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ABSTRACT: We explore the phase structure of nonlinear sigma models with target spaces
corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic
genus-2 Riemann surface. The continuum theory of these models can be approximated by
a lattice spin system which we simulate using Monte Carlo methods. The target space pos-
sesses interesting geometric and topological properties which are reflected in novel features
of the sigma model. In particular, we observe a topological phase transition at a criti-
cal temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless
phase transition in the O(2) model [1, 2]. Unlike in the O(2) case, there are many different
types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical
mechanics of a proliferating number of hadron species. Below the critical temperature the
spins cluster around six special points in the target space known as Weierstrass points.
The diversity of compact hyperbolic manifolds suggests that our model is only the sim-
plest example of a broad class of statistical mechanical models whose main features can be
understood essentially in geometric terms.
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1 Introduction

The breaking of continuous symmetries is accompanied by the appearance of massless
Goldstone modes. Fluctuations of these modes destroy long-range order at any finite tem-
perature in dimensions d < 2; this is the statement of the Mermin-Wagner theorem. This
does not exclude the possibility of “quasi long-range order”, however, in which correlators
exhibit power-law, rather exponential decay. This behavior is associated with a continuous
phase transition driven by the proliferation of topological defects [3].

We can expect topological transitions to occur in a spin system whenever the funda-
mental group of the spin space is non-trivial. The XY model is the simplest example in
which the spin space of S! has fundamental group m(S!) = Z. This is to be compared
with the O(3)-invariant Heisenberg model which has 71 (S?) = 0 and thus does not exhibit
quasi-long-range order in d < 2. The first non-trivial example with two-dimensional spin
space is the torus T? = S! x S! which is essentially two decoupled copies of the XY model.
A more interesting possibility is to consider the two-handled double torus which we study
in this paper.

The novelty of the double torus is that, as a consequence of Gauss-Bonnet theorem, it
admits a metric with constant negative curvature,

/\/ﬁR:2—2g<0, (1.1)

since g = 2. The double torus can be obtained as a quotient of the two dimensional hyper-
bolic plane Hy by a discrete subgroup of SO(2,1). Another significant difference between



these models and their ¢ = 0 and g = 1 counterparts is the existence of preferred points
in the manifold, an example of which are the Weierstrass points. To define a Weierstrass
point, first consider the set of all meromorphic functions which are holomorphic away from a
specified point P. P is a Weierstrass point if this set contains more meromorphic functions
with poles at P of some specific order than are guaranteed by the Riemann-Roch theo-
rem [4]. We will work with a particularly simple double torus corresponding to a tiling of
the hyperbolic plane by regular octagons in which opposite sides are identified. The Weier-
strass points corresponding to this particular identification are known [4] to be the center
of the octagon together with the midpoints of the sides, as well as the point determined by
the eight identified vertices. We will refer to this manifold as the regular double torus.

In this paper we will perform Monte-Carlo simulations of the double torus model on
a two dimensional square lattice with periodic boundary conditions. We will study the
impact of the non-standard topological and geometric properties of this model on the
phase transition. Our results can be summarized as follows:

e There is a phase transition at a finite temperature T, =~ 0.58. Numerical results are
consistent with a second order phase transition, but do not exclude the possibility
that the phase transition is of infinite order as in the XY model. Our numerical
results also do not exclude the possibility of additional phase transitions.

e For temperatures slightly below T, the spins cluster around one of six special points
on the regular double torus, which can be defined as fixed points of the discrete
automorphism group. This is quite unlike the XY model, in which there are no
preferred points in the target space.

e For temperatures somewhat above T, vortices of many different topological types
appear, their numbers following thermal distributions as one would predict from
treating them as free, independent excitations.

The organization of the rest of this paper is as follows. In section 2, we explain the general
framework of lattice models with hyperbolic quotients as target spaces and specify the
precise model we are interested in. In section 3 we briefly describe our numerical methods
and then explain our results, focusing on the points just summarized. We end with a
discussion including future directions in section 4.

