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1 TECHNICAL ACCOMPLISHMENTS

Molecularly Engineered Energy Materials (MEEM) was established as an interdisciplinary
cutting-edge UCLA-based research center uniquely equipped to attack the challenge of rationally
designing, synthesizing and testing revolutionary new energy materials. Our mission was to
achieve transformational improvements in the performance of materials via controlling the nano-
and mesoscale structure using selectively designed, earth-abundant, inexpensive molecular
building blocks. MEEM has focused on materials that are inherently abundant, can be easily
assembled from intelligently designed building blocks (molecules, nanoparticles), and have the
potential to deliver transformative economic benefits in comparison with the current crystalline-
and polycrystalline-based energy technologies.

MEEM addressed basic science issues related to the fundamental mechanisms of carrier
generation, energy conversion, as well as transport and storage of charge and mass in tunable,
architectonically complex materials. Fundamental understanding of these processes will enable
rational design, efficient synthesis and effective deployment of novel three-dimensional material
architectures for energy applications. Three interrelated research directions were initially
identified where these novel architectures hold great promise for high-reward research: solar
energy generation, electrochemical energy storage, and materials for CO, capture. Of these, the
first two remained throughout the project performance period, while carbon capture was been
phased out in consultation and with approval from BES program manager.

1.1 Capacitive energy storage

Capacitive energy storage technology is based on ™
electrochemical capacitors (ECs), also called
supercapacitors, which store energy by either ion
adsorption (electrochemical double layer capacitors)
or fast surface redox reactions (pseudocapacitors).
Figure 1 shows the power and energy relationship
between the two leading electrical energy storage
technologies,  batteries and  electrochemical 0
capacitors. An interesting feature in this traditional

graphic is that supercapacitors bridge the gap oo o reray Donsio Wik e
between high energy density and high power density Figure 1. Supercapacitors are intermediate

(i.e., between batteries and traditional capacitors). between batteries and capacitors in both energy and
The success of lithium-ion batteries over the past Ppower density.

two decades in consumer electronics and, more recently, the first generation of plug-in hybrids,
has led to a number of advances in energy storage technology. Nonetheless, capacitive storage
offers a number of desirable properties: fast charging (within seconds), reliability, long-term
cycling (>500,000 cycles), and the ability to deliver more than 10x the power of batteries. As a
result, capacitive storage has become an important energy storage technology for applications
where a large amount of energy needs to be either stored or delivered quickly. These include
kinetic energy harvesting in seaports' or with regenerative braking;® pulse power in
communication devices;> and power quality applications in the electrical grid.* In addition,
shorter charging times would be very convenient for portable devices and especially for electric
vehicles. The limiting feature that prevents more widespread usage of ECs has been the
relatively low energy density of the materials used in capacitive storage applications.

ssesseass]
e

BATTERIES

Power Density (W/kg)

2



Electrical double layer capacitors: Electrochemical double layer capacitors (EDLCs) serve as
the basis for the current technology in capacitive energy storage.” Charge storage occurs through
the adsorption of electrolyte ions onto the surfaces of electrified materials. Carbons are ideal
EDLC electrode materials due to the combination of high conductivity, large surface area, and
low density. This type of charge storage is electrostatic and no redox reactions are involved.
Thus, the charge can be quickly discharged or charged, but the amount of charge stored at the
interface is limited. The field of EDLCs has been the subject of numerous reviews over the past
few years.”® Currently, the best carbon materials achieve double-layer capacitances of
approximately 150 F g for optimum carbon pore sizes in ionic liquid electrolytes.” The
prospect of using graphene for EDLCs has generated considerable interest in the field as the high
surface area of graphene has led to specific capacitances in the range of 100-250 F g.'®"' In
recent years, there has been considerable effort aimed at increasing specific energy of EDLCs
without compromising specific power, and there are reports of energy density values reaching 10
Wh/kg in energy storage devices that provide 1 Farad or greater.

