
• Tests are run on Blue Waters on up to 32k cores using 5-point

1 billion row Poisson matrices and Block Jacobi ILU

preconditioner.

Solver Performance Results

Current Approaches:

1. MPI_Test: MPI_Test calls during computation

give MPI control of process so it can make progress

on allreduce, but requires code modifications.

2. Progress Threads: Dedicate one or more

threads per node to communication.

Future Approach:

3. Hardware Acceleration: Executes non-blocking

allreduce in hardware, allowing processors to focus

on computation.

Non-blocking Allreduce

• Each method equivalent to PCG in exact arithmetic.

• Implemented custom solvers in PETSc.

Scalable Conjugate Gradient Methods

• Iterative algorithm for solving large sparse systems

of linear equations.

• Preconditioners accelerate convergence.

• Can rearrange PCG to:

•Reduce communication latency using a single

allreduce (L56PCG, PIPECG).

•Overlap communication and computation using

non-blocking allreduces (NBPCG, PIPECG).

• Optimizations introduce vector operations and

initialization costs.

Preconditioned Conjugate Gradient Method (PCG)

Non-blocking Preconditioned Conjugate Gradient Methods for

Extreme-scale Computing
Paul Eller1, William Gropp (Advisor)1

1University of Illinois at Urbana-Champaign

1E. D’Azevedo, V. Eijkhout, and C. Romine. Lapack working note 56: Reducing communication costs in the conjugate gradient algorithm on distributed memory multiprocessors. Technical Report, 1993.
2P. Ghysels and W. Vanroose, Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm. Journal of Parallel Computing, Vol 40, Issue 7, 2014.

To achieve the best performance on extreme-scale systems we need

to develop more scalable method variations. For PCG, dot products

limit scalability because they are a synchronization point. Non-blocking

methods provide potential to hide most of the cost of the allreduce and

avoid synchronization cost due to performance variation across cores.

Abstract Impact of Noise

Noise throughout PCG limits performance

by causing all processes to wait for slowest

process at sync points.

• Computational noise sources: Operating

system processes, error correction, etc.

• Communication noise sources:

Contention in network, varying distances

between nodes, varying size/number of

messages, etc.

Performance models predict ability to

minimize impact of noise may be a key

advantage to non-blocking solvers.

• Non-blocking solvers provide potential to improve performance at

scale due to hiding cost of allreduce and avoiding synchronization.

• Current implementations cannot yet outperform standard PCG.

Conclusions
• Performance models show potential for NBPCG and PIPECG

to be more scalable than PCG.

• Ability to minimize impact of noise may be key benefit.

• Determine memory access and compute costs with modified

STREAM benchmark.

• Model communication with LogGOPS.

• Compute parameters with Netgauge.

• Analyze performance using strong scaling tests.

Performance Modeling

• Merging vector operations avoids cost of extra vector reads.

• Rearranged methods still require additional writes to memory.

• Requires additional computations, but these are cheap

compared to memory accesses.

Merged Vector Operations

This work was performed in collaboration with Mark Hoemmen (Sandia National Laboratories) This work was supported in part by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy award DE-FG02-13ER26138/DE-SC0010049 and in part by the Blue
Waters sustained-petascale computing project, which is supported by the National Science Foundation (award number OCI 07-25070) and the state of Illinois.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Merging three vector operations allows us to use four

vector reads instead of six. The number of vector

writes and computations remains the same.

MPI_Test Approach

Ideal Approach

Runtimes can vary significantly

between different runs. Non-

blocking solvers produce more

consistent results.

Non-blocking allreduce can allow

different processes to make progress

at different rates, minimizing the

impact of noise. Blocking methods

make progress in lockstep.

Currently non-blocking solvers are

not able to efficiently enough overlap

communication and computation to

make up for increased vector

operations cost.

Can reduce cost of vector

operations by over 30% using

merged compared to separate

vector operations.

Model produces accurate

predictions for runtime for PCG.

General Observations

• Non-blocking methods perform better than blocking methods

as the vector operations cost decreases and allreduce cost

increases.

• Non-blocking methods perform well while the MatVec and/or

PC have enough computation to hide the cost of the allreduce.

• NBPCG initially outperforms PIPECG due to lower vector

operations cost.

• PIPECG scales better due to overlapping cost of allreduce with

computation of both the MatVec and PC instead of only one.

L56PCG1 NBPCG PIPECG2

Non-blocking allreduce is not as

efficient as ideal model predicts.

More detailed non-blocking

allreduce models are needed.

SAND2015-6374C