2 Theory

2.1 Hyperbolic tilings and quotient spaces

The n-dimensional hyperbolic space H,, is a maximally symmetric Euclidean manifold
of constant negative curvature. It can be embedded in RY™ in a manifestly SO(1,n)

symmetric manner,
1=X2-X2—...— X2, (2.1)

More precisely, H,, is the upper sheet of the two-sheeted hyperboloid described by eq. (2.1).
We consider non-linear sigma models with target space given by the quotient space H,, /T



where T is a discrete subgroup of the orientation-preserving isometries SO™(1,n). In the
‘upstairs’ picture we can think of the covering space H,, as being tiled or tessellated by
cells, each of which is related to the fundamental cell by the action of a particular element
of the group I'. We only consider orientation-preserving isometries so that the resulting
topological space is orientable. Moreover, we assume that I' is freely acting so that the
resulting quotient space does not have fixed points.

The Poincaré ball model maps the hyperboloid H,, to the unit ball where the induced
metric is given by

ds* = dr® 4+ r2dQ% ). (2.2)

=

We will mostly focus on the n = 2 case where the isometries SO*(1,2) are realized as
fractional linear transformations acting on the unit disc in C,

az 4+ ¢

cz+a’ (2:3)
with a,b € C such that |a|? — |c|> = 1. The geodesics in the Poincaré coordinates are
either diameters or arcs of circles intersecting orthogonally with the boundary of the disc.
These geodesics form the edges of the regular hyperbolic polygons which tile Hs. A tiling by
regular p-gons with ¢ polygons meeting at each vertex exists provided that 1/p+1/q < 1/2.
We only consider tilings with p even so that the sides of each polygon can be paired. The
subset v C I' of group elements which pair the sides of the polygon are the generators of
I'. Note that v is not a group and the group I' is obtained by multiplying the elements of
~ in all possible ways,

F={g1-gnlgic}. (2.4)

In this way we construct a compact orientable surface with constant negative curvature.
Note that this procedure will not always lead to a smooth surface. For example in the case
of the {8, 8} tessellation we obtain the genus-2 hyperbolic Riemann surface, i.e. the regular
double torus, but the surface obtained from the {4,5} tessellation must necessarily have
cusps in order to be consistent with the Gauss-Bonnet theorem.

2.2 Lattice Hamiltonian

The general structure of the Hamiltonians we consider is

H = Z h(sz,sy) - (2.5)
(z,y)

Here x and y label sites on the square lattice, and the sum is over nearest neighbors. s,
and s, are the ‘spins,” in other words s, € M for each point x on the lattice. For the XY
model M = S' and the standard approach is to replace it with a real variable 6,, with 6,
and 0, + 27 identified. The function h(s;,s,) is a map M x M — R which is bounded
below, usually with its lower bound attained precisely when s, = s,. For the XY model,
the standard choice is

h(0z,0y) =1 —cos(b, — 0,) . (2.6)



Figure 1. The fundamental domain of the {8, 8} tessellation showing the 8 nearest-neighbor cells.

A convenient choice for some purposes is the so-called ‘Villain approximation’ [5],
h(0y,6,) = min(0, + 27n — 6,)?, (2.7)
nez

where the sum over n enforces 27 periodicity of 6, and 6,. The natural generalization of
eq. (2.7) to the quotient Hy/I" is

h(5z, 5y) = min [y(s;) — 5,17, (2.8)

~el
with s, and s, points on Hy C RY2. The right-hand side is non-negative because any two
points on the hyperboloid Hy are spacelike separated.

An important feature of the Villain energy function (2.7) is that it is continuous but
only piecewise smooth: there is a discontinuity in its first derivative along the locus where
0, — 0y, = mmod27. Likewise, the generalization (2.8) is continuous but only piecewise
smooth: for example, if s, is at the origin of the fundamental octagon, then h(s;, sy) has
discontinuities in one of its first derivatives at the boundaries of all images of that octagon.
An intrinsic coordinate system with periodically defined coordinates is not known, so it
is non-trivial to give an explicit, smooth map analogous to (2.6). We will therefore work
strictly with the ‘Villain’ form (2.8), which we may equivalently define as

h(sz,sy) = min [=27y(s,) - 5] , (2.9)
yer
where the dot product is in the standard mostly plus flat metric on R%2.

