
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

ASC ATDM Level 2 Milestone #5325: Asynchronous
Many-Task Runtime System Analysis and Assessment
for Next Generation Platforms

Sandia: Gavin Baker, Matt Bettencourt, Steve Bova, Ken Franko, Marc Gamell,
Ryan Grant, Si Hammond, David Hollman, Samuel Knight, Hemanth Kolla, Paul
Lin, Stephen Olivier, Greg Sjaardema, Nicole Slattengren, Keita Teranishi,
Jeremiah Wilke

UIUC (Charm++): Laxmikant Kale, Nikhil Jain, Eric Mikida

Stanford (Legion): Alex Aiken, Mike Bauer, Wonchan Lee, Elliott Slaughter, Sean
Treichler

U. Utah (Uintah): Martin Berzins, Todd Harman, Alan Humphry, John Schmidt,
Dan Sunderland

LANL (Tools): Pat McCormick and Samuel Gutierrez

LLNL (Tools): Martin Schulz, Todd Gamblin, Peer-Timo Bremer

PI: Janine Bennett PM: Robert Clay

Review Committee: Mike Glass (SNL), Doug Doerfler (LBNL), Bert Still (LNNL),
Sriram Swaminarayan (LANL)

Milestone Review Meeting August 26, 2015

SAND#

Classification - UUR

SAND2015-8256PE

L2 Goal: Inform technical roadmap for next generation
programming systems for ATDM/ASC workloads

 Extreme-scale architectures introduce complexities
 Dynamic parallelism only discovered at runtime

 Dynamic workflows

 Performance Heterogeneity

 Accelerators

 Thermal throttling

 General system noise

 Responses to transient failures

 Energy Constraints

 Decreased system reliability

 Current procedural, imperative programming models require
mitigation of challenges at application-developer level

2

Image courtesy of www.cal-design.org

Asynchronous many task (AMT) runtime solutions show
promise to mitigate challenges at the runtime-level

 Shelter application developers from
extreme-scale system complexities

 Show promise at sustaining
performance in spite of system
performance heterogeneity

 Active area of research
 Charm++, PaRSEC, HPX, Legion, OCR, STAPL,

Uintah, SCIOTO

3

B
u

lk syn
ch

ro
n

o
u

s +
n

o
d

e-leve
l A

M
T

H
o

listic A
M

T

Images courtesy of Jack Dongarra

Vendor-supported runtime system and standards are
ideal but AMTs are still an active research area

4

Build system from scratch
and take ownership

Rely completely
on external partners

Lots of control, but lots
of extra investment

Less control,
but less investment

Risk: current academic
runtimes lack features to

support our workloads

Risk: potential lack of
vendor support/buy in

We face a spectrum of choices/risks in developing technical roadmap

ATDM Level 2 milestone aims to assess leading AMT
runtimes in the context of ASC workloads

 Programmability: Does this solution enable efficient expression of our workloads?

 Performance: How performant is this runtime for our workloads on current platforms
and how well suited is this runtime to address exascale challenges?

 Mutability: What is the ease of adopting this solution and modifying it to suit our needs?

5

Build system from scratch
and take ownership

Rely completely
on external partners

Lots of control, but lots
of extra investment

Less control,
but less investment

Risk: current academic
runtimes lack features to

support our workloads

Risk: potential lack of
vendor support/buy in

We face a spectrum of choices/risks in developing technical roadmap

We evaluate three exemplar, best in class AMT runtimes:
Charm++, Legion, and Uintah

 Summer FY14 considered a variety of runtimes
 Charm++, Legion, Uintah, STAPL, OCR, HPX

 Runtimes were selected based on:
 Demonstrated science applications at scale

 Maturity of runtime

 Accessibility of teams

 Three different implementations, APIs, abstractions

 Charm++: actor model with low-level flexibility

 Legion: data-centric task model, strong shift from
procedural style of MPI and Charm++

 Uintah: domain specific runtime

6

Evaluation of AMT programmability, performance, and
mutability is based on experiences coding MiniAero

 Algorithm description:
 3-dimensional, unstructured, finite volume, CFD

code

 Runge-Kutta fourth order time marching

 Options for 1st or 2nd order spatial discretization

 Inviscid Roe and Newtonian fluxes

 Baseline implementation in C++ (MPI + Kokkos)
 Available at Mantevo.org

 Representative of a portion of ATDM re-entry
application workload

 MiniAero is a load-balanced application with a
narrow task graph

7

The design and execution of the L2 analyses and
experiments account for the static nature of MiniAero

8

[static
workload,
dynamic
machine]

[static
workload,
dynamic
machine]

[dynamic
workload,
dynamic
machine]

[dynamic
workload,
dynamic
machine]

[static
workload,

static
machine]

[static
workload,

static
machine]

[dynamic
workload,

static
machine]

[dynamic
workload,

static
machine]

dynamic machine

static machine

dynamic workloadstatic workload

We viewed L2 as a basis for dialogue towards establishing
best practices, with an eye towards eventual standards

 Active engagement of university teams
throughout development cycle
 Coding boot camps with each university

 ATDM application area representatives
attended boot camps providing feedback
 Thermo mechanical, EM PIC

 Rigorous design and execution of
experiments for reproducibility

 New MiniAero implementations will be
shared at Mantevo.org

9

FINDINGS ON PROGRAMMABILITY
Does this solution enable efficient expression of our workloads?

