

Fully Parameterized Reduced Order Models Using Hyper-Dual Numbers and Component Mode Synthesis

**Matt Bonney, Dan Kammer, Matt Brake
Presented by: Matt Bonney**

Outline

- Introduction to Hyper-Dual Numbers
- Using Hyper-Dual Numbers
- Parameter Sensitivity
- Remarks/ Conclusions

What are Dual Numbers?

- Dual numbers: Generalized complex number
 - $\epsilon^2 = 0$ similar to $i^2 = -1$
 - Higher order terms = 0
 - Creates a finite Taylor series expansion
 - $f(x + \delta\epsilon) = f(x) + \delta f'(x)\epsilon$

What are Hyper-Dual Numbers?

- Multi-dimensional expansion of dual numbers
- Similar to quaternions for ordinary complex numbers
- Allows for exact derivatives in higher orders
- Some special considerations in mathematics
- Example of 2nd order, but can be increased in order

Hyper-Dual Math

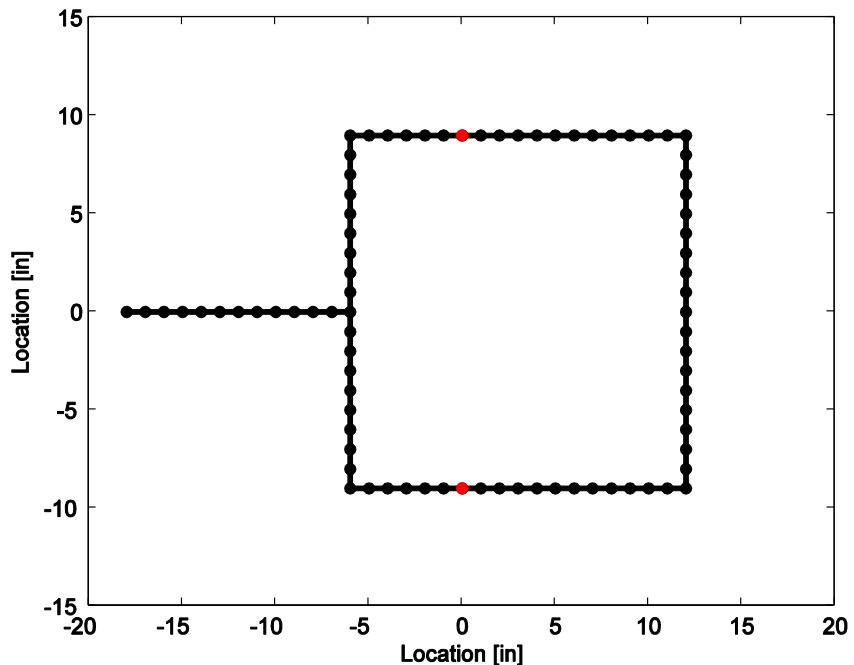
- 2nd Order: $\epsilon_1, \epsilon_2, and \epsilon_1\epsilon_2$
- 2 Independent, 1 Dependent
- Treat similar to polynomial or complex
 - $(1 + 1\epsilon_1 + 2\epsilon_2 - 5\epsilon_1\epsilon_2) + (5 - 2\epsilon_1 + 2\epsilon_2 + 5\epsilon_1\epsilon_2) = (6 - 1\epsilon_1 + 4\epsilon_2 + 0\epsilon_1\epsilon_2)$
- Follows associative property
 - $\epsilon_1 * \epsilon_2 = \epsilon_2 * \epsilon_1 = \epsilon_1\epsilon_2$
- Higher order terms are zero
 - $\epsilon_1^2 = \epsilon_2^2 = (\epsilon_1\epsilon_2)^2 = 0$

Using Hyper-Dual Numbers

- Requires slight change in code
 - Programmed into a MatLab class
- Specify parameter directions
 - Young's modulus: $E = E_0 + h_1\epsilon_1 + h_2\epsilon_2 + 0\epsilon_1\epsilon_2$
 - Can have different parameter on each direction
- Run code as normal
- Outputs will have sensitives built-in
 - $F = F_0 + h_1 \frac{\partial F}{\partial E} \epsilon_1 + h_2 \frac{\partial F}{\partial E} \epsilon_2 + h_1 h_2 \frac{\partial^2 F}{\partial E^2} \epsilon_1 \epsilon_2$