The equivalent forms (2.8) and (2.9) are not suited to computation unless we can
efficiently restrict the minimization to a small subset of the elements in I'. For the XY
model, this is easy to do: one requires 6,6, € (—m,7), and then the only images one needs
to consider are 6, and 6, £+ 2r. We must ask: if O C Hy is the fundamental octagon, and



Figure 2. The subgraph of the {8,8} tiling of Hy corresponding to the group elements ~,;. Each
node of the graph corresponds to an octagon in the tiling. Connected nodes correspond to octagons
which share an edge. The octagons corresponding to group elements Y01, Y02, Y03, Yo4, and g5 all
share a vertex with the 1, 7o, and 5 octagons.

we require sg, s, € O, then what is the analogous subset of images v(s;) that we must
minimize over to be sure of finding the minimum value of —v(s;) - 5,7

A sufficiently large subset of I' for the regular double torus is the identity element
together with elements « such that v(O) touches the fundamental octagon either along a
side or at a corner. This subset, call it I'49, has 49 such elements, which can be constructed
as follows. A standard basis

{70;71)72573)743’}/5776777} — {O[l,Bl,&Q,ﬁQ,QIl,ﬁfl,agl, 51} (210)

for I satisfies the identity Hi7:O ~v; = 1. The 49 group elements of interest are 1 together with

k
ik = [ [vimoas (2.11)
i=j
where j < k. Counting the distinct ~y; is straightforward if we consider how they move
us along the dual graph to the octagonal tiling of Hs, a subgraph of which is shown in
figure 2. A simple topological way to define I'49 is that it is the minimal set of generators
er, 1(0) D 5D 0.
A simulation of the torus model amounts to designing a Markov chain process which

such that an open set S C Hy can be found satisfying |

results in random sampling of configurations from a probability distribution proportional

“H/T where H is given by (2.5) and h is given equivalently by (2.8) or (2.9). To

to e
build such a process, one must be able to choose spins s, in the fundamental octagon with
uniform probability with respect to the natural measure inherited from Hs and one must
be able to evaluate all instances of h(s,,sy), which in practice is done by restricting the

minimization in (2.8) or (2.9) to v € I'yg.
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Figure 3. Average energy (left) and heat capacity (right) for the {8,8} model in the Villain
approximation. There is clear evidence of a phase transition at T, ~ 0.58. We show these plots in
terms of the reduced temperature t = (T — T.)/Te.

3 Simulation results

For temperatures T slightly smaller than the critical temperature where the specific heat
is maximized (figure 3), we notice a surprising clustering of spins around one of the six
Weierstrass points (figure 4).! Infrared fluctuations must eventually cause the system to
explore all possible regions of phase space, so for sufficiently large lattices we would expect
to see a distribution of spins which is democratic among the Weierstrass points at any fixed
temperature. Thus the interesting point is that a spatial correlation length is large enough
near the critical temperature so that essentially our whole lattice clusters in the vicinity of
one Weierstrass point.

Above the critical temperature a topological phase transition occurs as a result of
of vortex proliferation. Unlike the XY-model where the winding of a loop of spins is
characterized by an integer, the winding of spins in the double torus model is characterized
by an operator, which can be determined in the following way: for any consecutive pair of
spins s1 and so in the loop we find the image of so that is closest to s;. This amounts to
finding the operator O, € I'y9 that minimizes the distance s - (Ot). If the loop consists of
spins si, ..., Sy, the operator corresponding to the loop is

Oloop = 081782 T Osn71,snosn,s1 . (31)

We map this operator to a number by taking the matrix trace.

The fact that the winding is characterized by a non-abelian matrix rather than a
number suggests that we should consider loops which are larger than the elementary 1 x 1
plaquette. If we define vortices with respect to a single plaquette, then only finitely many

We observe only one pronounced local maximum for the specific heat. Thus we only have evidence
for one critical temperature where a phase transition may occur. It is interesting, however, that there are
many types of vortices, and it is not impossible that there could be many phase transitions as a result.
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Figure 4. Preferred spin configurations below critical temperature.

possible group elements can appear in Oj,op but we may see a bigger set of group elements if
we consider larger loops. Indeed, this intuition is corroborated by simulations (see figure 5)
in which we see that the number of vortices of fixed trace increases as we increase the loop
size from 1 x 1 to 3 x 3. The logarithmic scale on these plots indicates that vortices are
proliferating approximately according to Boltzmann statistics; that is,

