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" Glass Composite Materials (GCM): versatile “any I, getter” universal waste forms
with high flexibility of the materials incorporated: metals, zeolites, MOFs etc.

= Glass compositions of Ag containing iodine-getter materials need to have melting
points below 558°C (Agl melting point)

= Targeted waste form:

v' compact and monolithic

v mechanically, thermally, and chemically stable

v able to sustain compatibility with various repository conditions

= Current Effort: determine degradation rates of the GCM (Glass + Agl)

through Single Pass Flow Through Testing at variable temperatures and pH;
and durability with PCT and MCC-1 testing

T.M.Nenoff, SNL Global 2015
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“as received” Agl-MOR from ORNL,
for INL CH;-l Deep Bed Studies

SEM-EDS, yellow =1, blue = Ag
ORNL Agl-MOR As-Received Pellet in Cross-Section

T.M.Nenoff, SNL Global 2015
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Composition Bi-Zn-B Bi-Zn-Si

[ Sintering temperature ] 500°C [ 525°C-550°C

Glass/Agl-MOR pellet sintered
50°C.

Aoaid L4 ) g
\"“

Crystallinity Crystallizing Vitreous o high density at

Density 5.65 g cc! 5.8 gcc'!

*purchased from Ferro Corporation

Glass Zn0O Bi,0, Al,O, B,0, Si0,
mole wt. mole wt. mole wt. mole wt. mole wt.
% % % % % % % % % %
EG 2998 | 14.2 7.8 20.2 63.4 57.8 23.4 7.8 5.4
EG2922 | 49.7 | 269 18.9 58.6 31.3 14.5

T.M.Nenoff, SNL Global 2015
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Agl-GCM preparation* for reference technology studies: *J. Amer. Ceram. Soc. 2011,
. : 94(8), 2412-2419.
Agl-MOR ground in mortar and pestle, then sieved to <150 pum.

Mixed at 20wt% with 80 wt% glass powder and additional 5wt% Ag flake. US Patent 8,262,950; 2012
Uniaxially dry pressed at 70 Mpa in steel die.
Heated at 2°C/min in air to 550°C for 1hr to sinter.

Final composition: 76.2%glass, 19% lodine loaded Ag-MOR, 4.8% Ag

**PCT: The Product Consistency Test (PCT),
designation: C 1285 — 02. ASTM Int., West

Bi-Si-Zn 550°C sintering glass POT Test : 90°C. 7 davs. DI Conshohocken, PA, 2008.
High durability/stability est™: » 7 days, DI water

Composition B | Na | Si ‘ K | ZIn | Ag | | Bi

BiSH Glass 06 | 34 | 19 |[ 14 | 06 | 00 | o002 | 008
BiSK-Glass (75wi% Agl (25 wi%) 07 | 15 | 19 | 08 | 12 | 00 | 23 |ow
BiSKGlass (80wi% Ag-MOR(0wt%)Ag(+5ut) | 86 | 65 | 56 | 04 | 005 | 77 | 03 | 22

T.M.Nenoff, SNL Global 2015
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Mowry, C.D.; Brady, P.V.; Garino, T.J.; Nenoff, T.M.

“Development and Durability Testing of a Low Temperature Sintering Bi-Si-Zn Oxide
Glass Composite Material (GCM) 2°I Waste Form”

J. Amer. Ceram. Soc., 2015, in press, DOI: 10.1111/jace.13751; and references within

Data indicates that:
- The Bi—Si—Zn oxide glass matrix dissolves at a relatively low rate;

- The Bi—Si—Zn oxide glass matrix limits the release of iodine from the
otherwise relatively fast degrading (as-received) Agl-MOR getter material;

-The formation of an amorphous Agl phase results in the limitation of 10dine
release.

- Durability of GCM and release rates approximate those of established nuclear
waste glasses, or analogues such as basaltic glass. This suggests that the Bi—Si—
Zn GCM is a viable candidate as a repository iodine waste form.

T.M.Nenoff, SNL Global 2015
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PCT, ASTM C1285 : samples of each composition were ground with mortar and pestle
and sieved to between 75 and 150 m for Product Consistency Testing (PCT). 1 g of
ground material along with 10 ml of deionized water were placed in a PTFE container that
was then sealed and heated at 90°C for 1 week.

MCC-1, ASTM C1220: monolithic leach testing. A pellet of nominally 1 cm in diameter
and 2 mm thick with flat surfaces ground to 600 grit along with 20 ml of deionized water
were placed in a PTFE container that was then sealed and heated at 90°C for 1 week.

Duplicate samples were run for each composition for both types of test. A blank that
contained only deionized water was also run at the same time.

