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Digital Image Correlation (DIC)

I DIC is a full-field image analysis
method based on grey value
digital images

I Determine the deformation, strain
of an object subjected to a load

I Courtesy Dantec Dynamics
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Basic DIC process

I Two cameras photograph a
“speckled” dogbone subjected to
a load

I A speckling (or contrast) occurs
by spraying a mist of black paint
over a white dogbone

I DIC tracks the speckles by
comparing the sequence of
photos, or images

I Extract deformation, strain
I Courtesy Correlated Solutions
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DIC Strain

I Two standard approaches for generating strain from image
displacement data; (1) finite differences (2) polynomial
fitting; both are problematic

I A Novel Class of Strain Measures for Digital Image
Correlation, (with Phil Reu, Dan Turner), Strain: A journal
of experimental mechanics (2015) demonstrates that the
nonlocal strain ∇̃ leads to a robust approximation of the
strain with excellent signal to noise ratio (patent pending)

I Nonlocal strain exploits an integral approximation—uses
points in a region instead of coordinate directions (finite
difference) and doesn’t over-smooth as in polynomial
filtering
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Nonlocal derivative in 1D

d
dx

u(x) = −
∫
R

u(x ′)
d

dx ′
δ(x ′ − x) dx ′

assuming d
dx u is continuous at x

≈ −
∫
R

u(x ′)αε(x ′ − x) dx ′

where ∫
R
αε(x ′ − x) dx ′ = 0

The approximation does not assume that u is differentiable at x !
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Depiction of the nonlocal derivative in 1D
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Beyond one dimension

∇̃u(x)
def
= −

∫
R3

u(x′)⊗αε(x′ − x) dx′

where∫
R3

αε(x′ − x) dx′ = 0
(
αε(x′,x) = −αε(x,x′)

)

I ∇̃u is dimensional-less when u has dimensions of length

I ∇̃ (A x + c) = A∇̃x = A when A and c are a matrix and a
vector
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Tensor product of nonlocal 1D
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Nonlocal strain

I Deformation y(x, t) = x + u(x, t)

I Nonlocal deformation gradient F̃ def
= I + ∇̃u

I Nonlocal strain Ẽ def
= 1

2

(
F̃T F̃− I

)
I If y(x) = R x + c with RT R = I, det R = 1

Ẽ = 0

I Final step: Use quadrature rule to link pixel image data to
integral operators
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Example
Displacement vector field

(a) (b)

True strain (no high frequency portion) & Nonlocal Strain

(a) (b)

~
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Related work

I Corresponding deformation gradient tensor F̄ (Silling,
Epton, Weckner , Xu, Askari 2007)

I ∇̃ is an instance of the weighted nonlocal D∗ω operator (Du,
Gunzburger, Lehoucq, Zhou 2013)

I Why does it work so well?
1. Using all the nearby information instead of restricting to

coordinate axes (as in a finite difference approach)
2. According to Buades, A., Coll, B., and Morel, J. Image

denoising methods. A new nonlocal principle (2015), fine
scale structures are not filtered along with white noise
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Outline

I Digital image correlation (DIC)

I Nonlocal approximation to the strain

I Nonlocal strain can be used to develop constitutive
relations

I Let’s consider Nonlocal thermodynamic restrictions, paper
in progress with Ph.D student Carlos Garavito (UMN math)
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Kinematics

derivative integral
∇u ∇̃u

F = ∇u + I F̃ := ∇̃u + I
1
2

(
FT F− I

) 1
2

(
F̃T F̃− I

)
Compare with the peridynamic deformation state Y

Y〈x′ − x〉 = y′(x′, t)− y′(x, t)
= u(x′, t) + x′ −

(
u(x, t) + x

)
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Alternative Derivation of Nonlocal Balance Laws

I Frame indifference of the absorbed and supplied power
expenditures (invariant under rotations + translations)

wabs(Ω) :=

∫
Ω

∫
R3

t · (v′ − v) dV ′dV “absorbed power”

wsup(Ω) :=

∫
Ω

∫
R3\Ω

(t · v′ − t′ · v) dV ′dV +

∫
Ω

b · v dV

“supplied power”

v′ = v(x, t) = u̇(x, t)
I Resulting power expenditures are additive over disjoint sub

domains
I wabs and wsup introduced by Silling and Lehoucq 2010

14 / 18



Nonlocal Balance Laws

∫
Ω
DΨdV +

∫
Ω

(b− ρü) dV = 0 Linear momentum∫
Ω

∫
R3

(y′ − y)×ΨαdV ′dV = 0 Angular momentum

Ė(Ω)−
∫

Ω

∫
R3

t · (v′ − v) dV ′dV︸ ︷︷ ︸
wabs(Ω) “absorbed power”

= 0 Energy balance

Ψα :=
(
t⊗α

)
α = t , α ·α = 1 , α(x′,x) = −α(x,x′)

DΨ =

∫
R3

(Ψ + Ψ′)αdV ′ =

∫
R3

(t− t′) dV ′
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Entropy imbalance

∫
Ω

1
θ

(
ρ ψ̇ −

∫
R3

Ψ : D∗ v′ dV ′
)

dV ≤ 0

ψ represents the free energy

D∗ v′ = (v′ − v)⊗α

where v′ = v(x, t) = u̇(x, t) and recall

Ψα :=
(
t⊗α

)
α = t , α ·α = 1 , α(x′,x) = −α(x,x′)
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Coleman-Noll procedure in the nonlocal theory

Suppose the free energy ψ depends on F̃ = ∇̃u + I

d
dt
ψ(F̃) =

∂ψ

∂F̃
: ˙̃F

Energy imbalance for nonlocal elasticity∫
Ω

1
θ

(
ρ
∂ψ

∂F̃
: ˙̃F︸ ︷︷ ︸

power

−
∫
R3

Ψ : D∗v′ dV ′︸ ︷︷ ︸
absorbed power

)
dV ≤ 0

This imbalance can be satisfied in two ways
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Two allowable constitutive relations

1. The first alternative explains how to incorporate classical
constitutive models in the nonlocal theory.

P(F̃) = ρ
∂ψ

∂F̃

correspondence-like model is a thermodynamic analogue
of Silling et. al. (2007).

2. The second alternative is strictly nonlocal

I Both classes of peridynamic constitutive relations derived
from entropy balance

I This work generalizes a thermodynamic basis provided by
Silling and Lehoucq (2010) by using a nonlocal analogue
of the deformation gradient
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