NV = No exp(—E/T) (32)

for some Ny and E. Moreover, the vortices appear for all temperatures, not just for 7" > T..
A closer examination of the occurrence of vortices is worthwhile. We refer to figure 5
and table 1. The main features to note are:

e The exponential law (3.2) persists up to temperatures comparable to T,.. At larger
temperatures, we see some evidence of saturation, where the number of vortices
per site becomes greater than 1/10, and continuing to follow (3.2) would eventually
conflict with the limit Ny /L? < 1. Provisionally then, we think of (3.2) as a dilute
gas approximation.

e We found it useful to distinguish vortices based on the trace of their monodromy
matrix Ojgop. Bigger tr Opop presumably means a larger vortex with bigger energy.
But we cannot conclude that all vortices with the same tr Oj,qp have the same energy.
Most likely, each trace class includes vortices of different energies, and the vortices
with the lowest energies dominate Ny in that particular trace class. To see this
explicitly we plot in figure 6 the number of different O, observed with constant
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Figure 5. Number vortices of fixed trace using plaquettes of size 1 x 1 (left), 2 x 2 (right) and
3 x 3 (center).

tr Opop as a function of temperature for 1 x 1 plaquettes. We see that as tr Ojoop =
22.37 begins to proliferate the number of observed Oy, increases in turn as expected.
However, we also see that as tr O, = 134.9 vortices begin to appear a second,
unexpected, jump in the number of tr Oy, = 22.37 vortices also occurs. We interpret
this increase to hint that a population of tr Oj,op, = 22.37 have higher energy. Thus
tr Ojp0p is correlated with energy but does not uniquely determine it.

The energies E determined by fitting Ny in a given trace class to the Boltzmann
form (3.2) do not change much when we go from 1 x 1 plaquettes to 2 x 2 to 3 x 3.
Typical changes were on order 5% to 10% or less. The energy for tr Ojpop = 340.7
changes more than this between 1 x1 and 2 x 2, but in this case the sample size for 1 x1
plaquettes is very small. The robustness of F encourages the view that we can treat
vortices in a dilute gas approximation. But we should be a little cautious about values
of E since the fits are sometimes shaky due to noisy data and a limited range of 1/7.



1 x 1 plaquettes
Ny E  Trace
25.0 3.09 223
7.51 6.05 135.
4.18-1073 4.18  341.

3 x 3 plaquettes

Ny E Trace

78.9 3.06 22.3

3.41-10% 6.92 135.

481. 6.21 341.

9 % 2 plaquettes 185. 6.32 453.

N I Trace 2.16-10% 7.91 791.
585 311 993 396. 8.09 1.22-103
558 6.62 135, 1.06-10° 9.00 1.43-10°
949, 6.74 341, 1.76 6.48 1.99-103
130 593 453, 155. 7.98 2.65-103
100, 7.36 791, 31.1 7.86 3.40-103
124 741 1.22-10° 249. 849 3.73-10°
454 716 1.43-10° 1.63 6.20 4.62-10°
0.0233 515 1.99-10° 208 8.08 559-10°
0.755 6.56 2.65- 103 253 695 6.02-10°
0.0749 5.86 3.40- 10° 293  7.65 7.13-10°

Table 1. Fit parameters for plaquettes of size 1 x 1, 2 x 2 and 3 x 3. The emphasized values
correspond to the data in figure 5.

e The prefactor Ny, which we think of as related to the exponential of the fugacity, is
conspicuously different for some trace classes from 1 x 1 plaquettes to 2 x 2 to 3 x 3.
When Ny rises drastically with plaquette size, as it does for trace 340.7 vortices
from 1 x 1 to 2 x 2 plaquettes, we presume that a contributing effect is that the
characteristic size of the vortex is too big for the smaller plaquette size to have a
significant chance of capturing the full vorticity. Monotonic increase in Ny is to be
expected as plaquette size increases, because if the vortex is small, a large plaquette
will enclose it completely at several different positions, all of which contribute to Ny.

