD	0.08(5)	0.168	0.92(4)	<0.001
Re/SO ₄ -SOD	0.03(5)	0.545	0.97(4)	<0.001
Re/MnO ₄ -SOD	0.02(6)	0.828	0.98(5)	<0.001
Re/WO ₄ -SOD	0.00(2)	1.000	1.00(1)	<0.001

253

254 ‡The fractional contributions of each oxidation state to the XANES spectral.

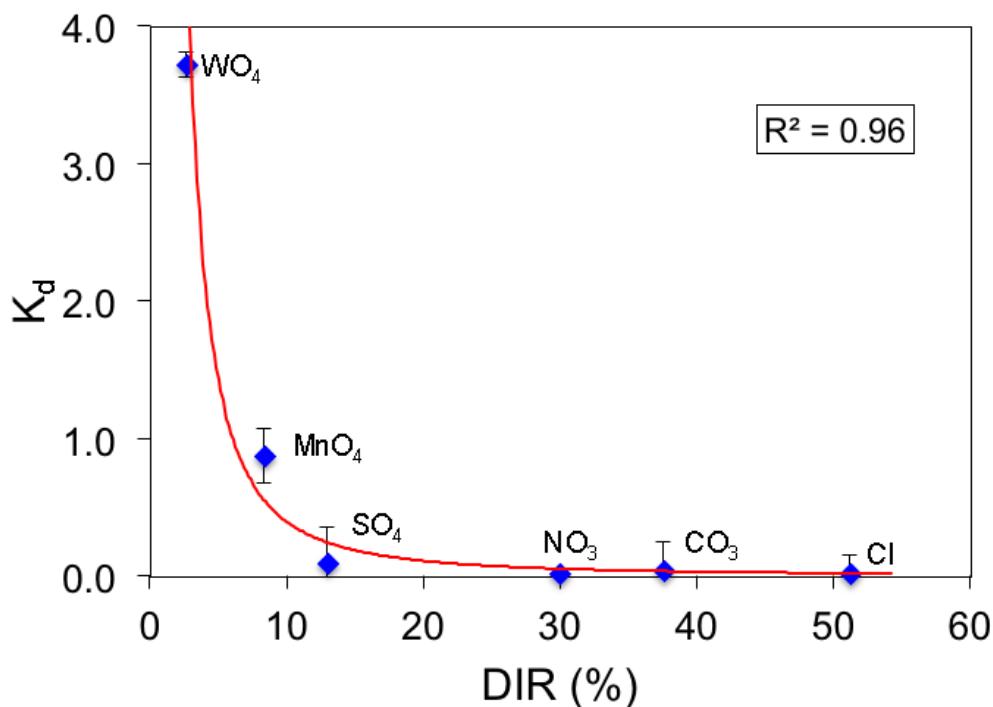
255 [†]The number in parentheses is the standard deviation in the same decimal place as the digit
256 preceding it.257 *p is the usual p-value, which is the likelihood that the improvement to the fit due to inclusion of
258 this component is due to random error (noise) in the data. If p < 0.05, then the data supports the
259 hypothesis that a given component is present (improvement is > 2 δ of the fit).

260

261 **4. Discussion**262 **4.1. Incorporation of ReO₄⁻ in the Presence of Competing Anion (Xⁿ⁻)**263 Using an equimolar concentration of ReO₄⁻ and Xⁿ⁻ in the starting solutions, we
264 synthesized five mixed-anion sodalites and tested the hypothesis that ion size and
265 charge drive the selectivity for a given anion.266 As the ionic radius increases in the following series:
267 Cl⁻ < CO₃²⁻ < SO₄²⁻ < MnO₄⁻ < WO₄²⁻, the selectivity of ReO₄⁻ for the mixed sodalite linearly
268 increased, consistent with the linear expansion of the cages from the Re/Cl-sodalite to
269 the Re/WO₄-sodalite.

