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1. Brief summary of research, 1992 to 1994, and remarks.

Theoretical estimates for the ill-conditioning of the conformal mapping problems due
to crowding were discussed in [DP1] and [De2] along with several computations. Further
computations were reported in [De3]. Extensions of the ellipse method [DES3] via Faber
series to overcome the ill-conditioning for regions with elongated sections were given in
[DEP]. Use of analyticity conditions to develop methods for more general simply, doubly,
and multiply connected regions was initiated [DP2], [Pf]. Applications of conformal map-
ping to the solution of the Dirichlet problem for the Laplace equation was studied in [Det]
and comparison with iterative methods for integral equations is given in [DH].

A unifying theme in all this work is the use of conjugate-gradient-like methods to
solve (nonsymmetric) linear systems resulting from the discretization of the identity plus
a compact operator. This is also the case in the treatment of the biharmonic equation
below. As a consequence, superlinear convergence rates are achieved and, for the conformal
mapping applications, the matrix-vector multiplication may be done in O(N log N) with
the FFT. Another important aspect of all this work has been the relation of the accuracy
and conditioning of the problem to the geometry of the region.

Overall, we have found that these FFT-based conformal mapping methods can provide
fast, accurate solutions to boundary value problems for the Laplace and the biharmonic
equations for regions in the plane with smooth boundaries. The mathematical tools and
theory are very interesting and touch on many topics of classical and current interest.
However, these methods do suffer from the following drawbacks: unlike, for instance,
methods based on direct integral equations [JS], [Poz], mixed boundary conditions which
arise often in applications are difficult to treat; extensions to complicated or multiply-
connected geometries are not as straight forward as, for instance, integral equation methods
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[GGM], [GKM]; and regions with corners are difficult to treat accurately [De3], [DE2].

2. Summary of research, 1994 to 1995.

The main achievement of this last period of the grant has been the application of
numerical conformal mapping to the solution of the biharmonic equation [CDH]. It is
anticipated that this initial work will lead to many other results and applications. This will
be discussed in sv), below. Some additional progress has been made in the {) comparison
of FFT methods, #1) analysis of methods for simply and doubly connected regions, and #i1)
applications to free boundary problems in ideal flow.

i) Comparison of FFT methods. In [We4] a new formulation of the ellipse method
[DE3] is given. The method is an extension of Wegmann’s original method for the disk
[Wel] and finds the boundary correspondence by a Newton-like method. The Newton
updates are computed as solutions to Riemann-Hilbert problems using the conjugation
operator on the ellipse. Like [Wel|, the method may fail to converge in many cases [De2],
[DE1]. However, [We4] shows that convergence may be achieved by damping of higher
order Fourier coefficients, with only a small loss in speed of convergence. We have applied
this damping to our code for the original disk method [Wel] and found that it now con-
verges in many cases of practical interest, such as spline curves, where it previously failed.
The method requires fewer FFTs per step than the equally reliable discrete interpolation
method [Weg3] and is easier to code. We hope to eventually make Fortran and MATLAB
code available for one or both of these methods.

1) Analysis of methods for simply and doubly connected regions. This is joint work
with John Pfaltzgraff of Chapel Hill. In [DP2], Fornberg’s method [Fol] is extended to
the exterior and doubly-connected case [Fo2]. We have worked out more details of the
operator equations, showing that each of these cases are of the form I + R where R is a
compact operator. Thus the conjugate gradient method converges superlinearly.

i11) Applications to free boundary problems. This is joint work with Alan Elcrat and
Chenglie Hu of Wichita State U. Numerical algorithms were given in [DEH]| for Helmholtz-
Kirchhoff and reentrant jet flow, two classical free boundary problems for ideal flow past an
obstacle. The methods are based on the Levi-Civita representation of the log-hodograph
function and the use of FFTs for successive conjugation similar to the method of Timman
for conformal mapping [DE2].

fv) The biharmonic equation. The initial phase of this work is reported in [CDH].
This is joint work with my graduate student, Mark Horn and with Raymond Chan of the
Chinese University of Hong Kong. Boundary value problems for the biharmonic equa-
tion arise in plane elasticity problems and Stokes flow [GKM], [Musk], [Poz]. Unlike the
Laplace equation, the biharmonic equation is not preserved under conformal transplanta-
tion. However, certain analytic functions can be transplanted to the computational region
as we now decribe. The setup is described in [CDH]. and follows the classical method in
[Musk].




We wish to find the function u satisfying the biharmonic equation,
A’u=0
in a simply connected region 2 in the g;pla.ne, ¢ =1+t € N, with boundary values
u, = Gi,and u, = Gz

given on the boundary I' of Q. u can be represented as

u(¢) = Re(So(s) + x(5)),

where ¢(¢) and x(¢) are analytic functions in  known as the Goursat functions. Letting
G = G + ¢G3, the boundary conditions become

$() +¢¢'(¢) +¥() =G(¢), ¢€T (1)

where 9(¢) = x'(¢). The problem is to find ¢ and ¥ analytic in Q and satifying (1). Let
¢ = f(2) be the conformal map from the unit disk to , fixing f(0). Then then with
d(2) := f(2)/f'(2) and ¢(2) := #(f(2)), etc., equation (1) tra.nspla.nts to the disk as

8(2) + 2d(2)¢'(2) + ¥(z) = G(2), |o| =1. (2)

Let

$(2) = Zakz , ¥(2) = ibkzk.

k=0

The problem is to find the ax’s and the bg’s. For |z| = 1, we have the Fourier series

d(z) =f’(z) Z hi2®, G(2) = i ArzF.

k=—co k=—oc0

Substituting into (2) gives a linear system of equations for the ay’s,

oo
a; + Z k@xhivr—1 = Aj, 1=1,2,3,... (3)
k=1

The bg’s can be easily computed from the ax’s. Note that the sum in (3) can be represented
as the multiplication of the kar’s by an infinite Hankel matrix. (A Hankel matrix is
constant along the back-diagonals.)

Truncating gives our discretization of (3),

n
a; + Z kGrhjpp—1 =44, 7=1,...,n (4)
k=1 ’




By taking real and imaginary parts, (4) may be written in the form

(I+HD)z=r, (5)
where .
z=(Reay,...,Re ay,Im ay,...,Im a,)7,
r=(Re A1,...,Re Ay, Im A;,...,Im A,)7,
D = djag(1,2,...,n,1,2,...,n),
and

_(H, H;
z=(5 %),
H, and H; are real n X n Hankel matrices with the entries constant on the kth back-

diagonals and equal to Re hy and Im hg, respectively. We have solved this system for
several test cases using GCR and GMRES. (5) can be symmetrized to get

where M = DY/?HD'?,y = DYz, and g = Dl/zd In [CDH] we show that M is compact
and solve the normal equations for (6) by conjugate gradient. The matrix-vector multi-
plication can be done in O(NN log N) using FFTs. The iterations converge rapidly. In our
examples, we find numerically that I + M is positive definite (when the discrete Fourier
coefficients hy are set to O for & > n), however we have not been able to prove this in
general. We can prove the following theorem on the superlinear convergence:

Theorem. Let I’ be analytic and A = I + M be positive definite. Then there ezists an
R <1 such that the error vector e, at the qth step of conjugate gradient satisfies

leglla < CU*R leo]| 4

where & is the condition number of the matriz I+ M and C and k are constants depending
only on f.

Somewhat slower superlinear convergence can also be shown for boundaries with less
smoothness. We are planning to present these results in a future paper. We also hope to
prove theorems of the following sort for the accuracy of ¢, the approximation to ¢:

Theorem. Let I' be analytic and let the boundary data G be analytic. Then there is an
R <1 such that

“¢ - ¢n"oo = O(Rn)'

We have extended the above setup to the case where f is the conformal map from an
ellipse E : pz +1/(pz),|2| = 1 to O [DE3], [Weg4]. Now ¢ and 3 have Laurent series

i apz®, P(f(2)) = i bxz*, Jz|=1.

k=—o00 k=—o00




Applying the analyticity conditions from [DE3], [DEP] to ¢ and ¢ gives

ar = p**a_g, b = p**b_.
Substituting into the boundary conditions (2) and eliminating the b’s gives the following
equation for the ar’s, £ > 1,

o0 .
aj(l—p~ ) +p7! Z kak((hijpko1 +p 20Oy 1) = (0™ H by + 07 2*h; 1))
k=1

=A;—pYA_;,i2 L

Truncating this system leads to a discrete system roughly of the form block Hankel plus
Toeplitz. Preconditioned conjugate gradient methods along the lines of [CS], [Ch} should
lead to fast methods.

Further generalizations are possible to cases where f is a Faber series map from a
cross-shaped or spoke-like region [DEP], an annulus, or, perhaps, a multiply-connected
region. In [GGMa| the Sherman-Lauricella equation is solved for spoke-like regions which
provide difficult regions for plane stress and plane strain problems. It is hoped that our
Faber series methods may have some advantages for such extreme regions, however, the
numerics gets increasingly complicated. The classic text [Musk] has a wealth of examples
and material from 2-dimensional elasticity which are ripe for the application of modern
techniques of numerical and computational complex analysis. For instance, Riemann-
Hilbert problems for regions with cracks are also discussed. It should be possible to
combine FFTs, conformal mapping, and Schwarz alternating procedures to compute, for
instance, stress intensity factors efficiently.

