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We report on the computational characteristics of ab initio nuclear structure calculations in a
symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational
complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by ana-
lyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU(3)-selected
subspaces. We demonstrate LSU3shell’s strong-scaling properties achieved with highly-parallel
methods for computing the many-body matrix elements. Results compare favorably with com-
plete model space calculations and significant memory savings are achieved in physically important
applications. In particular, a well-chosen symmetry-adapted basis affords memory savings in calcu-
lations of states with a fixed total angular momentum in large model spaces while exactly preserving
translational invariance.

PACS numbers: 21.60.Cs, 21.60.Fw, 21.60.De, 21.45.-v, 27.20.+n

I. INTRODUCTION AND MOTIVATION

In the last few years, ab initio approaches to nuclear
structure and reactions have considerably advanced our
understanding and capability of achieving first-principles
descriptions of p-shell nuclei (see Refs. [1–9] and ref-
erences therein). At the same time, fundamental ap-
proaches to the nucleon-nucleon (NN) and three-nucleon
(NNN) interactions, such as meson-exchange theory and
chiral effective field theory, have yielded major progress
[10–15]. Successful realisticNN interactions from inverse
scattering have also emerged [16, 17]. These new devel-
opments in microscopic nuclear theory combine to place
serious demands on available computational resources for
achieving converged properties of p-shell nuclei. This
points to the need of further major advances in many-
body methods to access a wider range of nuclei and ex-
perimental observables, while retaining the ab initio pre-
dictive power.

These considerations motivate us to develop and in-
vestigate a novel model, the ab initio symmetry-adapted
no-core shell model (SA-NCSM) [18], which, by tak-
ing advantage of symmetries inherent to the nuclear dy-
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namics [19–22], can provide access to heavier nuclei and
larger model spaces essential to accommodate collective,
deformed, and cluster substructures [22–32]. This is
achieved by recognizing that the choice of a basis is cru-
cial and that the SA-NCSM affords a solution that is a
linear combination of a limited number of basis states of
definite nuclear deformation. This yields memory savings
in larger model spaces with fixed total angular momen-
tum.

The concept underpinning the SA-NCSM has been
demonstrated in our recent ab initio studies of properties
of 6Li, 6He, and 8Be [18, 33]. The potential gains from
the SA-NCSM have also been demonstrated in our earlier
study where we found that ab initio wavefunctions of 12C
and 16O calculated by the no-core shell model (NCSM)
[4] project well onto a symmetry-adapted subspace that is
only a tiny fraction of the corresponding complete model
space [34–36]. While the SA-NCSM states can be ob-
tained through a unitary transformation from the basis
used in the NCSM, and hence span the entire space, the
growth of the model space within the SA-NCSM frame-
work can be managed, as shown here, by down-selecting
to the physically relevant states as determined through
symmetry considerations. This brings forward the major
distinction as compared to the NCSM, namely, the selec-
tion of the SA-NCSM many-nucleon basis states retained
in the calculation, which, in turn, allows the SA-NCSM
to accommodate heavier nuclei and larger model spaces.
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Further advantages of the SA-NCSM include the capabil-
ity of exactly removing the spurious center-of-mass mo-
tion within a selected subspace (thereby retaining this
important factorization feature of the NCSM), as well as
the use of efficient group-theoretical methods and cou-
pling rules to build the many-nucleon basis states and
interaction matrix elements.

In the present work, we study the efficacy of the SA-
NCSM basis by comparing the complexity of calculations
for SA-NCSM and NCSM, and we investigate the sig-
nificance of selected SA-NCSM spaces against the cor-
responding NCSM (complete-space SA-NCSM) results.
To achieve this, we evaluate properties of 12C with both
methods for comparable cutoffs. We adopt the JISP16
NN interaction [16, 17] without renormalization and we
neglect NNN interactions. For both many-body meth-
ods, all A nucleons in the nucleus are treated on the
same footing. Observables, that can be experimentally
measured, are obtained from A-nucleon wavefunctions re-
sulting from Hamiltonian diagonalization in the chosen
many-body model space. In particular, we consider the
binding energies of the ground state (gs) and eight low-
lying excited states of positive parity in 12C. We also
compare the gs point-particle matter root-mean-square
(rms) radius as well as the mass quadrupole moment of
the first excited 2+ and 4+ states and the B(E2) elec-
tric quadrupole transition strength from the 2+

1 to the
ground state, together with the B(M1; 1+

1 → 0+
gs) tran-

sition strength and the 1+
1 magnetic dipole moment.

It is worth noting that there are additional efforts
aimed at accelerating the convergence of ab initio no-
core many-body methods using basis function techniques.
The “Importance-Truncated” no-core shell model (IT-
NCSM) [8] attempts to sample the many-body config-
urations above a given cutoff using perturbative esti-
mates of their contributions to the energy of low-lying
states. The ab initio no-core Monte Carlo Shell Model
(NC-MCSM) [37–39] aims to sample model spaces gen-
erated from an angular momentum and parity projected
Hartree-Fock basis. Alternatively, the no-core full config-
uration approach (NCFC) represents an extrapolation to
the infinite matrix limit of a sequence of calculations in
finite model spaces and provides important observables,
as some calculated quantities monotonically approach the
exact result with increasing model spaces [40–43]. In this
connection, there has been substantial recent progress in
developing improved extrapolation techniques with quan-
titative uncertainty estimates [44–48].

