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L2 Goal: Inform technical roadmap for next generation 
programming systems for ATDM/ASC workloads

 Extreme-scale architectures introduce complexities
 Dynamic parallelism only discovered at runtime

 Dynamic workflows 

 Performance Heterogeneity

 Accelerators

 Thermal throttling

 General system noise

 Responses to transient failures

 Energy Constraints

 Decreased system reliability

 Current procedural, imperative programming models require 
mitigation of challenges at application-developer level
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Asynchronous many task (AMT) runtime solutions show 
promise to mitigate challenges at the runtime-level

 Shelter application developers from 
extreme-scale system complexities

 Show promise at sustaining 
performance in spite of system 
performance heterogeneity

 Active area of research
 Charm++, PaRSEC, HPX, Legion, OCR, STAPL, 

Uintah, SCIOTO
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Vendor-supported runtime system and standards are 
ideal but AMTs are still an active research area
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Build system from scratch 
and take ownership

Rely completely 
on external partners

Lots of control, but lots 
of extra investment

Less control, 
but less investment

Risk: current academic 
runtimes lack features to 

support our workloads

Risk:  potential lack of 
vendor support/buy in

We face a spectrum of choices/risks in developing technical roadmap



ATDM Level 2 milestone aims to assess leading AMT 
runtimes in the context of ASC workloads

 Programmability: Does this solution enable efficient expression of our workloads?

 Performance: How performant is this runtime for our workloads on current platforms 
and how well suited is this runtime to address exascale challenges?

 Mutability: What is the ease of adopting this solution and modifying it to suit our needs?
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We evaluate three exemplar, best in class AMT runtimes: 
Charm++, Legion, and Uintah

 Summer FY14 considered a variety of runtimes
 Charm++, Legion, Uintah, STAPL, OCR, HPX

 Runtimes were selected based on:
 Demonstrated science applications at scale

 Maturity of runtime

 Accessibility of teams

 Three different implementations, APIs, abstractions

 Charm++: actor model with low-level flexibility

 Legion: data-centric task model, strong shift from 
procedural style of MPI and Charm++

 Uintah: domain specific runtime
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Evaluation of AMT programmability, performance, and 
mutability is based on experiences coding MiniAero

 Algorithm description:
 3-dimensional, unstructured, finite volume, CFD 

code

 Runge-Kutta fourth order time marching

 Options for 1st or 2nd order spatial discretization

 Inviscid Roe and Newtonian fluxes

 Baseline implementation in C++ (MPI + Kokkos)
 Available at Mantevo.org

 Representative of a portion of ATDM re-entry 
application workload

 MiniAero is a load-balanced application with a 
narrow task graph
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The design and execution of the L2 analyses and 
experiments account for the static nature of MiniAero
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We viewed L2 as a basis for dialogue towards establishing 
best practices, with an eye towards eventual standards

 Active engagement of university teams 
throughout development cycle
 Coding boot camps with each university 

 ATDM application area representatives 
attended boot camps providing feedback
 Thermo mechanical, EM PIC

 Rigorous design and execution of 
experiments for reproducibility

 New MiniAero implementations will be 
shared at Mantevo.org
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FINDINGS ON PROGRAMMABILITY
Does this solution enable efficient expression of our workloads?
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We provide a summary of key design points and 
articulate their impact on the expression of MiniAero

 For each runtime
 Key design decisions

 Abstractions and controls

 Performance portability

 Maturity

 Current research efforts

 Comparative Analysis
 Subjective survey questions

 Tools
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Charm++ is an actor model with low-level flexibility
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 Migratable chares interact via 
asynchronous method 
invocations

 Adaptive runtime system 

 Charm Interface files used to 
express parallel workflow

 Actor model: workers considered 
inactive until message received

+ Excellent load balancing and fault 
tolerance support

- CI Files do not work well with 
templates

+ Mature runtime - No data model: data dependencies 
must be managed by user 

+ Arbitrary data structures supported - Minimal support for zero copy 
transfers of large data blocks



Legion is a data-centric task model and a strong shift from 
procedural MPI and Charm++
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 Abstractions support efficient 
deferred execution model

 Programmer declares data 
properties, runtime manages 
data movement

 Mappers separate program 
specification from optimization

 Tree of tasks with top-level task 
spanning sub-tasks

+ Automatic handling of concurrency 
and data movement 

- Rigidity of data model: all inputs and 
outputs must be declared a priori 

+ Separation of implementation and 
optimization

- Currently requires manual SPMD-
ification of top level task 

+ Flexible relational data model for 
expressing data transformations

- Immature: lots of changes to API, 
bugs, not all features implemented



A note about SPMD applications in Legion

 An application is a tree of tasks with a top-level task executed 
at runtime startup

 Dependency analysis between sibling tasks must be done by 
parent

 Intuitive porting to Legion of a SPMD code is not scalable

 Provides a relaxed coherency mode and phase barriers for 
manual SPMD-ification
 Very similar to MPI

 Working on automated SPMD-ification right now
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Uintah is a task-based domain-specific runtime built on 
top of MPI
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 Facilitates numerical solution of 
PDEs on structured meshes

 Application code runs unchanged 
from 600 to 600K cores

 Patch-based domain decomp.