10

We provide a summary of key design points and
articulate their impact on the expression of MiniAero

 For each runtime
 Key design decisions

 Abstractions and controls

 Performance portability

 Maturity

 Current research efforts

 Comparative Analysis
 Subjective survey questions

 Tools

11

Charm++ is an actor model with low-level flexibility

12

 Migratable chares interact via
asynchronous method
invocations

 Adaptive runtime system

 Charm Interface files used to
express parallel workflow

 Actor model: workers considered
inactive until message received

+ Excellent load balancing and fault
tolerance support

- CI Files do not work well with
templates

+ Mature runtime - No data model: data dependencies
must be managed by user

+ Arbitrary data structures supported - Minimal support for zero copy
transfers of large data blocks

Legion is a data-centric task model and a strong shift from
procedural MPI and Charm++

13

 Abstractions support efficient
deferred execution model

 Programmer declares data
properties, runtime manages
data movement

 Mappers separate program
specification from optimization

 Tree of tasks with top-level task
spanning sub-tasks

+ Automatic handling of concurrency
and data movement

- Rigidity of data model: all inputs and
outputs must be declared a priori

+ Separation of implementation and
optimization

- Currently requires manual SPMD-
ification of top level task

+ Flexible relational data model for
expressing data transformations

- Immature: lots of changes to API,
bugs, not all features implemented

A note about SPMD applications in Legion

 An application is a tree of tasks with a top-level task executed
at runtime startup

 Dependency analysis between sibling tasks must be done by
parent

 Intuitive porting to Legion of a SPMD code is not scalable

 Provides a relaxed coherency mode and phase barriers for
manual SPMD-ification
 Very similar to MPI

 Working on automated SPMD-ification right now

14

Uintah is a task-based domain-specific runtime built on
top of MPI

15

 Facilitates numerical solution of
PDEs on structured meshes

 Application code runs unchanged
from 600 to 600K cores

 Patch-based domain decomp.

 Tasks specify requirements and
privileges

 Data warehouse manages data
movement

+ Almost like a DSL for its target
applications, very easy to work with

- Limited to structured meshes

+ Numerous off the shelf physics and
solvers available

- Patch data structure makes for rigid
interfaces with node level libraries

+ Good support for GPU - Fault recovery may require significant
runtime rewrite (MPI+X model)

Using a 7-point scale boot camp attendees responded to
subjective programmability questions relative to MPI

16

We present a survey of general and runtime provided
tools, followed by a discussion of research challenges

 General tools:
 PAPI, VTune, CrayPAT,

Open|Speedshop, MemAxes,
Caliper

 Runtime provided
 Charm++ Projections

 Legion Spy and Prof

 Uintah PAPI + print statements

 Need better debugging tools

 Additional views into runtime
 This will be particularly

challenging when interfacing
with MPI/node level libraries

17

FINDINGS ON PERFORMANCE

How performant is this runtime for our workloads on current platforms
and how well suited is this runtime to address exascale challenges?

18

Our performance assessment included empirical
experiments as well as qualitative results

 Performance analysis on
homogeneous systems

 Mitigating system
performance heterogeneity

 Fault tolerance capabilities

 Support for complex
workflows

 Comparative analysis
 Subjective survey questions

19

Our empirical results should be viewed in light of several
caveats

 Baseline MPI+Kokkos MiniAero:
 Had not been tested at scale

 Memory issues in mesh set up and 32 bit overflow

 High cycles per instruction due to naïve use of Kokkos

 Uintah MiniAero
 Structured mesh implementation

 Load balancing forecasting model is based on AMR grid sizes, particle
load and system imbalance.