SPFT, PCT and MCC-1 effluents were analyzed for pH, and for Ag, I, Zn, and Si by
ICP-MS in semi-quantitative mode and represent the average of 12 readings

T.M.Nenoff, SNL Global 2015
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For SPFT*, for Agl-GCM:

Ground to ~ 3 microns (glass)

0.1 - 1 grams in 2 ml vol reactor

Surface area = 2.6 (glass), 21 (Agl-MOR) m?/g
Temps: 25 and 60°C

pH:3.3-7.5

Test solutions pumped:

220 — 340 ml/day (2.5—-3.9x 107 L/s)

Upflow Configuration; water-jacketed and
thermostatted for high temperature runs.

*Chou and Wollast (1985; American Journal of Science)

Elemental release rates were calculated as: Rate (mol/cm?’s) = DC,P/SAf
DC, 1s the molarity of the 1’th component measured in the effluent;
P is the pumping rate(L/s); and SA is the material surface area (cm?); and
f is the mass fraction of Si in the Bi-Si glass (0.234) or Agl-Mordenite (0.3).

T.M.Nenoff, SNL Global 2015
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Steady-state LRM Glass Degradation Rates

Black/White Symbols— Inter-laboratory
comparison of LRM glass dissolution
rates of Ebert (2005) Interlaboratory
Study of the Reproducibility of the Single-
Pass Flow-Through Test Method:

& Measuring the Dissolution Rate of LRM
- BB y Glass at 70°C And pH 10, Argonne
National Laboratory. ANL0-5/33.

O 0 ] Red Symbols — Sandia-measured LRM
1 © @@ - glass dissolution rates.

- . :

1 G it ]

0 [T Lo oo 001 !EE! .........
0 10 20 30 40
Si, mg/L Sandia Single Pass Flow
LRM glass surface area = 0.021 m?/g (0.2 g); Input solution Through Tests I-Droduc?:-
- 0.004 molal LiCl/0.003 molal LiOH; ¢/S = 3.1 x 107, Accurate Glass Dissolution
9.0 x 107, and 1.0 x 10~ m/s; effluent Si - 0.3 to 7 ppm. Rates

T.M.Nenoff, SNL Global 2015
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pH- and temperature-dependent degradation
rates of Bi-Si-Zn oxide glass (filled symbols)

=l

%, -2 o) at 25 (squares) and 60°C (circles), calculated
E 60°C from silica release in SPFT testing.

©

iz

s 3t ° Unfilled symbols are literature values™® for
= m (W I CSG glass at 25°C and interpolated values
S 29°L. °

> at 60°C. (*Knauss, et.al, MRS Symp. Proc. 1990, 176, 371)
a

()]

-

Bi-Si glass degrades at similar rates and by similar
mechanisms to nuclear waste analogue glasses

T.M.Nenoff, SNL Global 2015
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Si and Zn release occurred far from equilibrium but did not reach steady state.
Release of both elements increases with decreasing pH.
Concentration of Zn and Si released increased by a factor of 12 — 20, from pH 6.5 - 2.5.\
Alteration phase formations - Eulytite (B1,(S10,),)

T.M.Nenoff, SNL Global 2015
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1.E-02

-Zn

neutral -=si

pH --Ag

1603 | bk
©O-Zn

low gsi
PH oag Molar release rates of GCM components
1E-04 | &l for representative pH ~2.3 (open symbols)
' and pH ~6.6 (filled symbols) SPFT runs.

Zn —red; Si — blue; Ag — black; I — green.
1.E-05 | § S E : ::

1.E-06

Release rate (mol/m2d)

0 25 50 75 100 125
Time (d)

- Low & near neutral: Zn releases faster than Si

- Low pH: both Zn and Si release more rapidly than Ag and .

- Ag and I in effluent levels were similar at each pH and for each I loading.

- Steady-state I effluent levels ranged from 3 — 12 ppb.

There is no strong link between durability (dissolution) and Iodine loading.
T.M.Nenoff, SNL Global 2015
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Utilizing ORNL Agl-MOR with 8.7 wt% I,

Two GCM samples synthesized with greater wt % Agl-MOR than SNL baseline tests (20 wt %):
22 wt % AgI-MOR in GCM (78 wt% glass)
25 wt % AgI-MOR in GCM (75wt% glass)

Glass (density of 5.8 g/cm?),
1.1% Ag flake for 20 wt % Agl-MOR sample,
1.21 % Ag flake for the 22 wt % sample, and to maintain Ag flake : AgI-MOR ratio
1.375% Ag flake for the 25 wt % sample

Sintered 550 °C, 1 hr.