Pseudocapacitor Materials: The MEEM program is concerned with transition metal oxide
materials that exhibit pseudocapacitance, which occurs when reversible redox reactions take
place at or near the surface of a material in contact with an electrolyte. The interest in using
pseudocapacitive materials for electrochemical capacitors is that the energy density associated
with faradaic reactions is much higher, by at least an order of magnitude, than traditional double
layer capacitance (above 100 uF/cm® for pseudocapacitance vs. 10 to 20 uF/cm” for EDLCs).
The origin of pseudocapacitance was described thoroughly by Conway'? who identified three
faradaic mechanisms that can result in capacitive electrochemical features:” underpotential
deposition, redox pseudocapacitance (as in RuO,'nH,0) and intercalation pseudocapacitance.
The latter two effects are of interest for capacitive energy storage. Redox pseudocapacitance
occurs when ions are electrochemically adsorbed onto and/or near the surface of a material with
a concomitant faradaic charge transfer. Intercalation pseudocapacitance occurs when ions
intercalate into the channels or layers of a redox-active material accompanied by a faradaic
charge-transfer with no crystallographic phase change. These three mechanisms arise from
different physical processes and with different types of materials; the similarity in the
electrochemical signatures occurs due to the relationship between the potential and the extent of
charge that develops as a result of adsorption/desorption processes at the electrode/electrolyte
interface or within the inner surface of a material:"’

EzEO—Eln( X j (1)
nk 1-X

Here, E is the potential (V), R is the ideal gas constant (8.314 J mol" K™), T is the temperature
(K), n is the number of electrons, F is the Faraday constant (96,485 C mol'), and X is the extent
of fractional coverage of the surface or inner structure. A specific capacitance (C in F g'') may
be defined in regions where the plot of £ vs. X is linear:

C =(nF/m)X/E, (2)
where m is the molecular weight of the active material. Since E(X) is not entirely linear as in a
capacitor, the capacitance is not always constant, and so it is termed pseudocapacitance.

Despite the advantages of having faradaic reactions, prior work with pseudocapacitive materials
has brought to light an important question about reaching the very high theoretical values of the



pseudocapacitive systems. The specific capacitance, based on either 1-electron or 2-electron
redox reactions, is very high for systems such as V,0s, NiO and MnO,, well above 1000 F/g.'*'°
These high values have been demonstrated using nanoscale forms of these materials and
specially designed electrode structures which ensure that most of the electrochemically active
transition metal oxide is exposed to electrolyte and participates in the reaction. However,
standard composite electrode approaches are not as effective as specific capacitance values are
typically in the range of 150 to 250 F/g."” Accordingly, one of the central scientific gaps we are
addressing in the MEEM program is the development of electrode architectures which retain
high specific capacitances and offer a practical electrode structure for capacitor devices.

The MEEM program on capacitive energy storage is a comprehensive one which combines
experimental and computational components to achieve a fundamental understanding of charge
storage processes in redox-based materials, specifically transition metal oxide systems. As
indicated above, these materials are a particularly appealing target because, with few exceptions,
theoretical values of their specific capacitance (F g') are several times greater than
experimentally achieved results. It is, therefore, a topic where improved fundamental
understanding of pseudocapacitive materials can have a dramatic impact on the field.

A central theme for the experimental 2ol
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materials with appropriate nanoscale = +—' g Mﬂ—b
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emphasized the study of template- diblock copolymer
directed mesoporous transition metal Figure 2. Process for synthesizing mesoporous films where
oxides in which the interconnected nanocrystal building blocks co-assemble with polymer templates.
pore network provides electrolyte Upon heating the polymer decomposes leaving behind the
access to the high surface area, Mesoporous film. From Ref.20.

electrochemically active walls. Provided the films are sufficiently thin (less than 100 nm) there is
adequate electronic conductivity for the redox reactions. Moreover, these architectures provide
an ideal platform for determining the fundamental pseudocapacitor properties of different
inorganic systems because the resulting films contain neither carbon nor binder. Thus, we
directly determine the fundamental electrochemical properties of the pseudocapacitive material.
With this method, we were able to determine the pseudocapacitive properties of various
materials'® and readily identified Nb,Os to have exceptionally rapid charge storage properties.'’

In more recent work, we developed a new route for synthesizing mesoporous films in which
preformed nanocrystal building blocks are used in combination with polymer templating.”® The
general synthetic route is shown in Figure 2. A significant advantage of this route is that we are
now able to evaluate a much wider range of redox active materials than was possible with the
sol-gel derived systems used to date. In addition, we are able to prepare films comprised of
smaller crystalline domains with higher surface area, characteristics that should be beneficial for
obtaining pseudocapacitive responses. The first pseudocapacitive films prepared by this route
show considerable promise.