 Tasks specify requirements and 
privileges

 Data warehouse manages data 
movement

+ Almost like a DSL for its target 
applications, very easy to work with

- Limited to structured meshes

+ Numerous off the shelf physics and 
solvers available

- Patch data structure makes for rigid
interfaces with node level libraries

+ Good support for GPU - Fault recovery may require significant 
runtime rewrite (MPI+X model)



Using a 7-point scale boot camp attendees responded to 
subjective programmability questions relative to MPI
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We present a survey of general and runtime provided 
tools, followed by a discussion of research challenges

 General tools:
 PAPI, VTune, CrayPAT, 

Open|Speedshop, MemAxes, 
Caliper

 Runtime provided
 Charm++ Projections

 Legion Spy and Prof

 Uintah PAPI + print statements

 Need better debugging tools

 Additional views into runtime
 This will be particularly 

challenging when interfacing 
with MPI/node level libraries

17



FINDINGS ON PERFORMANCE

How performant is this runtime for our workloads on current platforms 
and how well suited is this runtime to address exascale challenges?
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Our performance assessment included empirical 
experiments as well as qualitative results 

 Performance analysis on 
homogeneous systems

 Mitigating system 
performance heterogeneity

 Fault tolerance capabilities

 Support for complex 
workflows

 Comparative analysis
 Subjective survey questions
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Our empirical results should be viewed in light of several 
caveats

 Baseline MPI+Kokkos MiniAero:
 Had not been tested at scale

 Memory issues in mesh set up and 32 bit overflow

 High cycles per instruction due to naïve use of Kokkos

 Uintah MiniAero
 Structured mesh implementation

 Load balancing forecasting model is based on AMR grid sizes, particle 
load and system imbalance. 

 Had not been tested for static applications – we hit a degenerate case

 Legion MiniAero
 A runtime bug precluded our distributed tests
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Scaling studies show MPI and AMT runtimes perform 
comparably under balanced conditions
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 16 nodes on Shepard @ Sandia
 Charm SMP scheduler
 Uintah MPI scheduler
 15 time steps, 7 trials

 Load balancing each time step
 RefineLB Charm load balancer
 MostMessages-ModelLS Uintah 

load balancer



Scaling studies show MPI and AMT runtimes perform 
comparably under balanced conditions
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 Charm SMP scheduler
 Uintah MPI scheduler
 15 time steps

 No load balancing
 Charm overdecomposition = 2
 Uintah no overdecomposition
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An AMT runtime can mitigate system performance 
heterogeneity 
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 16 nodes on Shepard @ Sandia
 4 million cells/node
 Charm SMP scheduler

 15 time steps
 Load balancing each time step
 Overdecomposition = 4



An AMT runtime can mitigate system performance 
heterogeneity 
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Using a 7-point scale boot camp attendees responded to 
subjective performance questions relative to MPI



FINDINGS ON MUTABILITY
What is the ease of adopting this solution and modifying it to suit our needs?
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For each runtime we assess the modularity of its design 
and discuss interoperability with other languages
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Uintah
 Component based 

architecture

 Built on MPI

 Built in GPU support

 Other node-level 
libraries require 
specialization 

 Active Kokkos
integration project

 Structured mesh 
limitation pervasive 
in framework

Legion
 3 basic layers:

 Regent

 Legion

 Realm

 Can interact with MPI 
but only one can be 
active at a time

 Has support for GPU 
leaf tasks

 In theory supports 
node level libraries 
with mapper changes

Charm
 2 basic layers:

 Charm++

 Converse

 Charm++ uses a 
compiler wrapper 
complicating use 
with others, e.g. nvcc

 Provides AMPI

 Can use MPI as a 
substrate
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Using a 7-point scale boot camp attendees responded to 
subjective mutability questions relative to MPI



CONCLUSIONS AND 
RECOMMENDATIONS
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Programmability conclusions

 None of the runtimes satisfy all of our application workload 
requirements

 Each runtime system has been designed or demonstrated on 
a limited set of applications

 The runtimes each make tradeoffs between higher-level 
constructs and low-level flexibility to strike their own balance 
of code performance, correctness, and programmer 
productivity

 Runtime system developers need clear articulation of 
laboratory application requirements

 MPI-based mini-applications are an important part of this 
specification but do not suffice
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Performance and Mutability conclusions

 Performance Conclusions:

 AMT runtimes show tremendous potential to mitigate extreme-
scale challenges

 Scaling studies show MPI and AMT runtimes perform 
comparably under balanced conditions.

 Studies show AMT runtimes mitigate system performance 
heterogeneity.