GCM samples ground to < 38 um
BET surface areas of sintered GCM = 3.43 m?/g, 6.4m?/g respectively

T.M.Nenoff, SNL Global 2015
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Agl MOR Wt% Loading Levels Effect on

GCM Durability

1250

1000

750

Intensity(Counts)

500

[ORNL AgIMOR 25% GCM.MDI] ORNL AgIMOR 25% GCM
[ORNL AgIMOR 22% GCM.MDI] ORNL AgIMOR 22% GCM

Il M‘_“ 25 wt% Agl-MOR GCM

;

%M

22 wt% Agl-MOR GCM

T.M.Nenoff, SN

00-035-1007> Eulytite - Bis(SiO4)3

00-049-0924> Mordenite - NazAlSit35029 °

00-009-0374> lodargyrite - Agl

E L

Standardless Quantitative Data

Matrix Correction ZAF

; Elenent Wt At Het Inte Bgnd

0K ig@.28 56 B& 50 58 3.99

ZnL 5.3 4.05 13. 89 8,55
ALK 2.37 4.37 17 .90 11 .88

1 | SiK 9.77 17.31 86.21 12.23
BiM B3 64 12 .78 172 .01 1138

] AgL 6.62 3.06 18.53 9.63
IL 4.00 1.57 8.99 8.87

25 wt% Agl-MOR GCM

Focused/point EDS indicates majority
of Agl located in brightly colored silicon
rich crystallites

Global 2015
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Ag (unfilled symbols) and I (filled symbols) effluent levels as a function of time.
Circles = 22% Agl-MOR; triangles = 25% Agl-MOR.

GCM durability 1s independent of Agl-MOR wt % loading

T.M.Nenoff, SNL Global 2015
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Utilizing ORNL Agl-MOR with 8.7 wt% I,

GCM samples synthesized with three Agl-MOR particle sizes:
<350 pm
<150 pm
<75 pm

Baseline particle size in earlier studies <150 um
GCM: 20 wt % AgI-MOR + 80 wt% Glass + 1.1 wt% Ag flake
Sintered 550 °C, at 5°C/min, 1 hr.

GCM samples ground to < 38 mm
BET surface areas of sintered GCM = 3.45 m?/g, 2.94 m?/g, and 3.61 m?/g, respectively

T.M.Nenoff, SNL Global 2015
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[TJG 422144 -350micron AGIMOR. MDI| TJG 42214A -350micran AgIMOR Bulk Morphology does not Change Wlth partlcle Slze
(b) (©

[TJG 422148 -150micron AgIMOR MDI] TJG 422148 -150micron AgIMOR
[TJG 42214C -78micran AgIMOR MDI] TIG 42214C -75micron AglMOR

Top to bottom XRD patterns: < 350 um, < 150 um, and < 75 um.

3000

2500

Intensity(Counts)

2000

e S
. e B

Standardless Quantitative Data

I

Matriz Correction: ZAF

Element Utz A% Net Inte  Band

oK 19.04 5198 134.77 FERE]

= ALK ENH 529 77,08 28010

z - = & R i : ik 16.27 25:30  363.38 27.74

E = 2 o] SR = 00-049-0924> Mordenite - NazAlSi133029 Bilf 8.38 1011 363.05 26.90

s =3 = 2 o - 2z & & = gl 5003 3191 2337
Z id = o g b 2011 0.7 1162 2086
T | o 2 FeK .33 0.30 3.53 15.23
I I Znk 4.82 322 22.67 10.88

00-035-1007> Eulytite - Bis(SiOu)a
P 8%

00-009-0374> lodargyrite - Agl

a0 50 [

(100)
(02)
110)|

(101}

@11)
@10
@21)
(400)
—103) 422)

—=(102)

10 20

30
Two-Theta (deg)

<150 pum has smallest quantity Eulytite.
Further study required as to why it forms w

SEM/EDS GCM with
<350 um AgI-MOR particles

1 . . zn

Reflective of other samples

T.M.Nenoff, SNL Global 2015
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Agl MOR Particle Size Effect on GCM
Durability
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Ag, I (ppb)
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Figure 1: Ag (unfilled symbols) and I (filled symbols) effluent levels as a function of time.
Circles are for d <350 pum runs; squares are d < 150 pm runs; triangles are d <75 pm runs.

- Agl-MOR particle size in GCM has no effect on iodine or silver release
- Both are limited by the low solubility of Agl

Higher Ag relative to I in effluent suggests Ag leaching from GCM

T.M.Nenoff, SNL

controls equilibrium levels of iodine

Global 2015
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GCM 2.0:
Successful
Scale-Up

Optical images of
fired GCMs.

Left: GCM containing
20wt% INL CH;I-
loaded Agl-MOR.