Example Problem

- Theory tested on planar frame
- 3 different parameters
 - Young's Modulus
 - Mass Density
 - Appendage Length
- ROMs using Craig-Bampton



Example Parameters

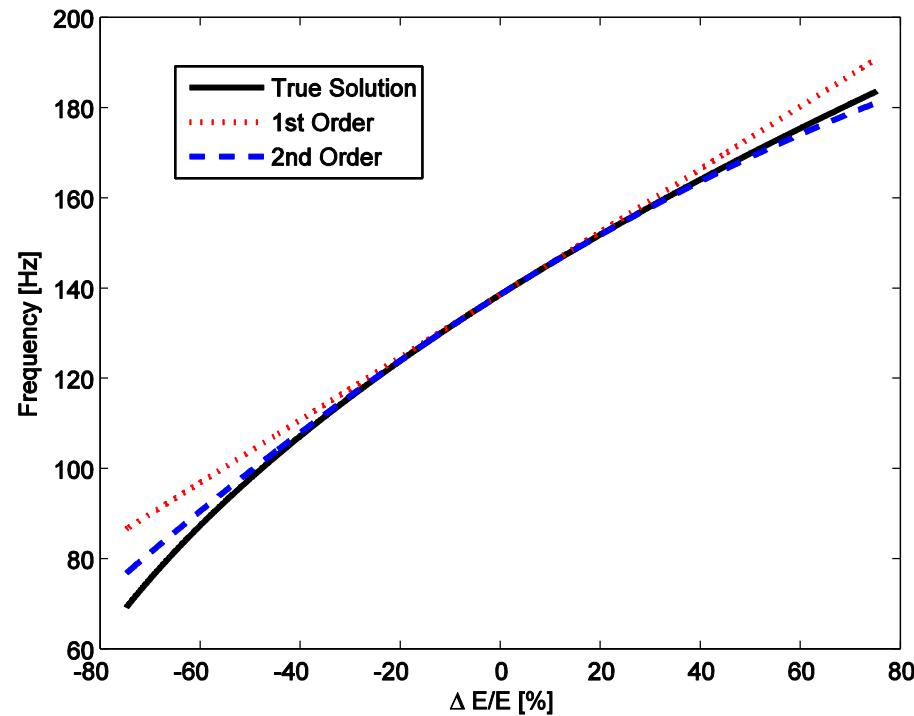
- Sweep $\pm 75\%$ of nominal value
 - Resolution 0.1%
- One a single code evaluation
- Varied order on Taylor series
- 20 Fixed Interface Modes

Example Procedure

- Define Hyper-Dual numbers in FE Code
- Create high-fidelity model
- Create Craig-Bampton ROMs
- Assemble using CMS
- Calculate natural frequencies
- Results in parameterized natural frequencies