 Mutability Conclusions:  

 None of the runtimes are production ready for a broad class of 
Sandia ASC applications

 The collective research being performed by these teams is a 
critically important precursor to establishing best practices and 
community standards.
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Recommendations

 ASC application workload requirements should directly inform 
design decisions of any runtime they adopt

 We need to clearly articulate our requirements
 Terse algorithmic descriptions + MPI mini-applications do not suffice

 We believe a co-design approach with application, 
programming model, and runtime developers is required to 
define requirements and solutions

 We recommend continued deep engagement with runtime 
system community to establish best practices, shared 
solutions, and ultimately standards
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NEXT STEPS FOR SANDIA
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Currently Sandia is co-designing ATDM application-driven 
programming model specification and requirements
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 An expressive enough model can support many different applications 
and execution models via run time and compile time hints

 Deep dives with each application area to facilitate interactions

Runtime

OS

Execution  Model

Hardware

DHARMA programming model spec

PIC Reentry Solvers UQ Meshing Preconditioners

Characterize 
behaviors, 
execution needs

Iterate on draft 
API, coding 
algorithms with 
application 
teams

Translate behaviors 
into requirements 
for software stack



Our co-design deep-dive strategy extends naturally to 
engagement with IC teams and other laboratories 
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 An expressive enough model can support many different applications 
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execution needs
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Translating behaviors into requirements is difficult 
without common vocabularies and classification schemes

 Detailed report based on survey of 
15+ parallel frameworks

 Establish common execution model 
terminology

 Assess similarities and differences in 
core execution models for a variety 
of runtimes

 Lay groundwork for classifying 
application patterns
 What are common features? 

 What type of asynchronous execution is 
even possible? 

 Initial draft of DHARMA 
programming model specification
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Our initial classifications are meant to serve as a catalyst 
for dialogue and debate in the community
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Classifying “hazard” avoidance models for ensuring correct 
parallel execution (correct data-flow, no race conditions)

Framework
Primary Distributed 

Memory Model
Primary Shared 
Memory Model

Supported 
Distributed Memory 

Model

Supported Shared 
Memory Model

Legion
Conservative
Disjoint Data

Conservative 
Disjoint Data

Speculative 
Copy-on-read

Speculative Atomics

Charm++ Copy-on-read n/a n/a Any

MPI CSPs
Disjoint Data 

(OpenMP)
Explicit Sync 
(One-sided)

Any

UPC
Explicit 

Synchronization
Explicit 

Synchronization
n/a n/a

X10 Conservative Forking
Conservative

Forking
n/a n/a

Cilk n/a
Conservative 

Forking
n/a n/a

CnC Idempotency Idempotency n/a Any

Chapel Disjoint Data Disjoint Data Any Any

Uintah CSPs
Conservative

Forking
n/a n/a

HPX Data-Flow Data-Flow
Explicit

Synchronization
Explicit 

Synchronization

TASCEL
Idempotent Data 

Store
Idempotent Data 

Store
n/a n/a

OmpSs n/a
Conservative Data-

Flow
n/a Explicit Atomics

STAPL Disjoint Data Disjoint Data
Explicit 

Synchronization
Explicit 

Synchronization

PARSEC
Conservative Data-

Flow
Conservative Data-

Flow
n/a n/a

P
ro

d
u

ce
r

Consumer

Oracle
Locally 

Dominant
Subordinate Blind

Oracle
Structured 

mesh, Dense 
linear algebra

- - -

Locally 
Dominant

-

Unstructured
mesh, Conjugate 

gradient 2nd

iteration

Particle in cell
Molecular 
dynamics

Subordinate - -
Adaptive mesh

refinement
-

Blind -
Conjugate 

gradient 1st

iteration
- -

Classifying application patterns based on mutually 
shared knowledge between “producer” &“consumer”



We will continue engagement with runtime community to 
leverage components where we can

 Drive conversations towards best practices, and eventual standards
 DOE AMT RTS Working group (Brightwell, Clay)

 SC 14 BOF, SC 15 Panels (Bennett, Clay)

 Partnership with Intel research group focused on similar comparative study
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Runtime Key strengths Key Weaknesses from ATDM 
application perspective

Compelling near-term 
leverage points

Legion On-node logical/physical 
dependency model

Rigidity of data model, doesn’t support 
dynamic data fetching/push model

High-level runtime/API 
facilitates specific use cases;
REALM is full-featured event 

runtime

Charm++ Flexible data movement 
patterns, supports push 

model

Lack of data model, template support, logical 
work regions (for multi-dimensional load 

balancing), CI file interface

Mature back-end and API for 
initial algorithmic exploration 

of specific use cases

Uintah Application-driven 
approach very performant

for specific-use cases

Lack of support for unstructured meshes Application APIs and 
abstractions

OCR Community-driven 
approach

Lack of data model, performance 
data/projections, working distributed 

implementation

Version 1.0 spec just released
Project likely to mature 

rapidly