As indicated above, the results with Nb,Os mesoporous films indicated that not only was Li"
insertion extremely rapid, but that this material possesses much better charge storage kinetics
than other transition metal oxides.”' Moreover, the orthorhombic phase in particular was found to



exhibit high specific capacitance at high rate with values of nearly 450 F/g achieved in less than
1 minute, far superior to the corresponding mesoporous amorphous films (Figure 3). Such rapid
charge storage is enabled by the structure of 7-Nb,Os, which consists of sheets of corner- or
edge-sharing Nb" polyhedra along the (001) plane that are coordinated by six or seven O
Density-functional theory (DFT) studies indicate that the (001) plane exhibits low energy
barriers for lithium ion transport and gives rise to the pseudocapacitive behavior observed in this
material.
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In more recent work, we were
able to attribute the high level of
energy storage at high rates in
Nb,Os to an intercalation
pseudocapacitance mechanism.**
Its characteristic electrochemical
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Figure 3. Voltammetric sweeps for NbyOs in lithium ion electrolyte: a) independent of rate and redox
CVs at 10 mV s for different Nb,Os phases and b) charge storage as a peaks that exhibit small voltage
function of charging time for the same materials. The 7-phase offsets, and therefore good
demonstrates the highest level of charge storage capacity for all sweep D .
reversibility, at high rates.

rates investigated. From Ref. 21.

Kinetic studies indicate that for
charging times of 1 minute or longer, there are no indications of ionic diffusion limitations and
the current response is capacitor-like.”” Another key design rule for intercalation
pseudocapacitance is that the structure does not undergo a phase transformation upon
intercalation.

We have begun to investigate the properties of Nb,Os in traditional composite electrodes in
which carbon and binder are mixed with the active material. Not only does the composite
material continue to exhibit intercalation pseudocapacitance features as listed above, but we
incorporated these composite electrodes in asymmetric devices whose energy and power
densities surpass those of commercial EDLC devices.”” In the proposed program, we will be
using Nb,Os as a model material for transient absorption experiments, core-shell experiments
and in designed electrode architectures. Nb,Os will serve as a key benchmark for determining
intercalation pseudocapacitance in other transition metal systems that we plan to investigate.

We also ‘re-discovered’ another fast-ion conducting system, the hydrated form of hexagonal
WOs. In this case the mobile ions are protons. The electrochemical characteristics for the
hydrated h-WO; are similar to those of Nb,Os in terms of there being only small changes in
capacitance with sweep rate with no evidence of diffusion limitations until very high discharge
rates. In this system, protons move through one-dimensional (1D) channels lined with water
molecules, and no phase transformation occurs as the proton/metal atom ratio approaches one.
This charge storage process is very different from other proton-conducting pseudocapacitive
materials, such as hydrous RuQ,, in which redox reactions occur at the surface. The bulk nature
of charge storage in h-WOs3 makes this material very appealing for applications in charge
storage, as well as for making electron- and proton-conducting membranes. We will not further
pursue h-WOs here, since this topic has been successfully ‘spun-off” into an ARPA-E project



"Long-Life, Acid-Based Battery" in the Robust Affordable Next Generation EV-Storage
(RANGE) program.

The MEEM program has had a very active effort, led by the Pilon group, directed at developing
physical models and accurate numerical tools to describe how the electrode/electrolyte interface
and electrochemical properties of electrochemical capacitors are influenced by electrode
morphology. They worked with both equilibrium models, such as the Modified Poisson-
Boltzmann (MPB) model*** as well as dynamic models, such as the Modified Poisson-Nernst-
Planck (MPNP) model.® This group has advanced the computation area for supercapacitors
significantly by developing new boundary conditions that rigorously account for interfacial
phenomena at the electrode/electrolyte interface and enable simulations of actual 3D mesoporous
electrodes. They developed numerical tools that were able to reproduce typical electrochemistry
experiments including cyclic voltammetry (CV),”” impedance spectroscopy,”™*’ and
galvanostatic cycling® measurements. In addition, these models gave new insights to the
measurements so that the Pilon group was able to provide physical interpretations for
experimental results. Scaling analysis was systematically performed and the resulting similarity
parameters reduced the number of variables and were used to identify diffusion-limited
operation, and design rules for both electrodes and electrolytes. These initial studies were carried
out with carbon-based materials (EDLCs) so that it would be possible to validate the models with
experimental results from the literature. But now that redox-active systems are being addressed,
collaboration between computational and experimental groups is well established and the models
being developed are for the materials being investigated within MEEM. These methodologies
form the basis for the multiscale modeling which plays a key role in the electrode architecture
section of our proposal.