3. Summary of travel and other expenses, 1994 to 1995

This covers the period from September, 1994 through the conclusion of the grant on
May 31, 1995: A poster session was presented on this work at the DOE Applied Math
meeting in Albuquerque, 2/27 to 3/1/95. I visited M. Eiermann and E. Wegert at the
University of Freiberg, Freiberg, Germany from 3/19 to 3/22/95 and gave a talk on Nu-
merical conformal mapping methods for multiply-connected regions and some applications.
I visited R. Wegmann at the Max Planck Institute fur Astrophysik in Munich from 3/22
to 3/25/95. From 3/26 to 4/1/95, I attended the conference organized by D. Gaier and
R. Varga on Konstruktive Verfahren in der komplexen Analysis at the Mathematisches
Forschungsinstitut Oberwolfach, Germany and gave an invited talk on joint work with R.
Chan and M. Horn on The numerical solution of the biharmonic equation by conformal
mapping. I also attended the Midwest Numerical Analysis Day organized by K. Atkin-
son and his colleagues at the University of Iowa on 4/29/95 where my PhD student M.
Horn talked on our joint work on the biharmonic equation. The above trips were partially
funded by this grant.

The following related visits were not funded by this grant: I gave an invited expository
talk on An introduction to numerical conformal mapping, at the Mathematics Colloquium,
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University of North Florida, 4/21 /95. I also visited John Pfaltzgraff at Chapel Hill from
6/17/95 to 6/27/95 and Raymond Chan visited me in Wichita from 8/10/95 to 8/25/95.
During these visits further work was done related to this grant.

Since summer 1995 support was also available from NSF EPSCoR grant OSR-9255223
about § 3064 of was rebudgeted to purchase software for use by colleagues and graduate
students. § copies of MATLAB for PCs and 2a MATLAB license for the department SUN
Sparc 5 workstation were purchased. Also 4 Fortran and 2 C++ compilers were purchased
for PCs. MATLAB codes have been used on PCs and the workstation for [CDH]. 1t is
hoped that MATLAB and Fortran versions of our conformal mapping codes may eventually
be made available.
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§1. INTRODUCTION

In this paper we revisit a classical topic in ideal flow hydrodynamics. In particular
we are concerned with two dimensional, incompressible, nonviscous, irrotational steady

flows past obstacles in which a wake or cavity is formed in which the fluid is assumed to

_ be at rest at constant pressure. We will present numerical algorithms for the problems

under discussion and give a sample of computational results.
Consider that a fixed curved obstacle AB (see Figure 1) and a flow in which a wake

or a cavity forms behind AB. We assume the following conditions:

A) The flow is bounded by AB and free streamlines T and L* detaching from A
and B respectively; (Note that, in general, only with boundary layer analysis can we
determine the detaching points.)

B) The flow speed U on X and T* is constant.

C), % and £* estend downstream to the infinity and enclose within it a wake of
constant pressure (Figure 1(a)). (Note, however, that intersection of the free
streamlines is not ezcluded by the model.) Or,

C), X and Z* turn back, the flow forming a reentmnt'jet (Figure 1(b)).

In order to preserve a steady flow, it is assumed, when assumption C), is used, that the
jet is not interrupted by striking the rear of the obstacle, but rather lies on a second
sheet of the flow surface. The flow region is thus simply-connected on a two-sheeted
Riemann surface over the z-plane with infinity of the flow plane (denoted by I) being an
interior point and the point at infinity on the jet (denoted by E) being a boundary point
(Figure 1(b)).

A), B), and C), define the Helmholtz-Kirchhoff flow, herein denoted the H-K flow,
while A), B), C), give the reentrant model, denoted the R-J flow. The “cavitation

number”’,

_Poo'Pc (_Vz--U2
- 2

o= using the Bernoulli equation)
2PV

where P_, P, are the pressure at infinity and the vapor pressure, respectively, and p is
the density of the fluid (V and U are the cavity velocity and the velocity at infinity
respectively). For the H-K model ¢ =0, whereas in real flows o is usually positive and it
is this fact which motivated the invention of various “underpressure models” such as

the R-J model over the years. Any such model must, by necessity, introduce some




3
artificial features into the flow, and cannot be expected to be correct in all details, but

the reentrant jet model is particularly elegant and appealing, and we believe this
justifies our return to this classical idea.

Older work on free streamline models in general and the R-J model in particular, is
surveyed in [1], [2], [3], and [13]. More recently the H-K flow for curved obstacles has
been studied by [6] using ideas in [17], and polygonal obstacles have been studied in [7],
(8], and [9]. The numerical approach for the H-K model presented here is ‘closely
related to various ‘“Fourier Series” methods for finding conformal maps [18], and, in
fact, the functional equation which is iterated is almost identical to that used in
Timman’s method (see [19] and [15]). The method we give is efficient, can be made as
accurate as desired by increasing the number of mesh points, and can be applied to
rather general geometries. Corners can be included using ideas analogous to those in
[16] but we have not included this here. There has been little numerical work for the
reentrant jet model, and none, as far as we know, for general curved geometries. The
procedures that we use may be thought of as complementary to the theoretical work
which has been done in [4] and [5]. It should be remarked, however, that existing
theoretical work is largely restricted to symmetric problems, and existence and
uniqueness questions for the nonsymmetric problems discussed here are still open.

The cavitation number is a free parameter in the R-J model and in a complete
physical description of a flow problem it must be determined as a part of the problem.
We are not concerned with this problem here, but the methods we introduce may be
useful in future work. We mention, for example, [11], [12], and [14].

The paper is organized as follows. Section 2 is devoted to the analytical
formulation of the models. During the process of our work, we found some
inconsistencies in some formulae given in [2] for the R-J model, and consequently, we
have given derivations here. Qur numerical formulation and computed examples are
given respectively in Sections 3 and 5. The convergence of our numerical procedures

will be discussed in section 4.

§2 THE ANALYTICAL REPRESENTATION OF THE MODELS

Let the region in the z-plane occupied by'the fluid be denoted by R. The positive
z-axis is taken in the direction of the incident uniform flow. Let w(z)=p(z,y) +i¥(=z,v)
i=,/—1, be the complex potential (thus y(z,y) is the velocity potential and ¥(z,y) is




4
the stream function of the flow). w(z) is defined up to an additive constant and is

analytic in the interior of R. We may take w(0)=0. The complex velocity is thus ‘(11—‘”- =
g¢’®¥ where ¢ and ¢ are respectively the magnitude and the inclination of the velocity

vector at a point z € R.

(a) The Formulation of H-K Model. The central idea of the Levi-Civita representation
is to introduce the so called logarithmic hodograph variables defined by (assuming the

free streamline velocity to be unity)
Q(2) = iLog(3) = 8(2) +iLog o(2), (2.1)

which is analytic in R. Denote by I’ the semi-circular region in the ¢-plane (¢ = ¢ +ip),
I: |€] <1, n>0. The complex potential w(z) takes the flow region into the full z-plane
slit along the positive z-axis. One then sees that the potential plane is mapped
conformally onto I' by

w(¢) = Mlcos(So)—5 (¢+ 1/ . (2.2)

such that ¢, =1, {(g=-1, (g=0, and (;:= ¢%0 correspond the origin of the w-plane
(Figure 2), where constants M and S, need to be determined.

Now let 2(¢) be the conformal map (whose exact expression is never needed for H-K
model) from I" to R and define w(¢) = Q(z(¢)) (known as Levi-Civita parameterization of
the log-hodograph function defined by (2.1)); this function is real on the real axis since
‘é—‘;’: 1 on the free boundaries. Therefore the reflection principle allows w({) to be
extended analytically to the lower-half unit circle. Applying the Schwarz-Poisson

formula then gives', noting 6(e*) = 6(e"**),

T
1 is e +C 1 is 1-— C
wf¢) = / 0(e) St ds=h / ) o T (23)

To determine w(¢) completely, let I, 0 <1 < L, be arc length measured along the obstacle
AOB from A to B and the inclination of the tangent on the boundary AOB be denoted
by #(l). For a given flow, let I(s) be boundary correspondence between AOB and the

semi-circle, ¢(=e* 0 < s <, in ¢(-plane. Then from

zi(s)) -~ 0<s<S,

o= (2.4

!F[I(s)]. So <s<mw




and (2.3), one gets

0
_ 1-¢2
Q)= 'Q(O_{ 1- 2(cos(s)+(2 (2:5)
with the definition (8(e*):= &F[I(s)])
2(0) = 60 +1(0) =% / IO g (2.6)

Noting that with ¢ =

1-¢> G o,c( # - -9 C(e""—C)
o 1‘2("05(3)“2 C/ (t—C)(t--) =il e ’ (2.7)
we obtain s
w(¢) = 2(¢) +iLog S35° = (2.8)
Ce”0—1

For a given function ¥(l), 2, and hence w, are completely determined once I(s) is
known. First w(0) =0, together with (2.6) and (2.8), implies

U3
Se=0(0) =1 / [i(s)] ds. (2.9)
Noting (2.1), one gets
& - i gl )y (o), (2.10)
from which, (2.2), and (2.8)
g—i- dz =4Me T( Jsin? (——-*:2—'5-'9) sins, (2.11)

or upon integration,

(i) . 40+
I(s) = 4M / & T )5in2(229) singas ' (2.12)

with
=-£-' { / 'T(e )sm( )smsds} 1 (2.13)
In view of (2.6) and (2.9), (2.12) can be thought of as an operator for I(s),

I(s) = Fi(s); g’(‘(s))xsola (214)

where F is biven by (2.12). The analytic formulation for the H-K model is now
completed. .
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(3) The Formulation of R-J Model. ~We will keep the same notation used for H-K

model. The exact meaning can be seen easily from the context. First, the complex
potential w(z) can be made single-valued if the z-plane is cut along the streamline EDI
(see Figure 3). The w-image of the cut flow region is thus a Riemann surface bounded
by the slit positive real axis, i.e., OBEAO (Figure 3(a)). The slits IDE in the upper and
lower parts of the w-plane are respectively images of the upper and lower parts of the
cut IDE in the zplane. Considered as a Riemann surface, the complete w-image
consists of infinitely many such congruent sheéts joined pairwise at the winding point
wp, along DI and DE. Note here also that the “point” D on the upper and lower slits
need not lie on a vertical line since, in general, the circulation around the cavity is not
zero. The w-image region is then mapped into the ¢-plane so that the origin and 9 on
the ¢-plane correspond to the vertices E and O on the w-plane (Figure 3(b)).

