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Infrasound Event Detection
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« An inherent assumption of global infrasound data processing is that there is little
source information that is extractable at global distances.

« Thus, event detectors are based almost exclusively on coherence at arrays, and
on agreement of arrival times and azimuths at spatially-separated arrays
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w7 Infrasound Event Detection: PMCC

Ground-based Nuclear Explosion Monitoring R&D - - - - - - . . l |:|[|

Basic hypothesis: X,(£]=s(t—r-u)+w,(¢) r e iAc +Ar )

 ‘Clutter’ or ‘correlated noise’ under this definition is a ’ i ! :
signal 6

+ Use of multiple narrowband filters to separate c = Z Pk
simultaneous signals in the f-domain ”(’7_1)( )

* Progressive -> Handles noisy channels

* Requires extensive post-processing
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PMCC detections from the eruption of Mt. St. Helens.

Different colored pixels represent detections in

time/frequency space.

oo Use propagation information from

Rn to direct the search at other sensors
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_ , Background coherence
Basic hypothesis: x (t)=s(t—r -u |+n(t—r -u |+w. |t
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e Existing infrasound hypothesis tests are based on coherence

only
e Post-processing is employed to sift through detections to

identify possible explosion signals
— Interesting signals could be associated at multiple arrays

— Interesting signals may have certain characteristics at an individual array
e How might we identify explosion signals?

— Explosions are broadband

— Explosions have finite duration that typically increases with range

e What about formulating detectors that exploit these
properties from the outset?
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A Dataset for Testing some improvements
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The largest density of infrasound
events in the LEB is in Eurasia

8 events located near |31 are each
recorded at 5 arrays -> Test events
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e Adaptive F detector (AFD) Arrival in LEB from 5-array association
insensitive to coherent I18DK with f-band =[0.5, 3.0] and t-window = 40.0's
noise but can miss low ¢4
SNR signals. 57

e Can we combine the AFD * § S ecentat
with additional £ PR+ T T e e T e
constraints to lower the £ 232 T e T
detection threshold, g 120 A g
while preserving the 3 3 = e
advantages of the AFD? ‘ |

e |[nitial testing of a simple
‘Hough-like’ (line)

70000 72000 74000 76000 78000 80000
deteCtor Time in seconds after 03/21/2012 %3:30:00

e |[nitial testing of Fishers
Combined Probability test Second arrival is not detected

Consistent backazimuth over some time interval
but weak F-statistic barely above ambient
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A ‘Hough-like’ detector
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Detecting lines in backazimuth, time space: At long distances, we only want to
search for horizontal lines:
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How to combine detections from different detectors?

e Logical

— Doesn’t fully exploit ¢ >d™* OR d_>d™
the combined effects * o
of two detectors d >d" AND d,>d,™ [

e Arithmetic
— Doesn’t use noise

k
distribution de > thres
information =

e Fishers Combined
Probability Test

— Uses distributional

d) ——

Moving time windows

d,—s

properties of HO _ I _ 2 k
— requires a probability b, = IP(X'Ho) X __Z_Zlnpi
model d, =1

Detectors should ideally exploit different signal characteristics
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Distributional properties of FminzmlnLJ%Z( )J
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An initial multivariate detector result
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I26DE with f-band =[0.5, 3.0]
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Combining AFD and line detector results in a much stronger detection of the first

arrival, and weak detection of the second arrival.
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Some initial detection statistics

-} | § B | | | |;*pupl

Detections of LEB arrivals
from test events
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15 Multivariate

« Multivariate detector find two
LEB arrivals from AFD

* Missing two arrivals are not
observed in broadband FK
processing
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14 days of data in different noise environments
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Forward model observations for each grid node...

cbkz(qﬁf,q)zk,...) dT£“=[w.M._} di_n{(dl_dz) (dl_ag),..}

v . v

min min

Loop over GRID NODES... €., GA, InfraMonitor

- Find detection pairs that are compatible Slower/greater memory load

- Cluster detection pairs based on ARID linkages

Loop over DETECTION PAIRS...
- Find detection pairs that are compatible

- Cluster detection pairs based on ARID linkages

e.g., CEA algorithm, InfraPy
- Process cluster (or ‘graph’) using physical criteria

- Search for associated signals at remaining arrays

Existing methods fall under two basic categories. Criteria are basically azimuth/time
but GA may include additional empirical constraints
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% Eruption of Kelud
volcano

Compatible detection pairs plotted as
16 separate graphs. Three graphs
are highlighted separately.

S

The geographic consistency of each
graph is used to develop a robust :
event hypothesis
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Association synthetic tests
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Association — Looping over grid nodes
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e Infrasound event detection is a challenging endeavor that has historically
been hampered by the use of very simple models

e The main consequence of these simple models is a big false positive
problem.

— Moving towards more realistic signal and noise models should reduce the false positive
problem

— Adding physics-based constraints via propagation modeling should reduce the false
positive problem at the network level.