 Had not been tested for static applications – we hit a degenerate case

 Legion MiniAero
 A runtime bug precluded our distributed tests

20

Scaling studies show MPI and AMT runtimes perform
comparably under balanced conditions

21

 16 nodes on Shepard @ Sandia
 Charm SMP scheduler
 Uintah MPI scheduler
 15 time steps, 7 trials

 Load balancing each time step
 RefineLB Charm load balancer
 MostMessages-ModelLS Uintah

load balancer

Scaling studies show MPI and AMT runtimes perform
comparably under balanced conditions

22

 Charm SMP scheduler
 Uintah MPI scheduler
 15 time steps

 No load balancing
 Charm overdecomposition = 2
 Uintah no overdecomposition

1 4 16 64 256 1024 4096

Nodes

10− 1

M
ea

n
w

a
ll

ti
m

e
p
er

ti
m

es
te

p
(s

)

MiniAero-Charm++ test runs on Cielo Weak Scaling
32.8K cells/ node

65.5K cells/ node

131K cells/ node

262K cells/ node

Strong Scaling
32.8K cells

65.5K cells

131K cells

262K cells

524K cells

1.05M cells

2.10M cells

4.19M cells

8.39M cells

16.8M cells

33.6M cells

67.1M cells

134M cells

268M cells

537M cells

1.07B cells

1 4 16 64 256 1024 4096

Nodes

10− 1

M
ea

n
w

a
ll

ti
m

e
p
er

ti
m

es
te

p
(s

)

MiniAero-MPI test runs on Cielo Weak Scaling
32.8K cells/ node

65.5K cells/ node

131K cells/ node

262K cells/ node

Strong Scaling
32.8K cells

65.5K cells

131K cells

262K cells

524K cells

1.05M cells

2.10M cells

4.19M cells

8.39M cells

16.8M cells

33.6M cells

67.1M cells

134M cells

268M cells

537M cells

1.07B cells

1 4 16 64 256 1024 4096

Nodes

10− 1

100

M
ea

n
w

a
ll

ti
m

e
p
er

ti
m

es
te

p
(s

)

MiniAero-Uintah test runs on Cielo Weak Scaling
32.8K cells/ node

65.5K cells/ node

131K cells/ node

262K cells/ node

Strong Scaling
32.8K cells

65.5K cells

131K cells

262K cells

524K cells

1.05M cells

2.10M cells

4.19M cells

8.39M cells

16.8M cells

33.6M cells

67.1M cells

134M cells

268M cells

537M cells

1.07B cells

2.15B cells

An AMT runtime can mitigate system performance
heterogeneity

23

 16 nodes on Shepard @ Sandia
 4 million cells/node
 Charm SMP scheduler

 15 time steps
 Load balancing each time step
 Overdecomposition = 4

An AMT runtime can mitigate system performance
heterogeneity

24

 16 nodes on Shepard @ Sandia
 4 million cells/node
 Charm SMP scheduler

 15 time steps
 Load balancing each time step
 Overdecomposition = 4

25

Using a 7-point scale boot camp attendees responded to
subjective performance questions relative to MPI

FINDINGS ON MUTABILITY
What is the ease of adopting this solution and modifying it to suit our needs?

26

For each runtime we assess the modularity of its design
and discuss interoperability with other languages

27

Uintah
 Component based

architecture

 Built on MPI

 Built in GPU support

 Other node-level
libraries require
specialization

 Active Kokkos
integration project

 Structured mesh
limitation pervasive
in framework

Legion
 3 basic layers:

 Regent

 Legion

 Realm

 Can interact with MPI
but only one can be
active at a time

 Has support for GPU
leaf tasks

 In theory supports
node level libraries
with mapper changes

Charm
 2 basic layers:

 Charm++

 Converse

 Charm++ uses a
compiler wrapper
complicating use
with others, e.g. nvcc

 Provides AMPI

 Can use MPI as a
substrate

28

Using a 7-point scale boot camp attendees responded to
subjective mutability questions relative to MPI

CONCLUSIONS AND
RECOMMENDATIONS

29

Programmability conclusions

 None of the runtimes satisfy all of our application workload
requirements

 Each runtime system has been designed or demonstrated on
a limited set of applications

 The runtimes each make tradeoffs between higher-level
constructs and low-level flexibility to strike their own balance
of code performance, correctness, and programmer
productivity

 Runtime system developers need clear articulation of
laboratory application requirements

 MPI-based mini-applications are an important part of this
specification but do not suffice

30

Performance and Mutability conclusions

 Performance Conclusions:

 AMT runtimes show tremendous potential to mitigate extreme-
scale challenges

 Scaling studies show MPI and AMT runtimes perform
comparably under balanced conditions.

 Studies show AMT runtimes mitigate system performance
heterogeneity.

 Mutability Conclusions:

 None of the runtimes are production ready for a broad class of
Sandia ASC applications

 The collective research being performed by these teams is a
critically important precursor to establishing best practices and
community standards.