The Osgood-Caratheodory extension of the Riemann mapping theorem ensures that
there is a unique analytic function 2(¢) mapping I" conformally onto the flow region such

that 2(0) = E,#(— 1) = B,and z(1) = A. In the vicinity of {;, one has an expansion

() =gt + P 20, (2.15)

where P(¢—¢;) is regular at ¢; and P(0)#0. (P appearing in some of the following
expressions will be tacitly assumed to satisfy similar assumptions.) w(¢):=w(z(()) is
then the desired mapping from I' to the w-image region. Using the Schwarz-Christoffel

transformation extended to Riemann surfaces [10], it can be shown that

dw_ o (@1 =) (¢~ ) (¢~ ¢p) (¢ =T p) (¢~ 1/¢p) (¢~ 1/C p)
M T @

where M is a real constant. We define

Q:(2) = iLog( 1_]7 c(%’- = 6(z) + iLog( —qu ) (2.17)

where V denotes the (constant) speed on the free streamlines. Q,(z) is analytic in the
interior of the flow region except at stagnation point D. It is easily seen that

w(¢) = Q;(2(¢)) is multi-valued and has a following expression at ¢p

w(() = iLO.‘I(C—C_D)'i'P(C—CD)- (2.18)
Then




(€= ¢p)(CE p=1)(¢-¢"0)
(C e D)(CCD _ 1)(Cei50 _ 1) + .Q(C).

f(€) =w({) —iLog({ —{p)— iLog(( —(_CC;;J(;C;)‘ 1)

w(¢) = iLog (2.19)

In fact,

(2.20)

is single-valued and analytic in T (note that the third term of (2.20) has no singularities
in I'). The reason for introduction of the third term-in (2.20) is twofold. First, f(e*)
has the same real part as w(e’®) for 0 <s <, and f is real in (-1,1). f(¢) may, therefore,
be analytically extended to the lower half of the circle and expressed by

1 i is C
fe) =1 / o) T rom T (2.21)

If the branch of w(¢) is chosen so that

gli(s)] -~ 0<s5< S,

Re[w(e™)] = 6(™) ={ (2.22)
w[i(s)] Sg<s<m,
then s
— 0(¢) +iLog S22
f(C) = 'Q(C) +1iLog Ceiso— 1 )

which, together with (2.20), gives (2.19).

The central equations for the R-J model can now be stated as follows:

1) w(¢) =iLog( §); - (2.23)
2) {_qu%%:ﬂ; (2.24)
3) Im{lzrn [(¢—¢;)du ]} H/2m, (2.25)

where H is the prescribed circulation;

M. - i8
4) % =ye Ty (5i150r¢1:¢p) . (2.26)

(=)0 - 1) T p)eep - 1)
R GE i GET R =

with

”(5 Soénlp) =




25+ S [1+d?—2d cos(s + B))*

=8 sins sin
° 2 [1+4h?—2h cos(s — a)]*[1 + k% — 2h cos(s + ))?

assuming {; = he'®, ¢p = de’P; and
5) My =VI{ [ T u(50,¢1,¢p0s} (2.27)
0

Equations (2.23) —(2.25) and (2.27) determine parameters (p, (;, S, M; and hence
the entire flow once the boundary correspondence I(s) is known. Integrating equation

(2.26) defines another functional equation

I(s) = G[I(s); ¥(1(s)) S0 ¢ D) (2.28)

Equations (2.23)-(2.26) can be established as follows. First (2.23) simply states
that the flow velocity at infinity is U. To account for (2.24), we recall that 2(¢) (see
(2.15)) has a pole of exact order two at ¢;, where z/(¢) thus has a residue zero. To prove
(2.25), first we need an expansion of w(z) in the neighborhood of 7, the point at infinity.
Considering any circuit around the cavity, the value of w(z) after such a circuit differs
from its starting value by a complex constant k, which is independent of the path and
the starting point. In particular, the change in value (Im(k)) of ¥ must be non-zero to
account for the jets, while the change in value (Re(k)) of ¢ is equal to the circulation
about the cavity. w(z)—(k/27i)Logz is, therefore, single valued near I, and hence,
since zf_i’rInw' (2)=U, '

w(z) = Uz+7%Logz + P(%), (2.29).

where the coefficient of Logz has been adjusted so that H = § gradpdz = Re(k). One then
has (noting (2.15))

w(Q) =20 = -2t gty PE— 4o (2.30)

Then
Im{}CZe=s CI‘fi—t("} = LHS of (2.25) = Im( —-%) =§'H—1; .

Finally to prove (2.26), we start with (2.16), which can be rewritten as

dw o 1ol (@ =10 (¢ =) (¢~ ¢p) (¢ =T p)(¢¢p=1)(C p—1)
=M - = s - T 11 G




As before . .
g o= p et (232
(2.19) implies
| iwte| e (7= )T p =)+ 1)
(¢ =T p)(e*¢p—1)(e* =)
which, combining (2.31) and (2.32), gives (2.26) with
4
M1=|MI|CI|2. (2.33)
<ol

((2.33) clarifies the formulation given in [2], where the definition of M is not consistent
comparing (23.8) on P371 with (33.11) on P397). The analytic formulation of H-J model
is completed.

Once w(¢) is determined, the forces exerted on the obstacle can be calculated by
. ipV i
X+i¥ = -5~ ?( et %’Cﬁ e, (2.34)

with X and Y representing drag and lift forces respectively. The integral is taken
counterclockwise about any simple circuit containing [¢]=1. For H-K flow (U =V =1),

using residue theorem and the expansion

) = 1.4 i¢w/(0) +5; [iw(0) — ' (0)F] + - - -,
one gets
X +iY =% M{w/'(0)? +i[4w'(0) cosSo - w"(0)]} (2.35)
with
w'(0) = 2'(0) -2 sinS, , w"(0)=0"(0)—2 sin25,,
while for the R-J flow, one has
X =pVJ(U~Vcosy), Y= —pV(UJsiny+H), (2.36)

where v:=w(0) is called the limiting direction, and J is called the jet width, and is
defined by
= e () dw go o _TM
Ji=—&rge dc d¢ = — 7, (2.37)
where the circuit is about the origin.

The free streamline is determined by
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£
q9=n[ Oda 1651, (2.38)
4iSo
with =1 for H-K flow and g =% for the R-J flow.
Finally, we remark that the existence and the uniqueness of the two models with

symmetrical obstacles were studied by J. Serrin [5).

§3 THE NUMERICAL IMPLEMENTATIONS

The integral equations (2.14) and (2.28) are solved numerically using successive
iterations '

i 11(5) = FlIk(); 2(14()), S0, (3.1)

I 41(5) = GUa(s); (1(s)): 80", ¢ 1" ¢p"): (3.2)

In what follows, we will elaborate how these iterations can be done efficiently.
We start with some features shared by both iterations. 2(¢), defined by (2.6), has

the property 2(¢) = 2(¢). In particular, upon analytic continuation to the boundary, one
has

O(c) = 6( ™)y, T(éf) = —~T(*™)), 0gs<m (3.3)

Thus 2r-periodic extension allows u(s) := @(¢**) to be represented by a Fourier series

(o)

u(s) = =Z o'oame"'“’, ' (3.4)

with a__ = @, m € Z. T(e") can then be found by applying conjugation operator X,

u(s) == T(e"‘) = K[u] (s) = - ii::ca'mame"m’ (3.5)
where
1 m>0
O = { 0 m=20
-1 m<0.

A fast Fourier transform (FFT) is employed to implement a discrete version of these.
(See [18] for more details.) We will now describe the iterations in more detail.




The Iteration for H-K Flow.
0). Make an initial guess, l(s), for I(s) at prescribed Fourier points.

Suppose kth approzimation, I,(s), to I(s) is known.
1). Determine

S =% [ wlees
0

2). Compute uy(s) = ¥[li(s)], the approzimation to u(s), using an FFT, with
eztensions made with (8.3), and calculate vy(s) = K[u)(s), the
approzimation to v(s), using the truncated form of (3.5).

8). Update U,(s) at Fourier points with

s E
I y1(s) = 4M, / eﬁ"(a)sin2(€-—*-2s—°-) stngde,
where 0 .
Mo (s) =L { [P sin? s+50 sinsds} — L.
Ke/=7 4 )

4). If|lk 41—l S TOL (prescribed tolerance), exit with numerical boundary
correspondence Iy, , 1 (s). Otherwise, k—k+1 and goto 1).
5). Usely . (s) to compute forces and generate flow net.