1.2 Organic photovoltaics

Sunlight is the most abundant, renewable, and non-polluting energy resource available to humans
and yet it remains one of the most poorly utilized. Solar cells incorporating crystalline materials
currently provide the highest efficiencies for solar energy conversion to electricity, but their
widespread adoption remains limited due to high production costs. Hence, less expensive
photovoltaics based on polycrystalline thin films are becoming increasingly popular.

In the first period of MEEM, we investigated several self-assembly based strategies for
controlling the morphology of solution processes organic photovoltaic (OPV) cells, including the
use of self-stacking shuttlecock fullerenes, amphiphilic semiconducting polymers, and
sequentially processed (SqP) solar cells. Since then, OPV has emerged as an established
technology, which routinely achieves 10% power conversion efficiency in the lab.

One of our major efforts over the last several years has been to circumvent the Kkinetic
sensitivities involved in forming an optimal bulk heterojunction (BHJ) morphology in organic
solar cells. To this end, we have used sequential processing, self-assembling fullerenes, and self-
assembling polymers to enhance OPV performance.

We have developed a new method, known as sequential processing (SqP), as a means to control
OPV morphology.’' > SqP is based on sequential deposition of the donor and acceptor molecules
via casting from orthogonal solvents. A typical SqP device might have the polymer layer (e.g.,
P3HT) cast from a solvent such as o-dichlorobenzene, followed by casting the fullerene layer
(e.g., PCBM) from dichloromethane. In our initial work, we had concluded that SqP led to a
bilayer structure,’' but later work from both our group using TRMC?* and other groups using
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neutron reflection®®>" and other techniques***” has shown
that there is interpenetration of the fullerene from the
overlayer into the polymer underlayer. Subsequently,
dozens of groups have worked to explore the differences
between devices made as traditional BHJs and via
SqP,** particularly since SqP provides the ability to
alter the donor layer prior to fullerene deposition. SqP o T o o o os os o
also provides for greater reproducibility in the Applied Bias (V)
performance of polymer-based PVs, particularly as the
device area is increased. This is because SqP avoids
problems with the kinetics of phase separation of the two
components and/or issues with differential solubility of
the components in the casting solvent.”*
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performance of two sets of small-area (~7 mm~) devices Applied Bias (V)
with the same active layer thickness and the same molar Figure 4. Thickness- and composition-
composition of P3HT and PCBM; one set prepared as a matched BHJ and SqP P3HT/PCBM solar
BHIJ by blending the components in solution first, and the cells with small (a) and large (b) areas. Error
other prepared by SqP. The two sets of devices behave bars are £1o (20 devices).
similarly. When the same solutions are used to make
films for larger-area (~34 mm?) devices, however, Figure 4b shows that not only do the SqP
devices perform better than BHJ devices, but they also perform more consistently: the error bars
mark +1 standard deviation in a sampling of over 20 devices of each type. Thus, SqP provides a
significant step toward removing the irreproducibility that is inherent in the kinetic control of
blend morphology when fabricating devices as BHJs.

One key question concerning SqP devices is: how does the fullerene penetrate into the polymer
underlayer? For reasonably crystalline polymers like P3HT, devices built as BHJs have much
less crystalline polymer than devices made by SqP. This is because the presence of the fullerene
inhibits crystallization, as we have shown with XRD,*”®" while in SqP, the polymer can
crystallize without the hindering presence of fullerene.®
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Intensity (a.