We suspect that a low-temperature expansion in terms of a dilute gas of vortices
of many types can be used to account for much of the dynamics up to T.. It would be
interesting to pursue this further because it could be a low-dimensional analog to the hadron
gas treatment of the low-temperature phase of QCD, inspired originally by Hagedorn’s
statistical bootstrap approach [6]. Optimistically, one might try to estimate 7T, in terms
of the growth in the number of different vortices with energy. The number of different
vortex types increases exponentially with the length on Hy between an initial point s and
its image Ojoops. (This is essentially the statement that the area enclosed by a circle in
Hy increases exponentially with its radius.) So it is not implausible that the number of
different vortex types also increases exponentially with energy, facilitating a Hagedorn-style
argument where a “vortex gas” eventually reaches a maximum possible temperature, which
is T.. However, with our present numerical results, we cannot go very far in developing such
a vortex gas model, for two main reasons. First, we don’t have a clear notion of the energy
of a vortex; certainly the trace tr Ojoop is only very loosely correlated with the energy E
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Figure 6. The number of different Ojoop elements for fixed trace observed in the system as a
function of temperature from trace 22.37 (blue) to trace 340 (red).

as obtained from a fit of Ny to the Boltzmann form (3.2) for vortices in a given trace
class. Moreover, the standard Kosterlitz-Thouless treatment of the XY model discourages
us from thinking that the energy of a single vortex is well-defined in isolation. Second, the
coefficients Ny are not really accessible from numerics. Ideally they should correlate with
the number of vortices of a given energy.

We have suggested a Hagedorn treatment of vortices because the proliferation of vortex
types with the length of the corresponding cycle on Hs is reminiscent of the exponential
growth of hadron species with mass. This viewpoint leads naturally to the parametriza-
tion (3.2), which approximately captures the population of different types of vortices over
a significant temperature range. However, a simple alternative point of view is that vor-
tices with small winding always dominate, and that 7T, occurs naturally when the dilute
gas approximation for the smallest vortices breaks down, and the larger vortices have at
most a modest effect on the thermodynamics. Referring to the 1 x 1 plaquette results in
figure 5, the dilute gas approximation for the smallest vortices does break down for T" only
modestly below T.

Finally, it would be interesting to explore the relationship of our work with [12]
who study the Kosterlitz-Thouless transition in the context of a two-dimensional dilute

bose gase.

4 Discussion and future directions

We have considered one of an infinite number of tilings of the hyperbolic plane Hy. The
{8,8} is simplest tiling which yields a smooth target manifold but it is straightforward to
generalize to hyperbolic Riemann surfaces of higher genera. It will also be interesting to
consider quotients of hyperbolic space H,, with n > 2. In addition, it would be interesting to
consider deformations in the moduli space of the double torus which correspond to changing
the geodesic lengths of the various cycles. Under such conditions one can expect a splitting
of the phase transition into different critical temperatures corresponding to each cycle.

~10 -



A natural question to ask is whether the sigma models studied in this paper have well-
defined UV completions. A general nonlinear sigma model is a theory of maps R? — T
with Euclidean action functional given by

1
S = S / Az g 00 X, 0" X, . (4.1)
The beta function for this theory can be computed perturbatively in the coupling parameter
p. Assuming that 7' is an n-dimensional maximally symmetric space for simplicity,

12

Buw = o/ Ry, + %RM,\GPRVAU” + O(a?), o = ;—O, (4.2)
™
oo’ o/
'y = =28, 4,
ﬁ(a) dlog 1 ng /Bw/ ( 3)

Here p and v are curved indices for the target manifold 7" and « is a flat index for the
worldsheet R?. Taking T = H,,, the one-loop beta function is given by 3(a/) = (n — 1)a’?,
which naively suggests a Landau pole in the UV. It is conceivable, however, that the
higher derivative terms can balance the one-loop contribution and drive the theory to a
conformal fixed point [7, 8]. There also exist arguments [9] that models defined on compact
targets with negative curvature H, /T" should possess conformal fixed points which arise
from the competition between infrared freedom at weak coupling and the discrete spectrum
of the Laplacian at strong coupling. It is therefore an important open problem to verify
if the transition seen in simulations is of the second-order type, and to ascertain if critical
fluctuations are described by a conformal field theory. Answering this delicate question
may require moving beyond the Villain approximation, by finding an exact embedding of
hyperbolic double torus.

In this paper we have focused on the models with constant negative curvature and
compact target H,, /T’ but it is also interesting to consider models on the non-compact space
H,,. The non-compactness of the target makes it difficult to define correlation functions
and a non-standard basis of observables may be required [10].