The Iteration for R-J Flow.
0) Initialize the boundary correspondence with ly(s) at prescribed Foumer points,

and specify free streamline velocity U (< V :=1) and the ratio 3~ M

Suppose kth approzimation, I,(s), to I(s) is known.
1). Determine the updates of the parameters, ¢ DF = dkeiﬂk,
(= hoe', and So*, with the nonlinear system (2.23)-(2.25)
(five real equations) using I;(s).
2). Compute, using FFT, uy(s) = ¥[l(s)] and vi(s) = Kuc)(s)-
3). Update l,(s) at Fourier points with (see (2.26))

M1

8
I 41(s) = e-uk(l)”.(s; Sokr C1k7 (D")ds,

where 0
T~ -—
M) =VIf { e Ky (s; 5k e pF)dsy L
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4)- If|lk 41~ lk|oo S TOL (prescribed tolerance), ezit with numerical boundary
correspondence I, . ,(s). Otherwise, k—k+1 and goto 1).
5). Usel, . (s) to compute forces and generate flow net.

The following are numerical details shared by both of our algorithms. (&) The
trivial initial guess ly(s)=Ls/w, s€[0,x] is always assumed and a given obstacle is
parametrized in terms of arc length I by a cubic spline. (b) We used the radix-2 ¥ =2M
point FFT routine listed in [22]. (c) The compound trapezoidal formula was chosen to
approximate all integrals involved with Fourier points as integration nodes. (d) With
the converged boundary correspondence and parameters, the equivalence of (2.38),

'3 4
() =zgtn [ O e<e<t, (Q=sptnf MO i<
1 1
were used to generate the free streamlines with some small ¢ > 0, since w'(¢) is singular
at ¢(=0. Although w(¢{) can be computed as 2(¢) was using an FFT, the following
formulae (from (2.8) and (2.19) respectively) are actually used in order to avoid using
8(e™*), which is discontinuous (see (2.4)),

iw(¢) _ jin(e) ¢e0~1
e =e 25, (H-K model)
(—e

i) - 19(¢) (¢-Cp)(¢p- 1)(@;5"; 1) . (B-J model)
(¢ =¢p) (& p-1)(¢-¢")
The Fourier coefficients of £2(¢) are available when exiting from the iteration.
For the H-K flow, we also generated streamlines and- equi-potential lines for our

computed examples using w
dw)=zo+ [ LD qur, (3.6)
o]

with z,=z(w,) appropriately chosen. (3.6) maps a rectilinear grid in the w-plane
conformally onto the flow net in the z-plane. ((w*) is determined by the root of the
equation

¢2—2( cosSy—/w/M )(+1=0

satisfying |¢|< 1. (since the roots ¢, and ¢, satisfy ¢;¢; =1, the above equation has only
one root in |¢|< 1.)

Consider now the R-J model. First, since direct use of (2.23) is inappropriate for
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the numerical computations, The following alternative was actually used

£ (¢r=C)(¢p=1)(¢e 0~ 1) _V
T =T (3.7
(€r=¢p)(¢ p~1)(¢re™)
Equation (2.24) can be written as
2(¢p) +—2 o+ 2 %p 2___Xr __, (3.8)

(- G—Cp Tp1 CI ¢r=Cr ¢Cr-1

and a lengthy calculation shows that equation (2.25) is equivalent to

Imf{ (¢ =) (¢ =< ) (¢ = ¢p) (¢ =L ) (€= D (L p=1) [—1

-+
¢¢r-¢ "¢ r-1)* ‘¢ —eo (39)
1 1 + (p . ¢p 1 __ 2 % ]} =
CI-E'SO ¢r— CD ¢r— CD (p—1"¢Cp-1 ¢ ¢—Cr ¢Cr-V 21rM1

In our actual computations, instead of specifying H, we input the ratio A‘? . After M, is
determined, H can be recovered. This treatment simplifies the nonlmea.r system
considerably. The system (2.23)-(2.25) was solved by nonlinear system solver DNSQE
[21]. The initial guess for the unknowns of the system only needs to be supplied once in
order to carry out the first iteration. The solution of the unknowns in the previous
iteration are then used as the initial guess in the next iteration. There are no specific
requirements for choosing an initial guess in the first iteration except that h<d and
0<a,f < are assumed for ¢; = he'®, {p=de'P. (2.19) can also be used to compute the

limiting direction,

7 =w(0) = 6(0) + zLog / T[i(s)lds — So — 2arg(Cp). " (3.10)

If the obstacle is symmetric, So=%, (;=ih, (p=id, and H=0. Equation (2.25)
then disappears and the rest of the equations in the nonlinear system are simplified
greatly. (The corresponding formulae can be found in (2] except for the equation
(33.17), where factor % is missing in the front of v(s; b,hk).)

Finally, the formulation of R-J model is reduced to the one for H-K model if the

cavitation number o =0. Indeed, since ¢; = ¢p =0, equation (2.16) is reduced to

w'(¢) = MyC3(¢2=1)(¢ — e 0) (¢ — & *5),
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and hence Res [w’(()] =0. Since z(¢) is now analytic at 0, one gets R(es ( ") =0. One

also has w(O)—O and U=V =1, which imply that equations (2.23)-(2.25) are satisfied
automatically. (2.26) then becomes (2.11).

¥4 THE CONVERGENCE OF THE H-K ITERATION

An L,-estimate for I,(s)—i(s) will be given in this section for the H-K iteration. We
recall form of the iteration,

oy 1(s) =41, / e"‘[""k”“”sin2(“2—s°k) sindds (4.1)
where . 0 .
M, =£— { / e-K[W(I")](’)sinZ(%-) sinsds} ~1, (4.2)
and 0 T
=0(0) =1 / F{1(s)] ds. (4.3)
0

Without loss of generality, we may assume 0 <I;(s) <L for all k. We need two lemmas

for the proof of our theorem.

Lemma 4.1 Assume that I,(s), defined by ({.1), satisfies a Lipschitz condition with a

constant independent of k and the curvature of the obstacle, (1) is continuous. Then
| K(Z()1(s) oo, r) S 7Lp Sup  {K()} :=Crg, (4.4)
0<ILL
where L, is the uniform Lipschitz constant.

PROOF: As a consequence of the Poisson representation for 2(¢, 1) [2], we have

KE(I(e) = Im{ (e, 1,)} = Ss / s

ins [ Zl()] = 2[t(s)] Ik(s')_lk(s) ' ,
=5 / I (s") = 1(s) s'—s cos:’ - ZOSS ds’. (4.5)
0 -
It can be shown that smsm is bounded by = for &',s€[o, 7). From (4.5), one

then easily obtains (4.4). o
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Note The estimate (4.4) is also valid for the ezact boundary correspondence I(s) if L, is
a Lipschitz constant for I(s).

Lemma 4.2 Let f(z) be analytic in the unit disk and real on the real azis. Suppose f

can be continuously extended to the boundary and u:= Re[f(e*)]. Then
* [ KTullz o, <) SNl fo, ) (4.6)

PROOF: Denote f(e?) = u(s) + iv(s) with v(s) = K[u](s), and consider the integral

+ 112
-y I,
lzl=1,Imz2>0

where f*(z) denotes the function that extends f(z) to the boundary. Then

I= / [u(s)+iv(s)]2ds=/uz(s)ds—/vz(s)ds+2i/u(s)v(s)ds. (4.7)
0 0 0 0

Let I, be the upper half circle AB, I, the path BCDA, and write I'=I; UT, (see Figure
4), where C = ~¢ and D=¢. We then have

I=%?( [F* @) dz_%_/ [,
The first integral is zero due to the analyticity of the integrand. Therefore
2 2 i0 2
YR F / 10 Y / LG / O

1/ [f( t)]z [f(t)]z dt-i- / [_f(Ee’a)]zde

0

Letting ¢—0, we obtain

1
I = n[fO)P—i / [f(-t)]zt—[f(t)lz i, (4.8)
Since f is real on the real axis, 0
/ u?(s)ds — / v¥(s)ds = #[£(0)]% > 0. a
0 0

Theorem 4.1 Let I,(s) be defined by the iteration procedure (4.1)-(4.3), and let all
assumptions of Lemma 4.1 be satisfied. Then the following estimate holds




I +1=z,0,, < C () Osé‘fs L{"(’)} It =z t0, 1 »

where c(®) ==L POLK 4 dn(1+7)M \}5 eCLK,

v v

PROOQF: From (4.1)-(4.3), (2.9), (2.12), and (2.13), one has

I 41(5) = I(s) = 4M Dy (5) + 4(M . — M) Dy(s),
where . . .
D,(s) = / e—K[W(l")](a)sinz(giZiQ-) sinddg — / eX [W(l)](a)sinz(a -ESO) sinfd¢
0

and 0

Dyfs) = / &KW1z +250) sindds.
From lemma 4.1, . 0 )
ID2 ]k, = { / l [ e KEOIO520F B0y Gingag| 4s)2

3
1 C

= 2,°LK

<eGLK(/ 2ds 2 72 .

V3

D, (s) can be estimated as follows. First, we write Dy(s) as

Dy(s) = / s @+ [ pO)o)es,
0

where .
(9) K[W(lk)](o) 0, h(g) = sinz(e +2SO ) —sinz(g '*-230 :
p(9) = & KIURIE) _ KW 4(6) := sing sinz(g +2$°) .
Then

191k, < ([ ([ lompaasy? + [ 1 [ 1s@a@poras)?