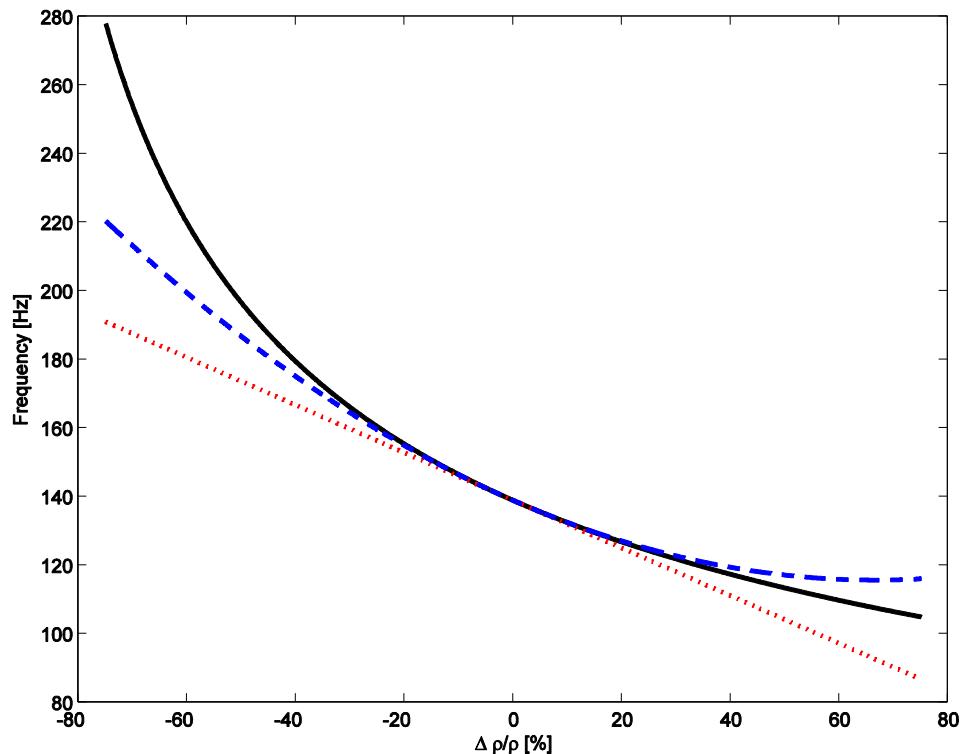
Young's Modulus Sensitivity

- Compared 1st and 2nd order Taylor series expansion
- 2nd order is almost exact for up to 75% change



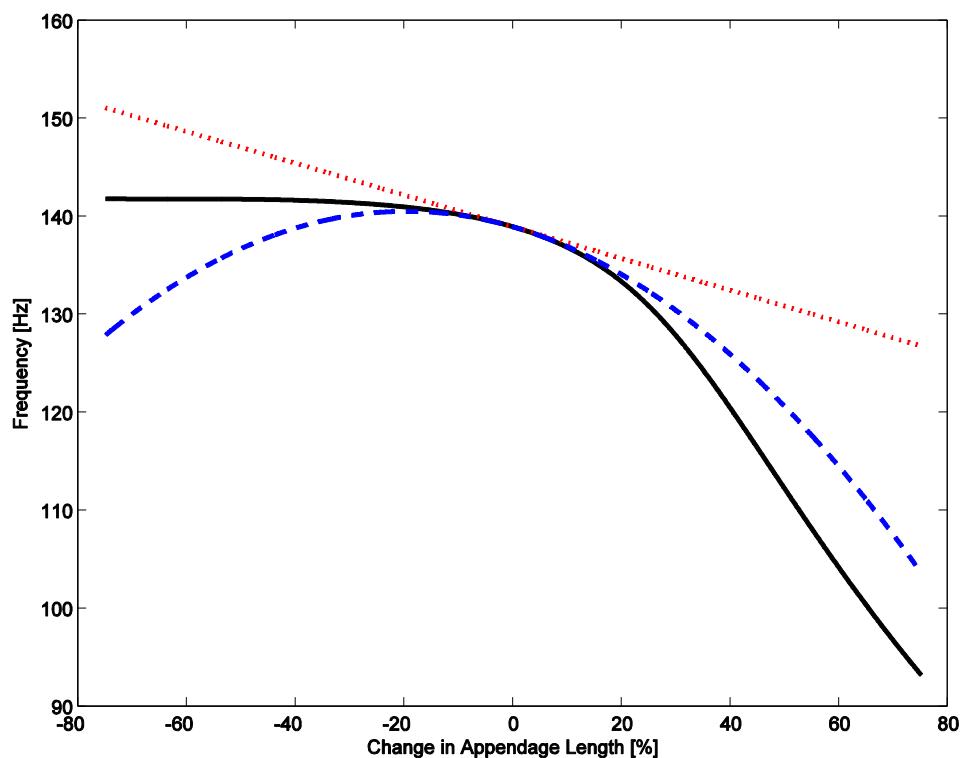
Mass Density Sensitivity

- Compared 1st and 2nd order Taylor series expansion
- Requires more orders to accurately predict



Appendage Length Sensitivity

- Compared 1st and 2nd order Taylor series expansion
- Very non-linear behavior
- Does not require re-meshing system



Expanding the Accuracy Range

- Finite difference gives a decent accuracy over a range of values
- Hyper-Dual gives an exact derivative at a single point
- Why not take the best of both and combine together?

Remarks

- Hyper-Dual numbers allow for exact sensitivities with a single evaluation
- Implemented in Matlab and Sierra/SD
- Can calculate geometric changes
- Methods can be used as a surrogate model for uncertainty propagation

Special Thanks

- Dr. Dan Kammer
- Dr. Matt Brake
- Sandia National Laboratories

- Questions?