Right: GCM
containing 20wt%
ORNL I,-loaded Agl-

MOR
Nenoff, et.al., 2015,

FCRD-MRWFD-2015-000120

T.M.Nenoff, SNL

Global 2015
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Sintering on lodine Retention & GCM

Sintering: 5°C/min to 550°C for I hr

Preliminary Results, if sintered in inert atm:
1) No need for Ag flake
2) No oxidation of Ag present in Agl-MOR

3) Transport of Agl from bulk into MOR pores
(added physical retention of Todine)

T.M.Nenoff, SNL

lon Current (nA)

Sintering in Inert:

20 wt% ORNL AgI-MOR +
80 wt% glass

No added Ag flake

TGA

°

o
o

0.001 4

lodine Signal

b

S
[X]

Wt Corrected Heat Flow (W/g)

Pt bbb T A sl e o
0.0001 -+ T T T T T 94

0 100 200 300 400 500 600
ExoUp Temperature (°C)

Global 2015
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Durability of GCM and release rates approximate those of established nuclear waste
glasses, or analogues such as basaltic glass. This suggests that the Bi—Si—Zn GCM is a
viable candidate as a repository iodine waste form.

« The Bi—Si—Zn oxide glass matrix dissolves at a relatively low rate. Flow-through
testing data indicate low GCM dissolution rates (<103 g/m?d) across wide variable
ranges including: pH, Agl-MOR loading, I loading, and Agl-MOR particle size;

* The Bi—Si—Zn oxide glass matrix limits the release of iodine from the otherwise
relatively fast degrading (as- received) Agl-MOR getter material, by encapsulating
and/or reducing leachability through the heat treat- ment used to create the GCM;

*The formation of an amorphous Agl phase results in the limitation of 10odine release
during waste form degradation.

Uncertainty remains about Agl-MOR dissolution controls; why are Ag and I not limited
by amorphous Agl precipitation in the Agl-MOR durability and degradation tests?

Further study of the degradation kinetics associated with amorphous Agl transformation
to lower solubility crystalline Agl is necessary.

T.M.Nenoff, SNL Global 2015
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Sandia National Laboratories’ Sites

Kauai Test Facility L—_
Hawaii Tonopah Test Range,
Nevada

Yucca Mountain,
Nevada WIPP,

New Mexico Pantex, Texas
T.M.Nenoff, SNL Global 2015

Livermore,California
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Durability studies to date indicate a waste form that is as stable as known nuclear waste glasses.
Flexible/ Universal waste form, acceptance of many rad-loaded getter materials
Scaleable

:;’I"")‘r";":g’l“’h‘;l;i':’; S d “Universal” Low Temperature Glass Waste Form
' s e . Glass Composition (2922), no HIP-ping needed:

) Sintering 550° C, Mole % oxides:

32 BiOs, 19 ZnO, 44 Si0,, 5AL0,

50 wt% Agl/50 wt% Glass 50 wit% Agli50 wt% Glass,
500°C for 3 hr 500°C for 3 hr

Core-Shell GCM Glass Waste Forms

1yMOF, Isolation

to Waste Form

JACS, 2011,133(32),12398
Ind. Eng. Chem. Res (Invited
Article) 2012, 51(2), 614

US Patent 8,262,950

Glass shell, Agl/glass core, Glass shell,
75/25 Agl-MOR/Ag/Glass core 80/20/5

JACersS, 2011, 94(8), 2412

Cs-CST Low Temp Glass
Waste Form, No Cs Loss in

8,262,950
—

T.M.Nenoff, SNL Global 2015
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Minimization of Ag Flake in GCM
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ORNL AgIMOR +0.7% Ag tai

] ————  ORNL AgIMOR +0.5% Ag tai
] — - ORNL AgIMOR +EG2922_5C tai
100_: ,___,_,_,::___.—_ ______ e —————— — ________6.; _________ e e
| Ag flake Addition Studies to
10 e Q._____ 87 wt% lodine Loaded Agl-MOR (ORNL):

] _FJ ' Increase from Zero (to < 5 wt%) indicates:
_ ] Increased temperature of iodine release,
< 1 Decreased amount of 1odine release.
e ]
2 ]
5 1
O
c 014
2 :

0.01 4
i 20% Agl-MOR, 0.5 wt% Ag
] 10% Agl-MOR
0.001 5 - NoAg _ g i, i 20% Agl-MOR
E i G " b TR ¥ oy Tty L e i o P 0.7 Wt% Ag
] e
0.0001 —
0 100 200 300 400 500 600
Tem peratu re (OC) Universal V4.7A TA Instrument

T.M.Nenoff, SNL
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For 20 wt% ORNL Agl-MOR + 80 wt% glass + 1.1 wt% Ag Flake
5°C/min to 550°C for 1 hr

100 — 1000
ORNL AgOIMOR +1.1% Ag_wEG2922_Air F
ORNL AgOIMOR +1.1% Ag_wEG2922_Air tai
100
-0.10
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g 10
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