<t ([l pao) [1sopaat sl [ ([lsopa [laorpanast

p=] H 1 + H 2 .
Mean-value theorem implies

/|h(0)[2d6= <$]855~ 50|
Q0

16

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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The RHS of (4.16) can be estimated by (using (2.9), (4.3), the Cauchy-Schwarz

inequality, and mean-value theorem)
|56~ 50] * < 5 { / 211, (5)] - 2UU(s)}ds)?

RGO / 1)~ 1) )

<L sup
™ 0<I<L
<z sup_ (PO~
By Lemma 4.1, =
|9(8)| 2d8 < se’CLK,
From (4.17) and (4.18), 0

l)-‘

26 i g
< osup (Ot 11, | e

2\/. sup {K(I)} ||Ik—I|[L

To estimate H,, note first .
[la@Fas <
0

and

D=

w
Hy<Iplp (| sds)®=lplr, =
2 | zﬁ

Therefore, Lemma 4.2, together with mean-value theorem, gives

121, < VK| {2 () - K[e ] |p, = 2K K2 2]z,

¢ c
< LK) -2, << TPKsup_ (RO} =k,
hence <i<

H, <. CLKgy e} L. =1 .
2_:/—_2’3 OSIPSL{ ()}"k Ing

Combining the results stated by (4.15), (4.19), and (4.20),

194k, S 7T+ 5o P sup_ (O 1= 1le,

The estimate for | M, — M| can be carried out as follows. First,

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)




M= — K9 (I0) . 2,0+ Sg" 2L 0+5
([ sin?(—-2) sinddd }{ [ e K OIsin2(“79) singda}
and, since -
/ ek [W(l)](g)sinz(g +2$°) sinfdf = ZLM'
and o -

. 9/0 . . .
2 / sin?( +2S° ) sinddo = / [1—cos(9+54°)] sinddo =2+ sinSyF,
0

one gets 0
MCCLK

M, -M|{———F——r
| I"1+%sin50"

|D1("f)| .
By essentially the same fashion as in estimating | D1 ||L2, one has
D)< [ 90) a6} a8+ [ 12(0)] a(e)as
° x
< LR sk -5, | / singdf + LK / | K2 (1) - 2()(0)| o
0 0

< 2e7LK| 5% — 50|+ CLK( / 12da)%‘ ( / E{ARZ0[0] zde)%
1] 0

< TO,gglp< L{fc(l)} 1 =1 "L2 + /e Osg%;< L{K.(I)} -1 "L2
G
< (2+4m)e LK

ST otbe PO ey
One then obtains from (4.23), and (4.24)

(¢
2 +n)Me LK
| M- M|< (l”"”) ¢ sup_ {k(O} |la—1]z,
72(1 +7 sing *)0S!s L

Using (4.22), one also has
LCLK

M < .
| kl_4(1+%sin$’0k)

)
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(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

Combining all of the above and assuming, without loss of generality, 0 < S,* <, one

finally gets

411, <4 [Mi[| Dy |, +4 | Mk~ M || Da |,
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2C 1 1
<wle LK(=2=4_—2_) su s} N1, =1,
S wLle (\/5 2\/5)0511751;{ ()}" k ",I:.2

+aMaQ+n) L FLRsup  {xO} |-k,

< C(W)osglp< L{n(l)} = g

Corollary 4.1 Under the assumptions of Theorem 4.1, if, in addition, the obstacle is
such that

C’(&Tf)osgfs L{n(l)} <1, (4.27)

the H-K iteration is linearly convergent.

Remark Theorem 4.1 is in the character of an a posteriori estimate, and can only be
used to guarantee convergence if an a priori estimate for the Lipschitz constants of I,
can be obtained and the curvature satisfies an appropriate inequality. Nevertheless it

has interesting relations with the ezamples reported in the nezt section.

5 COMPUTED EXAMPLES

In this section some numerical results are presented for both models. In addition
to the notations used before, we will use the following abbreviations: NFP (the number
of Fourier points), NIT (the number of iterations), Cp =X/ (%pUZS) (drag coefficients,
where X being the drag force, U being the flow velocity at infinity, and S being the
projected area of the obstacle perpenticular to the stream), ¢ (lift coefficient defined
similarly with Y, the lift force), SER :=|/l; 11—l | (successive iteration error). Two
Fortran programs called TIMKIRCH and NRJET were written to implement all
reported computations. All computations were done on an IBM ES$9121 Model 440 was
used on at Wichita State University in double precision arithmetic. We start with
examples for the H-K flow.

1. FLAT PLATE. The vertical flat plla.tes (Figure 5(a)) was treated by many
authors. An analytic solution is available, if L=1, Cp=2r/(4+7). Our results show

that 28 Fourier points gives results accurate up to 4 decimal digits. Figure 5(b) and
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Figure 5(c) are flows past plates with angle of attack 30° and 60° respectively. The exact
values of Cp and Cj, up to five decimal places are available in, e.g., [6]. The solution
always converged in two iterations with SER =0.1E-15. The conclusion of Theorem 4.1
explains why this happened, since the curvature of a plate is zero everywhere. (The
efficiency of the méthod reported in [6] should be compared for these examples.)

For these flat plate problems the accuracy of the results is solely dominated by the
number of Fourier points used in the computation. In general, it seems true from our
numerical experiments that SER always does to (machine) zero if NIT is big enough as
long as SER is decreasing in the first few iterations. Therefore, the numerical results

can be made as accurate as desired by increasing NFP if the iteration is convergent.

2. SYMMETRIC CIRCULAR ARC. This is also a classic example and some
numerical results were reported in [1]. With break-away angle 55, NFP =210 and
NIT =10, we have SER=0.2E-6 and Cp=0.49859 (results in [6] should be compared
here). Figure 6 shows the arc with break-away angle 45°. This example was also used
to show two strategies that we used to accelerate the convergence. One of them is

under-relaxation process defined by

I +1(5) = (L= )li(s) +€P [L](s), (5.1)

where P is the iteration operator without relaxation and e (0 <&<1) is the relaxation
factor, chosen by trial and error. The other is Aitken’s A% acceleration [20], which is
suitable for any linearly convergent sequence. If I, is the original sequence, the new

one, which accelerates the convergence of I, is defined by

(Ik+1 "Ik)z (52)

e =1, — .
LA PUE T P

The numerical results for this example are presented in the following table, for which
NFP =219

NIT SER of the tleration
original sequence I - 10 0.14x E—6
relazatlion with € = (.89 5 0.66xE—5
Aitken’s A? method 6 ' 0.64x E—6

3. AN ASYMMETRIC WEDGE. This is a.- plate (I =1) bent at the middle with
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lower half inclined at 45° and upper half at 30° (see Figure 7). The problem can not be

solved analytically and the numerical result was reported in [7]. The curvature of the
obstacle is discontinuous at the vertex. In our computation, the obstacle is interpolated
by a cubic spline. The vertex will be “smooth out’’ but with large curvature occurring
near the vertex. A relaxation factor ¢=10.2 was used to improve the behavior of
convergence. With NFP =29 and NIT =50, we got SER=026xE-06, Cp=10.3369
(exact: 0.3370), and G, =0.0738 (exact: 0.0739).

4. SINE CURVE. The parameter form of the curve is given by
z =« sin[r(l-2t)], y=2t-1 t€[0,1].
The curvature of the curve is controlled by parameter «. Figure 8 gives three cases
corresponding to different « and angle of attack. We are interested in how the

curvature affects the number of iterations needed.

5. NACA 23024 AIRFOIL. The airfoil (Figure 9) is inclined at 30° or 15° angle of
attack and the separation is assumed at the trailing edge and near the leading edge. A
relaxation factor € =0.2 was used. (Similar examples reported in [6] should be compared
here.) To achieve an accuracy of SER = 0.1E-5, the typical computational time for these
airfoil problems, using 2!° Fourier points, a relaxation factor and running 50 iterations,

is about 4 CPU seconds without plotting.

The next four examples are for re-entrant jet flows. Unfortunately, there have
been almost no documented numerical results for comparison. Only the obstacles and

free streamlines are shown in the plots presented.

6. FLAT PLATE. Two cases are presented in Figure 10 with angle of attack at
10° (NFP =28, V =05, H=0.12) and 30° (NFP =28, V=06, H =0.08), respectively. In
general, the direction of the lift force experienced by the obstacle depends on strength of
the circulation and the inclination of the obstacle. Again, for a flat plate, whether it is
inclined or mnot, the method converged with SER =E-15 in three iterations, which
strongly suggests that a similar theorem to Theorem 4.1 may exist for R-J model.

Some theoretical results available in [1] can be used here for checking our
numerical results. In particular, for a vertical plate we have ¢;=ic and ¢{p=ih with
h<c<BV:= (1+\/——\/2+2\/5 )/2~0.346014339. By taking the cavitation number
o = 9999999999, we computed (with NFP=210) ¢;=0.34601i and {p=0.34599i, which
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indicates, though not stated in [1], that lim ¢=Ulim h=Bv. On the other hand, we

also verified numerically that as ¢—o, the flow pattern approximates that of H-K flow.