270 The inability to form mixed sodalites containing significant amounts of ReO_4^- in the
271 presence of Cl^- , CO_3^{2-} , and SO_4^{2-} is due the large size difference between ReO_4^- and
272 the competing anions, and the nature of the anions. According to Hume-Rothery Rules,
273 the following conditions favor the formation of solid solutions (e.g., metal alloys,
274 crystallized salts): similarity in ion crystal structures, valency, electronegativity and size
275 (Mizutani, 2010). Sodalite cages can host anions of varying size due to cooperative
276 tilting and deformation of the frameworks up to a point. Trill et al. (2003) state that the
277 difference in anion size may not exceed 15%, because of excessive strain imposed on
278 the sodalite framework when anions of different size are accommodated. This behavior
279 is confirmed in our system as shown in Fig. 6, where anion selectivity is plotted against
280 the difference in ionic radii (DIR) of solvent A (r_A) and solute B (r_B) where:

281


$$\text{DIR (\%)} = \left(\frac{r_A - r_B}{r_B} \right) \times 100$$

282 As the DIR increases from 2.7% in the Re/WO_4 -sodalite to 51.2% in the Re/Cl^-
283 sodalite, the ReO_4^- distribution coefficient exponentially declines from 3.73 to 0.02.
284 When the DIR between ReO_4^- and the competing anion exceeds 15%, the concomitant
285 inclusion of both anions would sufficiently distort the mixed-anion sodalite cages,
286 resulting in the exclusion of the larger anion from the cages. This trend is manifested in
287 the preferential formation of mostly Cl^- , CO_3^{2-} and SO_4^{2-} -sodalites containing minor
288 amounts of enclathrated ReO_4^- . Although the DIR for Re/SO_4 (13%) and Re/WO_4 -
289 sodalites (2.7%) should favor the formation of mixed sodalite solid solutions, the
290 distribution coefficient shows a clear preference for SO_4^{2-} and ReO_4^- respectively. In
291 the case of SO_4^{2-} , the DIR is close to 15%, indicating that this difference is still large

292 enough to strongly favor the smaller anion. For WO_4^{2-} , the difference in charge and
293 inability to fill all cages with either ReO_4^- or WO_4^{2-} may explain the preference for
294 ReO_4^- .

295

296

297

298 **Fig. 6.** The distribution coefficient (K_d) graph for ReO_4^- sequestered in mixed-anion sodalites as
299 a function of the DIR. Generally, more than 90% of sodalite cages are filled with anions. * NO_3^-
300 data point is from Dickson et al. (2014)

301

302

303

304

305

306

307 **Table 4.**308 Ionic radii, hydration energy and ionic potential data for studied anions **with respect to ReO_4^- .**

309

Anions (X)	r (nm)	DIR (%)	Ionic Potential (Z/r)	Hydration Energies (kJmol ⁻¹)
Cl^-	0.172 ^d	51.2	0.58	-340 ^a
CO_3^{2-}	0.189 ^c	37.6	1.06	-1315 ^a
SO_4^{2-}	0.230 ^a	13.0	0.87	-1080 ^a
NO_3^-	0.200 ^a	30.0	0.50	-300 ^a
MnO_4^-	0.240 ^a	8.3	0.42	-235 ^a
WO_4^{2-}	0.267 ^b	2.7	0.75	-702 ^e
ReO_4^-	0.260 ^a	0.0	0.39	-330 ^a
TcO_4^-	0.252 ^d	3.2	0.40	-251 ^d

310 r represents the ionic radii of anions

311 ^aThermodynamics of solvation of ions; Marcus et al. (1991)312 ^bIonic radius in aqueous solution; Marcus et al. (1988)313 ^cHandbook of chemistry and physic; David et al. (2003)314 ^dPhysical factors in anion separation; Moyer et al. (1979)315 ^eHydration and extraction of oxyanion; Abramov et al. (2001)

316 DIR: Difference in ionic radii.

317

318 **5. Conclusions and Implications for ^{99}Tc Immobilization**

319 In this study, five mixed-anion sodalites containing extra-framework species were
 320 synthesized and characterized. The selectivity for intra-lattice anions of the products
 321 was highly dependent on the size and, to a lesser extent, the charge of the competing
 322 anion. The results of our study suggest that similarity in ionic radius (DIR of $\leq 15\%$) and
 323 charge (ionic potential) promote the competitive incorporation of ReO_4^- into the mixed-

324 anion sodalites (Fig. 6 and Table 4). Selectivity of ReO_4^- for the mixed-anion sodalites
325 was found to increase in the series as follows: $\text{Cl}^- < \text{CO}_3^{2-} < \text{NO}_3^- < \text{SO}_4^{2-} < \text{MnO}_4^- < \text{WO}_4^{2-}$.