intact. We have shown in recent work that even though
polymer crystallinity enhances hole mobility, too much
Sl o S e A crystallization limits the amount of fullerene thz313t
) Qo incorporates into the film, reducing device performance.
Figure 3. (a) J-7" curves for annealed SP gy, o 51 shows the results of fabricating SqP films using
devices with varying degrees of polymer ) -
crystallinity. (b) XRD of device active conjugated polymers that were synthesized to have the
layers from part (a). same backbone but different degrees of crystallinity (via
different degrees of regioregularity); clearly there exists an
optimal crystallinity range in which the amorphous polymer fraction is sufficient to allow for
efficient fullerene incorporation without driving phase separation into large aggregates or
allowing for over-mixing of the polymer and the fullerene.”” Thus, as shown in Figure 5a,
devices made with P3HT with moderate crystallinity showed the best performance.
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Another one of our major efforts over the last several years
has been to circumvent the kinetic sensitivities involved in
forming an optimal BHJ morphology using molecular self- HH

a)

assembly.  To this end, we synthesized fullerene i

derivatives with molecular shapes resembling badminton A
shuttlecocks  (SCs)®® wusing the methodology of ‘% ~ P :
Nakamura.’”® Depending on the substituents, some SCs N\ A0nm,

stack ball-in-cup, forming a 1-D columnar motif when Figure 6. a) Chemical structure of PFT
crystallized in the solid state.”’ By varying the alkyl group ~@nd its micelle formation in H,O. b)
size on the SC feathers, we were able to control the CWO-EMof PFT micelles.

propensity of SCs to stack while keeping their electronic structure identical.®>’® When used in
OPV devices, we found that stacking SCs gave much higher currents compared to their non-
stacking counterparts.®®”" We then used time-resolved microwave conductivity (TRMC) to show
that the local mobility (i.e. probability for e transfer between 2-3 adjacent fullerenes) was
similar on stacking and non-stacking SCs. In addition, using theoretical techniques, we also
found that the probability for local electron transfer was identical for the stacking and non-
stacking SC derivatives.”> This proves that stacking can improve global mobility.

In addition to enhancing OPV performance via newly designed self-assembling fullerenes, we
have developed self-assembling conjugated polymers to control morphology and enhance hole
transport.”” To this end, we synthesized the amphiphilic semiconducting poly(fluorene-alt-
thiophene) (PFT), shown in Figure 6a. We verified via solution small-angle x-ray scattering
(SAXS), AFM, and cryo-TEM (Figure 6b) that PFT indeed assembles into long cylindrical
micelles.”” This geometry straightens the polymer chains along the long axis of the cylinder,
resulting in increased conductivity along the backbone.”* Indeed, we recently have shown that
amphiphilic PFT diodes have significantly enhanced currents compared to diodes based on an
uncharged and thus unassembled version of this same polymer.”

1.3 Carbon capture

Understand the effect of imidazolate functionalities on CO: uptake and selectivity in a class of
ZIFs built from tetrahedrally coordinated Zn ions; Perform Monte-Carlo simulations of
equilibrium uptake values as functions of temperature and pressure: We have completed our
combined experimental/computational analysis of CO, uptake for an isoreticular series of 5
ZIF’s with a RHO topology, but with a diverse range of functionalities, that was synthesized as
part of this effort by the Yaghi group at UCLA (See Fig. 7). These five ZIFs (ZIF-25, -71, -93, -
96, and -97) were synthesized by the reaction of Zn(acetate), and the respective imidazole
derivative in DMF. They vary only in the functionality that point into the pores of the
framework, with a diverse range of functionalities including CHs, -CHO, -CN, and -NH,. This
study was designed to help understand the role of functionality on ZIF carbon capture. In our
simulations, we have also determined a number of other relevant quantities such as surface area
and adsorption enthalpy. Agreement with experiment for these quantities is good.
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Perform MD simulations in the study of the diffusion coefficients of gas species in ZIF structures
with different functionalization, develop a model of the kinetics of uptake of gas mixtures: Over
the past year potential parameters and structure models were implemented into the LAMMPS
MD code to calculate CO, diffusivities in the isoreticular set of rho-structured ZIFs described
above. Test simulations were conducted to probe equilibration times, system size effects, and
the choice of thermostat parameters on calculated diffusivities. Initial results have led to the
identification of a number of distinct binding sites within the RHO-topology ZIFs, with
significantly varying energy barriers for diffusion depending on the functionality.