7. SINE CURVE. The parametric expression of the curve is as in the example 4.
Again, we investigated how the curvature of the obstacle affects the convergence. For
all the examples, NFP=2® was used. Figure 11(a): @ =%, angle of attack =30°,
NIT =25, €=09, V=06, H=01979, SER=04E-8. Figure 11(6): a=03, angle of
attack = 60 NIT =30, e=0.6, V =0.6, H =0.1456, SER = 0.5E-5. Figure 1li(c): o =0.5,
angle of attack = 120°, NIT =50, ¢ = 0.6, V = 0.6, H = 0.2208, SER = 0.2E-4.

8. AN ASYMMETRICAL WEDGE. The obstacle was treated in the example 3.
The results correspond to Figure 12 are as follows: NFP =2 NIT =50, ¢=0.2, V =0.5,
H =0.1219, SER = 04E-6.

9. NACA 23024 AIRFOIL. We present two cases (Figure 13) corresponding to
angle of attack 30° and different cavitation numbers. The separation points are the
same as mentioned in the example 5. With ¢ =0.2, and NIT =50, we got approximately
SER = E-5 for both of these two examples. The computational time with NFP = 2'° and
50 iterations is about 10 CPU seconds excluding plotting.
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THE CAPTION OF FIGURES

Flow plane (z-plane): (a) Kirchhoff flow, (b) Reentrant jets.
w-plane and ¢-plane of the H-K flow.
w-plane and ¢-plane of the R-J flow.
Path used in the proof of Lemma 4.2.
H-K flow past a flat plate.
H-K flow past a circular arc with break-away angle 45°.
H-K ﬂpw past an asymmetrical wedge.
H-K flow past a sine curve.
H-K ﬂo.w past an inclined airfoil with fixed separation points.
R-J flow past a flat plate.
R-J flow past a sine curve.

R-J flow past an asymmetrical wedge.

R-J flow past an inclined airfoil with fixed separation points.
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ABSTRACT

Numerical algorithms are presented for two classical free boundary problems for
ideal flow past an obstacle: Helmholtz-Kirchhoff and reentrant jet flows. The Levi-
Civita representation of the log-hodograph function is used in each case to derive
nonlinear integral equation for the boundary correspondence bétween the obstacle and
the parameter domain. The integral equations are solved by a method of successive
conjugation implemented with the fast Fourier transform. For the reentrant jet flow an
additional nonlinear system must be solved to update certain flow parameters at each
iteration. Several examples are computed for polygonal and curvilinear obstacles. A

convergence result is given for the Helmholtz-Kirchhoff flow.
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Figure 1 Flow plane (z-plane): (a) Kirchhoff flow, (b) Re-entrant jets.
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Tigure 4 Path used in the proof of Lecmma 4.2.

(a) NFP=2'0, NIT=2, Cp=10.879803 (exact: 0.879802), Cr,=0.

= ==

(b) NFP=219, NIT=2 - (c) NFP=21°, NIT=2 .
Cp =0.281970 (exact: 0.28197) Cp =0.701177 (exact: 0.70118)
Cr, =0.488387 (exact: 0.48839) Cr,=0.404823 (exact: 0.40482)

Figure 5 H-K flow past a flat plate.
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Figure 6 H-K flow past a circular arc with break-away angle 450,

Figure 7 H-K flow past an asymmetrical wedge.

(a) @ =1, NFP =21°, NIT = 20, SER. = 0.1E-8.
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219, NIT=30, SER=0.9E9. (c) a=3, NFP=2', NIT=100, SER =0.2E-6.
Figuxe 8 H-K flow past a sine curve.

(%) a=1, NFP

Figure 9 I-K flow past an inclined airfoil with fixed scparation points.

Figure 10 R~J flow past a flat plate.

.
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Figure 11 R-J flow past a sine curve.

Figure 12 R-J flow past an asymmetrical wedge.

= 3

Figuze 13 R-J flow past an inclined airfoil with fixed separation points.




gq‘?ow: fted dor PJ&‘VRC‘&“{Q—\

The Numerical Solution of the Biharmonic Equation by Conformal Mapping

Raymond H. Chan€{
Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

Thomas K. DeLillot§ and Mark A. Hornft,
Department of Mathematics and Statistics, Wichita State University,
Wichita, KS 67260-0033

Abstract. The solution to the biharmonic equation in a simply connected region Q in
the plane is computed in terms of the Goursat functions. The boundary conditions are
conformally transplanted to the disk with a numerical conformal map. A linear system is
obtained for the Taylor coefficients of the Goursat functions. The coefficient matrix of the
linear system can be put in the form I 4+ K where K is the discretization of a compact
operator. K can be thought of as the composition of a block Hankel matrix with a diagonal
matrix. The compactness leads to clustering of eigenvalues and the Hankel structure yields
a matrix-vector multiplication cost of O(NN log N). Thus if the conjugate gradient method
is applied to the system then superlinear convergence will be obtained. Numerical results
are given to illustrate the spectrum clustering and superlinear convergence.

Key words. Biharmonic equation, numerical conformal mapping, Hankel matrices.
AMS subject classifications. 30C30, 31A30, 65E05
Abbreviated title. The Biharmonic Equation

1. Introduction. Boundary value problems for the biharmonic equation in two
dimensions arise in the computation of the Airy stress function for plane stress problems
[KK], [Mik], [Musk], and in steady Stokes flow of highly viscous fluids [MT, Chap. 22|,
[Poz]. Integral equations methods are a popular choice for the numerical solution of these
equations [GGMal, [MG], [K, and references there], [Poz]. The application of conformal
mapping to this problem, though classical, is less well known [KK], [Musk]. Unlike the
Laplace equation, the biharmonic equation is not preserved under conformal transplan-
tation. However, a biharmonic function and its boundary values can be represented in
terms of the analytic Goursat functions and this representation can be transplanted with a
conformal map to a computational region, such as a disk, an ellipse, or an annulus, where
the boundary value problem can be solved more easily.

In this paper, we consider simply-connected regions with analytic boundaries and use
the unit disk as our computational region. In our examples, the conformal map f from
the unit disk to the region is either known explictly or approximated numerically. The

¢ This author’s research was partially supported by HKRGC grant CUHK316/94E.
Email address: rchan@math.cuhk.hk

+ This author’s research was partially supported by U. S. Department of Energy grant
DE-FGO02-92ER25124 and National Science Foundation EPSCoR grant OSR-9255223.

§ Email address: delillo@twsuvm.uc.twsu.edu

1 Email address: mhorn@twsuvm.uc.twsu.edu
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boundary conditions for the biharmonic function are then transplanted by f to the disk
and a linear system for the Taylor coefficients of the Goursat functions in the disk is
obtained and solved efficiently by conjugate-gradient-like methods. If the boundary of the
target region is smooth enough (analytic in our examples), the continuous problem can be
posed as a compact operator acting on some appropriate Banach space. This will lead to
a clustering of the spectrum and hence superlinear convergence.

We expect to be able to generalize this work to cases where the conformal map f is a
Faber series map from an ellipse, cross-shaped or spoke-like region as in [DE] and [DEP). If
the target region has elongated sections, the conformal map from the disk may be severely
ill-conditioned and an ellipse or cross-shaped region may provide a better computational
region. In [GGMa] the Sherman-Lauricella equation is solved for spoke-like regions which
provide difficult regions for plane stress and plane strain problems. We anticipate that
our Faber series methods may have advantages for such highly distorted regions. In cases
for which the target region is not too distorted, so that the map from the disk is not
too severely ill-conditioned, our method may also have some advantages. For instance,
if several boundary value problems have to be solved for the same region, so that the
conformal map only has to be computed once, our method, which is based on the fast
Fourier transform (FFT), will give accurate answers in O(IV log V) for moderate sized N.
The methods in [GGMa] use the fast multipole method, which costs only O(IV), but with
a large constant, so that large IV are required in practice for it to be faster than the FFT.
Below, we will use the FFT-based numerical conformal mapping method given in [Weg].
Introductions to numerical conformal mapping can be found in [Ga] and [He].

The outline of the paper is as follows. In section 2, we discuss the solution of boundary
value problems for the biharmonic equation in terms of Goursat functions and the confor-
mal map from the disk to the plane region. In section 3, we discuss the special structure
of the exact linear system. We will see that the coefficient matrix of the (infinite) linear
system is of the form I + HD where I is the identity matrix, D a diagonal matrix, and
H is a block Hankel matrix. It will be seen that HD actually can be represented as a
compact operator with a one dimensional null space. This system can be symmetrized
and solved (up to the null vector) using the conjugate gradient method. In section 4,
we formulate the discrete problem. We will show how the cqnjugate gradient method is
applied to the discrete system and how the matrix-vector multiplication can be carried
out in O(N log N). In section 5, we give several numerical examples which illustrate the
spectrum clustering, the superlinear convergence, and the discretization error.

2. The biharmonic equation. Here we will follow the presentation in [KK] and
[Musk]. We wish to find the Airy stress function u for a simply connected region {1 with
a smooth boundary I' in the ¢-plane. Then u satisfies the biharmonic equation,

A%y =0

for ¢ = 7+ ¢ € Q. The two fundamental boundary value problems in elasticity seek to
find v given the external stresses or external displacements on the boundary T'. Both of
these problems amount to specifying

U, =G; and uy=G2
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on I'. The function v can be represented as

u(s) = Re(S(<) + x(<)),

where ¢(¢) and x(¢) are analytic functions in ) known as the Goursat functions. Letting
G = G} + tG3, the boundary conditions for the first fundamental problem become

$() +s8'(5) +P() =G(¢), ¢ €T Y

where ¥(¢) = x’(¢). The second fundamental problem leads to similar conditions. For
simplicity, in this paper, we will only concentrate on the first boundary conditions (1).