326 The findings in this study have implications for the fate and transport of $^{99}\text{TcO}_4^-$ in
327 subsurface sediments, assuming that its chemical behavior can be well approximated
328 by ReO_4^- . Firstly, the formation of a Re/MnO_4 -sodalite solid solution implies that ReO_4^-
329 is a suitable analogue for TcO_4^- . Like TcO_4^- , MnO_4^- shares a similar size, and ionic
330 potential with ReO_4^- (Table 4). The distribution coefficient for ReO_4^- was unity, implying
331 nearly equal selectivity for MnO_4^- and ReO_4^- during the formation of sodalite. The same
332 is likely true for TcO_4 -sodalite.

333 Secondly, our results also suggest that while neoformed feldspathoid minerals, such
334 as sodalite, can incorporate ^{99}Tc as TcO_4^- , but smaller competing anions with DIR
335 $>12\%$ will be preferred. Unfortunately, in many instances where environmental
336 conditions are conducive for feldspathoid formation, the waste solutions may also
337 contain high concentrations of such competing anions.

338 One limitation of our results is that sodalite synthesis occurred in a closed system. In
339 open, free-flowing systems, the smaller anions may become depleted leaving TcO_4^- to
340 be incorporated later in the reaction sequence. Additionally, our experiments were
341 designed specifically to form only sodalite **phases** because of the ability of its cages to
342 sequester large ions such as TcO_4^- . In other systems, neoformed mineral phases could
343 include cancrinite, zeolite, nosean, and nepheline. It has been reported that NO_3^- is
344 **sequestered by** cancrinite and SO_4^{2-} **by** nosean, whereas Cl^- and ReO_4^- are
345 incorporated into mixed-anion sodalites (Pierce et al., 2014). Thus, at the comparatively
346 low concentrations of TcO_4^- (10^{-6} to 10^{-4} M) expected in most nuclear waste streams,

347 TcO_4^- could intercalate into the mixed-anion sodalite phases after other competing
348 anions have been selectively sequestered into their respective neoformed mineral
349 phases.

350 Additionally, to enhance ReO_4^- (and ultimately TcO_4^-) sequestration into mixed
351 sodalites pre-treatment of the waste streams has been suggested to remove NO_3^- and
352 NO_2^- from the wastes prior to formation of sequestering aluminosilicate phases (Pierce
353 et al., 2014). Although mixed-anion sodalites are somewhat less durable compared to
354 their pure phase analogues (Pierce et al., 2014), they remain an excellent waste form
355 for the long-term disposal of key anion radionuclides in an environment where they are
356 stable—e.g., under the alkaline conditions expected for vitrified waste disposal. For
357 example, Pierce et al. (2014) estimated the leach rate of ReO_4^- from Re-sodalite to be
358 $0.0006 \text{ g m}^{-2}\text{d}^{-1}$.

359 Further work is needed in open systems, with a greater range of hydrothermal
360 conditions (high temperature and dynamic flow synthesis of an array of aluminosilicate
361 mineral phases), and at realistic ^{99}Tc concentrations, to mimic waste-impacted
362 subsurface sediments and managed waste streams to determine if mixed-anion
363 sodalites may be relevant sequestering phase(s).