Develop modeling techniques to systematically study the dependence on CO: uptake on the
details of the framework/CO: interaction — especially with regard to the functionalization of the
imidazole: Using the formalism of van der Waals density functional theory (vdW-DFT) we have
undertaken an effort to use quantum-mechanical methods to optimize classical potential
parameters for the ZIF MD and MC simulations. This effort has focused to date on ZIF-93 and
96 structures. For ZIF-93 available classical potentials yield adsorption isotherms in good
agreement with measurements, while for ZIF-96 the calculated adsorptions are significantly
lower than the experimental data. More importantly, from the standpoint of using calculations to
guide the design of ZIFs for carbon capture applications, the available classical potentials do not
predict the correct trend: ZIF-93 is predicted to have higher adsorption than -96, whereas the
opposite is found experimentally; therefore, we are devoting significant effort to optimizing the
force fields guided by electronic structure calculations.

Experimentally evaluate the ability of these ZIFs to uptake other gases, including CH+and CO:
We have examined (both experimentally and computationally) the adsorption of CHj4 in the same
isoreticular set of five ZIFs for which we have examined the CO, adsorption in detail. The
original set of force field parameters, based on the UFF potential with charges, that we used for
CO; was found to be inadequate for predicting the adsorption of methane. Therefore, we put
considerable effort into designing new force field parameters that give reasonable results in
comparison with experiment for both CO, and CHy. This allows us to make predictions on
CO,/CHjy selectivity. This work is the subject of a manuscript in preparation. Water being an
important component of flue gases, we have also examined the effect of water loading on CO,
and CHy4 adsorption and selectivity in a number of candidate ZIFs.



Investigate other known ZIF topologies to access their ability for gas uptake: To do this we had
to keep other variables including imidazolate and metal ion constant. The first example we
choose to study is that of ZIF-93 and ZIF-94. Both of these ZIFs are comprised of the same
imidazolate, but possess different topologies RHO and SOD. The pore sizes of the SOD cage are
smaller than the RHO cage, giving us the opportunity to see how this affects gas adsorption.

Explained effect of functionalization on adsorption of CO,, CH, and H,O in ZIFs: The principal
finding was that the composition and symmetry of the functionalization has significant effects on
CO, and CHj4 adsorption in these ZIFs. In the case of CH4 adsorption uptake was proportional to
surface area, but in CO, the uptake was significantly enhanced in ZIFs with asymmetrically
functionalized imidazoles (ZIF-93,-96, and -97). Also, the computational studies show that the
adsorption of both CO;, and CH4 occurs primarily in the smaller hexagonal bridging channels of
these ZIFs and not in the larger octahedral pore. The experimental and simulation results on this
series for the adsorption of CO, were subsequently published as a JACS communication. Our
results for the adsorption of CH4 are the subject of a combined experimental/computational paper
in preparation. Results from our water loading studies show that the presence of water decreases
the adsorption of CO;, and CH4 and the selectivity for CO, by a few percent up to 1 bar partial
pressure, with the largest effects coming at higher CO,/CH4 pressures (near 1 bar) and higher
relative humidities.

Explained effect of topology on CO; adsorption: At pressures below 100 kPa enhanced
adsorption of CH4 and CO, was measured experimentally in ZIF-93 versus -94, which have
identical imidazolate functionality, but different topologies (RHO versus SOD, respectively).
These measurements are supported by computational results that show enhanced adsorption in
the smaller SOD pores; however, the computational studies also show that the adsorption of CHy4
is enhanced to a greater degree than CO;, so that smaller pores lead to a decreased CO,/CH4
selectivity

Development of vdaw-DFT-based force fields: Binding energies of CO, at different sites within
ZIF-93 and —96 were calculated using the vdW-DFT functional developed by Langreth and co-
workers, and the results were used to refit the &€ parameters in the Lennard-Jones potentials. The
resulting potentials gave rise to calculated adsorptions for ZIF-96 in much better agreement with
experimental data, and reproduced the measured trend that this structure has higher uptake than
ZIF-93. Initial results of this work have been presented by one of the students supported by the
EFRC at the March APS meeting and the Spring MRS meeting.

Diffusion of CO; in ZIFs: An important finding was the identification of multiple sites within the
structures where CO, molecules are strongly bound, and have high activation energies for
escape. At high uptakes these sites are largely filled, and the diffusion flux is dominated by
molecules that interact relatively weakly with the framework. At low concentrations, diffusion
constants are expected to be controlled by the slow hopping rates of molecules out of the strong
binding sites. Simulations have been completed for CO; tracer and transport diffusion constants
in ZIF-25, -71, -93 and -97, at concentrations corresponding to equilibrium adsorptions at a
pressure of 101 kPa, at 298 K.
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