We remark that ¢(¢) and 9(¢) are not unique. In fact, if ¢(¢) and ¥(¢) represent any
solution of the problem, then so does ¢(¢) + Ci¢ + v and ¥(¢) ++', where CER, v € C,
and 4’ € C. Thus, the constants C and + must be specified for uniqueness of ¢ These
constants are determined below.

The problem at this point is to find ¢ and ¢ analytic in O and satifying (1). One
approach is to represent ¢ and 1 as Cauchy-type integrals of a density function on I'. This
leads to the Sherman-Lauricella equation, a Fredholm integral equation for the density
function which can be solved efficiently by the fast multipole method [GGMa]. In this
paper, we propose to solve it by using numerical conformal mapping coupled with the
conjugate gradient method.

Let ¢ = f(z) be the conformal map from the unit disk to {2, fixing f (0) =0 € Q. Then
with d(2) := f(2)/(2), $(2) := ¢(f(2)),%(2) := $(f(2)), and G(2) := G(f(2)), equation
(1) transplants to the disk as

$(2) + d(2)¢'(2) + ¥(2) = G(2), [2| =1. (2)
Let

o0
= Z axz® and P(z Z brz®.
k=1 k=0
Notice that the sum for ¢ begins at k = 1. This fixes the constant 4 mentioned above for
uniqueness by requiring ¢(0) = ap = 0. After transplanting to the disk, the other constant
is determined by setting Im(ay/f’ ( )) =0.
The problem is to find the ax’s and the bi’s. For |z| = 1, define the Fourier series

d(2) == f(2)/F(2) z hie2®, G(z) = i AxzF.

=—00 k=—o0

Substituting into (2) gives a linear system of equations for the ax’s and bz’s,

a,+2kakhk+, l_A,, §=1,2,3,. (3)
k—-

_ o0

bj + Z k@ghg—j—1 =A_j;, 7=0,1,2,... (4)
k=1




If (3) is solved for the ax’s, then the bx’s can be easily computed from (4). Thus, in this
paper, we will concentrate on an efficient method for solving (3).

There is also 2 moment condition to be satisfied by the data. After transplantation
to the disk, this condition can be stated as Re| flzl=1 G(2)f'(2)dz] = 0. This moment
condition will assure the existence of a solution. Our assumption is that all data studied
in this paper satisfy this equation.

Before proceeding, it should be noted that if our boundary data corresponds to G =0
then the only possible (nonzero) choice for ¢ is ¢(z) = Cif(z), for some nonzero C €
R. This implies that the null space corresponding to the infinite system in (3) is one
dimensional and the eigenvector spanning this space is given by ax = cx,k = 1,2,3,---
where f(z) = pe; ckzF.

3. Compact Operators. Taking real and imaginary parts of equation (3) gives us

o0 .

a; + ) k(Metj—10% + Trj—18k) = Bj,  §=1,2,3,... (4)
k=1
oo

Bi+ D k(Terj—10k — Tkaj—18e) = Cj,  1=1,2,3,... (5)
k=1

where we have used the notation ax = ax + 10k, hx = 1Mk + t7k, and Ax = B + 1Ck.
For visualization purposes, we combine equations (4) and (5) into a doubly infinite matrix
equation in which the two sums are combined into a block Hankel matrix composed with
a diagonal matrix. In fact, (4) and (5) can be written as

(Ioo + Hr,ooDoo)Q’-.'l‘ Hi,ooDooé =B (6)
(Ioo - Hr,ooDoo)E+ Hi,oo-Doog_ =C (7)

(5 )Gz 52)(r A)@-@) o

so that

where a = (ah a2,.. ')T’ é = (ﬂl:ﬁ2, . -)T1 ._B_ = (-Bla B2: .. -)T, g_ = (Ch 023 . -)T) Ioo
is the infinite identity matrix, Do, = diag(1,2,...), Hrco is an infinite Hankel matrix
generated by the n, and H; o is an infinite Hankel matrix generated by the .

Now suppose (g, §) represents a solution to (4),(5). Define

o= DY¥’a r e u'B
z= %2‘3 y L= ‘]5420 .

Then (8) can be written as




where M, is given by

1

Moo —Moo I/ZH., ooD1/2 _ I/ZH, oo‘D1/2

Note that M, is symmetric. We would now like to justify the formal manipulations above

and show that M, is a compact operator. This will require the following two preliminary
lemmas.

Lemma 1. Let f be a conformal map from the unit disk to the region Q0 with boundary T'.
Let T' be analytic and

FENFE = 3 he™

k=—o00

Then there exists a C > 0 and R < 1 such that

kel <CRM. (10)

Proof: Since I is analytic, f extends as a bounded, analytic function with f/(z) # 0 for
|2| < 1/R for some R < 1. Let

(e} o0
z) = Z ckz® and 1/f'(2) = Zdjzk.
k=1 j=0
Then there is a ¢ such that |ck|, |dx| < cR*. Further, we have that

fF(e9)/71() =

M

Z ckd e‘(k—J)o

k=137=0

oo o0 (o] o . )
=S apidie + 3 S eiidie

I=17=0 I=0 j=1+41

oo OO . oo o0 _ .
= Z Z cryjdyet? + Z Z cidipie .

=1 j=0 =0 j=1
And so

oo _ (o] _ oo . C.Rl
hal = 13 erasdsl € 3 lewasllds] < B Y R¥ = 22 = CRY, 121,
= = j=0

Similarly

©0
ot =D _cjdirj] S CR!, 120
i=1




Next we show that the entries of M, o, and M; o also decay exponentially fast.

Lemma 2. Under the assumptions of Lemma 1, the (j,k)th entries of M 00 and M; o
decay like crli+¥l for some ¢ > 0 and r < 1.

Proof: We will prove the case for M, o. The case for M; oo follows similarly. Let myg s
denote the (k,7)th entry of M, o,. Then we must have my ; = Vkings+j—1. Therefore

Im,;| = Vkilheyj-1] < Cy/EFRIFH], (11)

Let r = (1+ R)/2 < 1. Since

lim 1(r)”--co
z—00 /T R -

there exists an lg > 0 such that
VIRV <, VI >,

Let
VI,

¢ = max
0<i<lo

we then see that
ViRt <erf, WI>o0.

The lemma now follows directly from (11).
Lemma 2 gives us the following theorem and corollary.

Theorem 1. My, : I* = 1! and M;o : I* — I are compact operators where for y €1,

oo
Mooy =Y Vkinksj—1ve, §=1,2,... (12)
. k=1
oo
Mr,oog = z V kj'fk-i-j—-lyka .7 =1, 2: see (13)
k=1 )

Proof: We will prove the theorem for M, . As above, M; o follows similarly. Define the
. finite rank operators {My .} = {D,l,/ g, DY %} by

n
Mr,ng = Z V kjnk-i—j—ly@, 7=12,...,n (14)
k=1

for all y = (v1,¥2,.-.) € I'. The goal is to show that M, o, can be approximated in the
uniform norm by these finite rank operators.




If A = (ax;) is an infinite matrix, then the induced ! operator norm is given by

lA]| = sup )  |a;].

J k=1
From the geometric decay of Lemma 2 we may write
oo . o0
Z |mg,;| < Cr? Zr" <G, 7>1.
k=1 k=1

Consequently,

(o] oo
1Mr,00 = Ml = sup { D [mi,ntsly Y Imemsal,- - }
k=1 k=1

< Cysup{r*tl,rm+2 )
= C’lr"'“ — 0.

Thus, M, o is compact as desired.

Corollary 1. Mo, is compact on I* x I* where for z = (z?,z?) €1* x 1!,

= . (15)

oo o0
1 > VEInksj—1zty + Y VEIVeri-15%k
M. = — k=1 k=1
[>2] o0 1 0
kzl \/Eynk+j—193 E— kz \/H’rk-;-j—ﬂ?zk
— =1

The norm on I* x I* is given by

el i = llz*le + |l2®]]i: .

Proof: From the notation of the problem, it is easily verified that
”M°° - Mn”l"x"‘ —<- 2(”M"1°° - ern“n' + ”Miroo - M‘.nn”ll)
The result follows from Theorem 1.

Next, we discuss the discretization of (9). Since M, is compact and the matrix-vector
multiplications can be performed rapidly, we will solve the discrete (normal) equations
using the conjugate gradient method on the subspace orthogonal to the one dimensional
null space. '

4. Discretization. The natural choice for discretization is to truncate the sums
given in (15) to n. This will lead to finite linear systems. However, in practice one

7




does not have the exact Fourier coefficients. If the conformal map f is known explic-
itly, we approximate the h’s by evaluating d(z) := f(2)/f'(z) at the N Fourier points,
z = eI%/N 5 =0,1,---,N — 1, and taking the N—point FFT. In this case, the discrete
hi,+++yhn, decay at a similar rate to the exact hy (see [He, eq. 13.2-8, p. 20].) How-
ever, since the discrete Fourier coefficients are N — periodic,hy = hx_p, the remaining

coefficients hny1 = A—nt1,°°,hn—1 = h_y do not decay geometrically. We just set
hg = 0,k > n to insure geometric decay. When f is not known exactly, we use a numerical
approximation at the IV Fourier points given by Wegmann’s method, as discussed in sec-
tion 5, and again set hy =0 for k =n+1,---,N — 1. To avoid introducing more notation,
we now let hg, Ag, etc., denote the discrete Fourier coefficients.