Finally, the modern conformal bootstrap techniques have so far only been applied to
theories with compact symmetry groups. It would be very interesting to extend them to
the non-compact groups.
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A Coordinate systems

The following coordinate system covers the upper sheet of Hy in R1?2,

XY = coshp, (A.1)
X' =sinhpcos ¢, (A.2)
X2 =sinhpsin¢. (A.3)

The induced metric and area element are given by
ds* = dp? + sinh? pd¢?, dA = sinh pdpd¢. (A.4)

To sample points uniformly from the Poincaré disk we note that the form of the area
element implies that we should choose ¢ uniformly in [0,27] and choose the cumulative
distribution function v to be uniformly distributed in [0, 1], where

B J§ sinh p'dp’ _ coshp—1
~ Jyesinhp/dp  coshpe—1°

(A.5)
Therefore
p =cosh (1 —v +wcoshp,). (A.6)

In practice, to sample points uniformly from the fundamental octagon we draw points
uniformly from the Poincaré disk by picking ¢ and v uniformly and then rejecting points
that do not lie within the octagon.

Defining x = sinh p cos ¢ and y = sinh p sin ¢ we obtain the alternative parametrization

X0 = /1422442, (A7)
Xt =z, (A.8)
X2=y. (A.9)

The Poincaré disc model is obtained by defining r = tanh(p/2). Then

4
ds® = m(dr2 + r2d6?). (A.10)

and the relationship with the rectangular coordinates is
1
r = tanh [2 cosh™ (V1 + 22 +92)| , (A.11)

f = tan~! (%) . (A.12)

B Parametrization of hyperbolic polygons
The solutions to the geodesic equation on the Poincaré disc are given by [11]
cos ¢ cosh s — Rsin ¢ sinh s

Tr(Ss) = )
(5) V1+ R%coshs+ R
y(s) = R cos ¢ sinh s + sin ¢ cosh s

vV1+ R2coshs+ R ’

(B.1)

- 12 —



where s € (—o0,+00). These functions define arcs on the Poincaré disc with the radius
R and the centers at the point zp = v1+ R?cos¢, yo = V1 + R?sin¢, lying beyond
the unit disc. In order to draw a the fundamental polygon corresponding to the {p,q}
tessellation, we need to fix the angle o between any two neighboring lines from the center
of the disk to the vertices to be o« = 27/p and the distance a of all the vertices from the
center of the disk to be such that the interior angles are 27/q. We will assume the corners
of the polygon are at the points aexp (ikw/2), aexpi(a + knw/2). The lines connecting
these points are given by the solutions to the geodesic solutions specified above. The p
geodesics corresponding to the p exterior circles are completely specified by radii R+ and

angles ¢4 + k7 /2, given by [11]
T, \*!
(1 + a2>

For the {8,8} tessellation we require a = 2~ /4 and ¢+ with k = 0,1, 3.

Ry =—/T? + (1 —a?)2, ¢4 = arctan , Ty =a®+tan(a—m/4).

(B.2)

C Simulation details

Our simulation uses a Metropolis-Hastings algorithm to produce equilibrium configurations
of spins on an L x L periodic lattice with the energy given by the Villain approximation
in eq. (2.9). Our simulation proceeds in steps wherein at each step a spin, s, at site z,
is selected uniformly from the L? spins on the lattice. A new spin, s, is then drawn
independently and at random from the {8, 8} tessellation using the procedure established
in section A. The spin s, is replaced by s/ with probability,

P,_,o = min {l,exp [—1{ Z (h(sh,sy) — h(sx,sy))] } (C.1)

<x,y>

where h is defined by eq. (2.9). The results presented in this paper are for simulations of
L =50 and L = 100 lattices.

To ensure that the systems have reached equilibrium we run the simulation for t., =
2 x 10 steps before beginning to take data. For the L = 50 lattices this amounts to
teq/L? = 8 x 10° steps per lattice site while for the L = 100 system this is ¢.,/L? = 2 x 10°
steps per lattice site. Since t.q/ L? establishes the relevant timescale for the system, the
fact that we see no finite size effects in either the energy or the heat capacity gives us
confidence that the systems are well equilibrated. Note, that at temperatures lower than
those presented here we do indeed see such finite size effects.

After having equilibrated the system we output the state of the system every At = 108
steps which amounts to At/L? = 400 steps per site for the L = 50 system. We assume
that At is sufficiently long such that the system is allowed to uniformly sample equilibrium
configurations. Again, the lack of finite size effects between the L = 50 and L = 100
systems supports this claim. We then compute the energy by averaging over 200 such
states and the heat capacity by calculating Cy = T~2(§E?) where the latter quantity is
the variance of the energy.
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