364 **Acknowledgements**

365 This material is based upon work supported by the U.S. Department of Energy
366 (DOE), Office of Science, Biological and Environmental Research Program (SBER), and
367 was performed at Washington State University under contract No. DE-PS02-
368 09ER65075 and at Oak Ridge National Laboratory under contract No. DE-AC05-
369 00OR22725. Portions of this work were supported by DOE, Office of Science, Basic

370 Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division, Heavy
371 Element Chemistry Program and were performed at Lawrence Berkeley National
372 Laboratory under contract No. DE-AC02-05CH11231. Portions of this work were
373 performed at the Stanford Synchrotron Radiation Lightsource (SSRL), which is a DOE
374 office of Science user facility operated by Stanford University. We are also indebted to
375 the staff at the Franceschi Microscopy and Imaging Center at Washington State
376 University for access to and assistance with the use of their SEM facilities. We also
377 acknowledge financial support from the Mineralogical Society of America and the Bullitt
378 Foundation.

379

380 **References**

381 Baerlocher, C. and McCusker, L. B.: Database of zeolite structures. [http://www.iza-
382 structure.org/databases](http://www.iza-structure.org/databases), 2014.

383 Brenchley, M. E. and Weller, M. T.: Synthesis and structures of $M_8[AlSiO_4]_6(XO_4)_2$,
384 M=Na, Li, K, X=Cl, Mn Sodalites, Zeolites, 14, 682-686, 1994.

385 Buhl, J. C., Reich, D., Mundus, C., and MullerWarmuth, W.: Si-29 MAS NMR
386 investigations on the crystallization of nitrite-sodalite, React. Kinet. Catal. Lett., 58, 13-
387 18, 1996.

388 Custelcean, R. and Moyer, B. A.: Anion separation with metal-organic frameworks, Eur.
389 J. Inorg. Chem., doi: 10.1002/ejic.200700018, 2007. 1321-1340, 2007.

390 Darab, J. G. and Smith, P. A.: Chemistry of technetium and rhenium species during low-
391 level radioactive waste vitrification, Chem. Mater., 8, 1004-1021, 1996.

392 Deng, Y. J., Harsh, J. B., Flury, M., Young, J. S., and Boyle, J. S.: Mineral formation
393 during simulated leaks of Hanford waste tanks, Appl. Geochem., 21, 1392-1409, 2006.

394 Dickson, J. O., Harsh, J. B., Flury, M., Lukens, W. W., and Pierce, E. M.: Competitive
395 incorporation of perrhenate and nitrate into sodalite, Environ. Sci. Technol., 48, 12851-
396 12857, 2014.

397 Ewing, R. C.: The nuclear fuel cycle: A role for mineralogy and geochemistry, Elements,
398 2, 331-334, 2006.

399 Ewing, R. C.: Nuclear waste forms for actinides, Proceedings of the National Academy
400 of Sciences of the United States of America, 96, 3432-3439, 1999.

401 Hackbarth, K., Gesing, T. M., Fechtelkord, M., Stief, F., and Buhl, J. C.: Synthesis and
402 crystal structure of carbonate cancrinite $\text{Na}_8(\text{AlSiO}_4)_6\text{CO}_3 \cdot 4\text{H}_2\text{O}$, grown under low-
403 temperature hydrothermal conditions, *Microporous Mesoporous Mater.*, 30, 347-358,
404 1999.

405 Icenhower, J. P., Qafoku, N. P., Zachara, J. M., and Martin, W. J.: The biogeochemistry
406 of Technetium: A review of the behavior of an artificial element in the natural
407 environment, *American Journal of Science*, 310, 721-752, 2010.

408 Johnson, G. M., Mead, P. J., and Weller, M. T.: Structural trends in the sodalite family,
409 *PCCP*, 1, 3709-3714, 1999.

410 Kabekkodu, S. N. (Ed.): PDF-4/Minerals database, International Center for Diffraction
411 Data, Newtown Square, PA, USA, 2012.

412 Li, G. G., Bridges, F., and Booth, C. H.: X-ray-absorption fine-structure standards: A
413 comparison of experiment and theory *Physical Review B*, 52, 6332-6348, 1995.

414 Liu, Q. and Navrotsky, A.: Synthesis of nitrate sodalite: An in situ scanning calorimetric
415 study, *Geochim. Cosmochim. Acta*, 71, 2072-2078, 2007.