The notation is similar to the infinite dimensional case:

D, = diag(1,2,...,n),

a = (Re ay,...,Re a,)7, B =(Imay,...,Im )T,

B = (Re A1,...,Re A,)T, C=(Im Ay,...,Im A,)T,
x=<p:/'~’g) ,=< 3/21_9_)
L Drlr,/zg_ » L 71‘/2.9,- )

_ Hr,n Hi,n
Hn B <H‘.,n —H”:n> .

Then analogously to the infinite system we have

and

oo (Men Min \ _ (D ?HWDi*  D*H:.D”
T\ Min M) }z/2Hi,nD}t/2 - rlt/Z-Hi,n vz )

so that our problem is to solve
(In + Mp)z =1. ' (16)

Recall that z is subject to a uniqueness condition. Since f/(0) > 0, the condition
Im(a;/f'(0)) = O implies zp41 = 0. Clearly, the (k,j)th entry of M, and M;, are
respectively v/kjRe(hr+;) and EjIm(hits).

We have computed the eigenvalues of M,, for the examples in section 5 using MAT-
LAB. Note that if x is an eigenvalue of My, then —u is also an eigenvalue. We also find
that —1 is an eigenvalue of M,, the rest of the eigenvalues decay rapidly to 0. The decay is
- due to the compactness of My, shown in Corollary 1 of section 3. By [An]|, the spectrum
of M, is near to the spectrum of M, for large n. We solve the normal equations, since
(In + M,)? is positive semidefinite.

Recall that our infinite system (9) has a one dimensional null space. The null space
is generated by the null vector,

v=(~Im c1,—\/§Im c2,. ..,—\/I;Im Ck,...,Re cl,\/iRe C2yee- ,\/ic_Re Cky.- .)T.




In the discrete case, we find that for large n
v = (=Im ¢;,—v2Im ¢3,...,—/nIm c,, Re ¢1,v/2Re c,,...,\/nRe cn)T

satisfies (I, + My,)v = 0 to within discretization error using our discrete approximations
to the cx’s. It follows that our solution can be decomposed as

y=z+ov. (17)

It is clear from the conjugate gradient algorithm that if the initial guess z(©) is in vl
then subsequent iterates z(@) will be in v1. We take z(® = 0. Conjugate gradient will
then find z € vt and imposing the uniqueness condition yn4; = 0 will give us §. By
the results above, (I, + M,)? restricted to vl is positive definite for sufficiently large
n, since the second smallest eigenvalue of I, + My, is bounded away from 0. Therefore
conjugate gradient can be applied to the normal equations and the method will converge
superlinearly.

In addition, we note that the matrix-vector multiplication involving the matrix M,
can be done efficiently using FFTs. In fact, for any n—vector y, since D, is diagonal,

D,I,/ 2y can be computed in n operations. Moreover, the matrix-vector multiplication Hy,

where H is the Hankel matrix H,, or Hy;, can be computed in O(N log N) by using
FFTs. The idea is to compute Tg = (HJ)(Jy) where J is the reversion matrix with ones
on the anti-diagonal and T is a Toeplitz matrix (constant along diagonals). Next we imbed

T into a matrix C as follows
C = T X
“\Xx T1T)°

where X is chosen to make C circulant. Now C can be decomposed as C = F*AF where
F is the N—point Fourier matrix and A is a diagonal matrix containing the eigenvalues of
C. For more details on fast methods for Hankel and Toeplitz matrices see, e.g., [CN].

5. Numerical examples. In examples (i), (i%), and (ii%) below, we choose ¢(¢) = ¢3,
and x(¢) = 0. Then u(n,p) = n* — p*. Note that, for the conformal map f(z) from the
disk, ¢(z) = (f(2))? and the boundary values at the mesh points are given by G(z) =
4(Ref(2))3 — i4(Imf(2))3. The discretization error in the Tables is given by the sup norm

i2mi [Ny _ i2ni N
05%%—-1”(8 ) — én(e s

where ¢, is our nth degree approximation to ¢. For analytic curves, this error behaves
similarly to the discretization error for the conformal map which is O(R¥) with R as given
in Lemma 1; see [De] for a discussion of the accuracy of the conformal mapping methods.

We use the FFT method in [Weg] to find the approximate conformal map f. Wegmann
approximates f by solving a discrete interpolation problem on the unit disk: Find Ppi1(2),
a polynomial of degree n + 1, such that Pn+1(e"2"j/N) el,j=0,...,N —1 with the
normalization that the P,;(0) is fixed and the coefficients of z and 2"l are real. He
computes this polynomial by applying a Newton method to find a discrete approximation
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to the boundary correspondence. The linear systems may be solved by the conjugate
gradient method in O(N log N) per step. Quadratic convergence of the Newton iterations
and convergence of the polynomial to the conformal map as N increases for sufficiently
smooth I is proven. Numerical experiments indicate that this method is among the most
robust and reliable of the Fourier series methods on the disk [De].

For examples where the exact f is known, d = f/f7 may be computed with either the
exact or the approximate f. This seems to make little difference in the calculations if the
approximate f is sufficiently accurate. The timings for finding the approximate f using
[Weg] are usually only slightly greater than the timings given in the Tables for solving the
boundary value problem for a given N.

In the Tables below, iter is the number of iterations required by conjugate gradient
for the residuals to be < 104, The computations were done in double precision on the
WSU IBM ES9121 Model 440 mainframe computer and some rough timings are given.
(Figures 1 and 2 and some of our examples were also done in MATLAB with similar
results.) Stopping the iterations after the level of discretization error has been achieved
could further reduce the timings, though not dramatically for these examples of very fast
superlinear convergence. Note that as the minor-to-major axis ratio o of a region decreases
toward O (that is, as R in Lemma 1 increases to 1), the convergence rate of the conjugate
gradient method decreases. In our examples below, R may be taken as the distance from
the origin to the nearest singularity of f and the connection with the minor-to-major
aspect ratio is known [De]. In a future paper we will show how the convergence rate of the
conjugate gradient method depends on the smoothness of the boundary T.

Other cases were also tried successfully, such as the simple examples in [KK]. If the
biharmonic function has too simple a Goursat representation, the iterations may converge
artificially fast. For instance, if u(n, u) = 72 + np + u?, then ¢(2) = f(2) and convergence
is achieved in one iteration if NV is large enough. On the other hand, note that the 5-to-1
ellipse in [GGMa, Table 3] is a difficult region for the conformal map from the disk and
would require large V.

Ezample (i), inverted ellipse. Here T : 7(c) = p(o)e*® where p(0) = \/1 — (1 — o?)sin’c
for 0 < 0 < 27 and 0 < e < 1. This map is derived by inverting the familiar Joukowski
map to the exterior of an ellipse. We have

202
f(e) = 1+a—(1-a)z?

See Table 1 for results. Notice how #¢ter is roughly independent of N but increases with «
in our examples.
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Table 1. Inverted ellipse with exact map and conjugate gradient

a N discr. error iter CPU sec
.8 32 5-1078 4 2
.8 64 5-10~12 3 2
.8 128 5.-10"14 3 2
4 64 .1.10-8 6 2
4 128 6.10"° 4 2
4 256 1-10-13 4 .3
2 128 2-1078 6 .3
2 256 2.10"8 4 3
2 512 3.10—13 4 4

FEzample (i), arctanh. Here the conformal map is given by f(2) = log((1+rz2)/(1—r2)),0 <
r < 1, which maps the disk to increasingly elongated, cigar-shaped regions as r 1 1.
This map is perhaps the simplest example of a conformal map exhibiting the exponential
crowding [De]. Figure 1 shows roughly 7 outlying eigenvalues for & = .49 so that one
would expect conjugate gradient to take about 7 iterations to converge as shown in Table
2. Also note the semilog plot in Figure 2 that shows the superlinear convergence behavior

of the residuals.

Table 2. Arctanh regions with exact map and conjugate gradient

a(r) N discr. error iter CPU sec
.84 (.5) 32 4-1074 6 2
.84 (.5) 64 4.107° 4 2
.84 (.5) 128 1-10718 4 2
49 (.9) 128 6.1073 8 4
.49 (.9) 256 4.1078 6 3
49 (.9) 512 4-10712 6 5
29 (.99) 512 4-1071 14 9
29 (.99) 1024 .2.10™2 13 1.5
29 (.99) 2048 61078 12 2.8
29 (.99) 4096 1-107° 12 6.0

Ezample (ii5), ellipse. Here T : 4(0) = p(0)e’® where p(0) = a/\/1— (1 —a?)cos?c for
0<o0<2r and 0 < @ < 1. The exact map can be given in terms of an elliptic integral.
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This case also exhibits exponential crowding [De]. We approximate the f with [Weg].

Table 3. Ellipses with approximate map and conjugate gradient

o N discr. error iter CPU sec
.8 32 J7-1073 6 2
.8 64 .5.10"% 4 2
.8 128 4.10712 3 2
.8 256 2.10"13 3 3
6 128 6-.10"32 8 .3
6 256 .3-10"8 6 4
.6 512 2-.10712 3 4
4 2048 - 3-104 10 2.6
4 4006 JT.10"10 8 4.6
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Figure captions

Figure 1. Eigenvalue distribution for example ii).

Figure 2. Convergence of residuals for 10 iterations of the conjugate gradient method
for example ii).
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