31

Recommendations

 ASC application workload requirements should directly inform
design decisions of any runtime they adopt

 We need to clearly articulate our requirements
 Terse algorithmic descriptions + MPI mini-applications do not suffice

 We believe a co-design approach with application,
programming model, and runtime developers is required to
define requirements and solutions

 We recommend continued deep engagement with runtime
system community to establish best practices, shared
solutions, and ultimately standards

32

NEXT STEPS FOR SANDIA

33

Currently Sandia is co-designing ATDM application-driven
programming model specification and requirements

34

 An expressive enough model can support many different applications
and execution models via run time and compile time hints

 Deep dives with each application area to facilitate interactions

Runtime

OS

Execution Model

Hardware

DHARMA programming model spec

PIC Reentry Solvers UQ Meshing Preconditioners

Characterize
behaviors,
execution needs

Iterate on draft
API, coding
algorithms with
application
teams

Translate behaviors
into requirements
for software stack

Our co-design deep-dive strategy extends naturally to
engagement with IC teams and other laboratories

35

 An expressive enough model can support many different applications
and execution models via run time and compile time hints

 Deep dives with each application area to facilitate interactions

Runtime

OS

Execution Model

Hardware

DHARMA programming model spec

Characterize
behaviors,
execution needs

Iterate on draft
API, coding
algorithms with
application
teams

Translate behaviors
into requirements
for software stack

Sandia Integrated codes LANL LLNL

Translating behaviors into requirements is difficult
without common vocabularies and classification schemes

 Detailed report based on survey of
15+ parallel frameworks

 Establish common execution model
terminology

 Assess similarities and differences in
core execution models for a variety
of runtimes

 Lay groundwork for classifying
application patterns
 What are common features?

 What type of asynchronous execution is
even possible?

 Initial draft of DHARMA
programming model specification

36

Our initial classifications are meant to serve as a catalyst
for dialogue and debate in the community

37

Classifying “hazard” avoidance models for ensuring correct
parallel execution (correct data-flow, no race conditions)

Framework
Primary Distributed

Memory Model
Primary Shared
Memory Model

Supported
Distributed Memory

Model

Supported Shared
Memory Model

Legion
Conservative
Disjoint Data

Conservative
Disjoint Data

Speculative
Copy-on-read

Speculative Atomics

Charm++ Copy-on-read n/a n/a Any

MPI CSPs
Disjoint Data

(OpenMP)
Explicit Sync
(One-sided)

Any

UPC
Explicit

Synchronization
Explicit

Synchronization
n/a n/a

X10 Conservative Forking
Conservative

Forking
n/a n/a

Cilk n/a
Conservative

Forking
n/a n/a

CnC Idempotency Idempotency n/a Any

Chapel Disjoint Data Disjoint Data Any Any

Uintah CSPs
Conservative

Forking
n/a n/a

HPX Data-Flow Data-Flow
Explicit

Synchronization
Explicit

Synchronization

TASCEL
Idempotent Data

Store
Idempotent Data

Store
n/a n/a

OmpSs n/a
Conservative Data-

Flow
n/a Explicit Atomics

STAPL Disjoint Data Disjoint Data
Explicit

Synchronization
Explicit

Synchronization

PARSEC
Conservative Data-

Flow
Conservative Data-

Flow
n/a n/a

P
ro

d
u

ce
r

Consumer

Oracle
Locally

Dominant
Subordinate Blind

Oracle
Structured

mesh, Dense
linear algebra

- - -

Locally
Dominant

-

Unstructured
mesh, Conjugate

gradient 2nd

iteration

Particle in cell
Molecular
dynamics

Subordinate - -
Adaptive mesh

refinement
-

Blind -
Conjugate

gradient 1st

iteration
- -

Classifying application patterns based on mutually
shared knowledge between “producer” &“consumer”

We will continue engagement with runtime community to
leverage components where we can

 Drive conversations towards best practices, and eventual standards
 DOE AMT RTS Working group (Brightwell, Clay)

 SC 14 BOF, SC 15 Panels (Bennett, Clay)

 Partnership with Intel research group focused on similar comparative study

38

Runtime Key strengths Key Weaknesses from ATDM
application perspective

Compelling near-term
leverage points

Legion On-node logical/physical
dependency model

Rigidity of data model, doesn’t support
dynamic data fetching/push model

High-level runtime/API
facilitates specific use cases;
REALM is full-featured event

runtime

Charm++ Flexible data movement
patterns, supports push

model

Lack of data model, template support, logical
work regions (for multi-dimensional load

balancing), CI file interface

Mature back-end and API for
initial algorithmic exploration

of specific use cases

Uintah Application-driven
approach very performant

for specific-use cases

Lack of support for unstructured meshes Application APIs and
abstractions

OCR Community-driven
approach

Lack of data model, performance
data/projections, working distributed

implementation

Version 1.0 spec just released
Project likely to mature

rapidly