416 Lukens, W. W., Bucher, J. J., Shuh, D. K., and Edelstein, N. M.: Evolution of technetium
417 speciation in reducing grout, *Environmental Science & Technology*, 39, 8064-8070,
418 2005.

419 Lukens, W. W., McKeown, D. A., Buechle, A. C., Muller, I. S., Shuh, D. K., and Pegg, I.
420 L.: Dissimilar behavior of technetium and rhenium in borosilicate waste glass as
421 determined by X-ray absorption spectroscopy, *Chem. Mater.*, 19, 559-566, 2007.

422 Maddrell, E., Gandy, A., and Stennett, M.: The durability of iodide sodalite, *J. Nucl.*
423 *Mater.*, 449, 168-172, 2014.

424 Marcus, Y.: Thermodynamics of solvation of ions. Part 5 - Gibbs free energy of
425 hydration at 298.15-K *Journal of the Chemical Society-Faraday Transactions*, 87, 2995-
426 2999, 1991.

427 Mattigod, S. V., McGrail, B. P., McCread, D. E., Wang, L. Q., Parker, K. E., and Young,
428 J. S.: Synthesis and structure of perrhenate sodalite, *Microporous Mesoporous Mater.*,
429 91, 139-144, 2006.

430 Mizutani, U.: *Hume-Rothery Rules for Structurally Complex Alloy Phases*, Taylor &
431 Francis, Boca Raton, FL, 2010.

432 Moyer, B. A. and Bonnesen, P. V. (Eds.): *Physical Factors in Anion Separation.*
433 *Supramolecular chemistry of anions*, Wiley-VCH, New York, 1979.

434 Pierce, E. M., Lilova, K., Lukens, W. W., Navrotsky, A., Fritts, J., Rawn, C., Jantzen, C.
435 M., Missimer, D. M., and Huq, A.: Structure and thermochemistry of perrhenate sodalite
436 and perrhenate/pertechnetate guest-guest sodalite, *Proceeding of the national*
437 *Academy of Science*, 2014, submitted.

438 Pierce, E. M., Lukens, W. W., Fitts, J. P., Jantzen, C. M., and Tang, G.: Experimental
439 determination of the speciation, partitioning, and release of perrhenate as a chemical

440 surrogate for pertechnetate from a sodalite-bearing multiphase ceramic waste form,
441 *Appl. Geochem.*, 42, 47-59, 2014.

442 Ravel, B. and Newville, M.: Athena, Artemis, Hephaestus: Data analysis for X-ray
443 absorption spectroscopy using IFEFFIT, *Journal of Synchrotron Radiation*, 12, 537-541,
444 2005.

445 Stein, A., Ozin, G. A., and Stucky, G. D.: Class-B sodalites - Nonstoichiometric silver,
446 sodium halosodalites, *JACS*, 114, 8119-8129, 1992.

447 Taylor, D. and Henderson, C. M. B.: A computer model for the cubic sodalite structure,
448 *Phys. Chem. Miner.*, 2, 325-336, 1978.

449 Toby, B. H.: EXPGUI, a graphical user interface for GSAS, *J. Appl. Crystallogr.*, 34,
450 210-213, 2001.

451 Trill, H.: Sodalite solid solution systems: Synthesis, topotactic transformations, and
452 Investigation of framework-guest and guest-guest interactions, PhD Dissertation,
453 Universität Münster, 187 pp., 2002.

454 Wakoff, B. and Nagy, K. L.: Perrhenate uptake by iron and aluminum oxyhydroxides: An
455 analogue for pertechnetate incorporation in Hanford waste tank sludges, *Environmental
456 Science & Technology*, 38, 1765-1771, 2004.

457 Weller, M. T. and Wong, G.: Mixed halide sodalites, *Eur. J. Solid State Inorg. Chem.*,
458 26, 619-633, 1989.

459 Weller, M. T., Wong, G., Adamson, C. L., Dodd, S. M., and Roe, J. J. B.: Intracage
460 reactions in sodalites, *Journal of the Chemical Society-Dalton Transactions*, doi:
461 10.1039/dt9900000593, 1990. 593-597, 1990.

462

463