Our goal is, first, to study the accuracy of SA-NCSM
model space selections as compared to the complete-
space results, as well as the dependence of the results on
the model space parameters for 12C (Sec. III), and, then,
to investigate the efficacy of the SA-NCSM by compar-
ing the complexity of NCSM and SA-NCSM calculations
(Sec. IV). This, in turn, will reveal the significance, in
terms of potential memory savings for fixed-J bases, of
reducing the complete model space by searching for and
retaining the physically relevant basis states important

for the low-energy properties of nuclei with a realistic
NN interaction.

II. QUANTUM MANY-BODY METHODS
ADOPTED

For a general problem, both NCSM and SA-NCSM
adopt the intrinsic non-relativistic nuclear plus Coulomb
interaction Hamiltonian defined as follows:

H = Trel + VNN + VNNN + . . .+ VCoulomb, (1)

where the VNN nucleon-nucleon and VNNN 3-nucleon in-
teractions are included along with the Coulomb inter-
action between the protons. The Hamiltonian may in-
clude additional terms such as multi-nucleon interactions
among more than three nucleons simultaneously and
higher-order electromagnetic interactions such as mag-
netic dipole-dipole terms.

In this study, the JISP16 NN interaction is adopted.
It produces a high-quality description of the NN scat-
tering data and the deuteron [16, 17] as well as a good
description of a range of properties of light nuclei [40]. We
include the Coulomb interaction but we neglect higher-
order electromagnetic interactions as well as NNN in-
teractions and beyond. We treat neutron and proton
orbitals independently so total isospin is not conserved.

For each method, we retain many-nucleon basis states
of a fixed parity, consistent with the Pauli principle, and
limited by a many-body basis cutoff Nmax. The Nmax

cutoff is defined as the maximum number of harmonic
oscillator (HO) quanta allowed in a many-nucleon basis
state above the minimum for a given nucleus. We seek to
obtain the lowest few eigenvalues and eigenfunctions of
the Hamiltonian (1). The resulting calculated gs energy
is a rigorous upper bound on the exact result for the full
(infinite) basis and monotonically approaches the exact
result as the Nmax increases. This upper bound character
applies to the lowest calculated state of each total angular
momentum and parity. We defer extrapolations to exact
infinite matrix results to other efforts such as Refs. [40–
45].

The NCSM calculations may be performed in an M -
scheme basis where the many-nucleon basis states are
constructed with a good total magnetic projection M
that is the same for all basis states (M = 0 here).
The eigensolutions have good total angular momentum
up to numerical errors and this serves as a cross-check
on the precision of the calculations. Note that we em-
ploy a Lanczos scheme that selectively converges the
low-lying solutions, regardless of their total angular mo-
menta, in the same M -scheme calculation, thus facilitat-
ing the identification of the ground-state spin as well as
calculations of electromagnetic transition rates. For the
NCSM M -scheme calculations reported here, we employ
the code “Many-Fermion Dynamics - nuclear” or “MFDn”
[49] which has been revised and optimized for leadership-
class parallel computers [50–53].
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The NCSM calculations may also be performed in a
J-scheme basis where the many-nucleon basis states are
constructed with a good total angular momentum J and
total magnetic projection M that is the same for all basis
states [54]. This approach again uses the Lanczos proce-
dure. Several runs are then needed to map out all the
states in the low-lying spectrum. As the SA-NCSM uti-
lizes basis states with a good J quantum number, we use
the J-scheme NCSM approach for the primary reference
case in order to compare computational complexity. It is
useful to note, for example, that one may need a fixed-
J scheme to isolate members of excited rotational bands
that reside in a dense spectrum since the Lanczos proce-
dure in the M scheme is less efficient for these states.

For the SA-NCSM calculations, we work in a many-
nucleon basis labeled by the SU(3) quantum numbers
(λµ) of the Elliott model [19, 20], orbital momentum L,
proton, neutron, and total intrinsic spins (Sp, Sn, and S),
as well as total angular momentum J and its projection
M (similarly to NCSM, M = 0 here). We employ a new
code, “LSU3shell” [55], implemented using C++ and
Fortran 77 programming languages and parallelized with
a hybrid MPI/OpenMP approach , that runs efficiently
on parallel computers, as shown in this paper.

A. Model Space Parameters: Nmax and ~Ω

All solutions have a dependence on the cutoff Nmax and
on the HO energy ~Ω. The degree to which we obtain
results independent of the Nmax and of ~Ω is a measure
of the convergence of the results since fully converged
results are independent of both basis parameters.

For both methods, we employ the many-body Nmax

truncation where we enumerate all many-body states,
with the selected symmetries, possessing total HO ex-
citation quanta less than or equal to Nmax. Specifically,
each single-particle state in a many-nucleon basis state
contributes 2n + l to the total HO quanta (n is the ra-
dial quantum number and l is the orbital angular mo-
mentum quantum number) for that basis state. Then,
the minimum sum for a given nucleus (of the lowest al-
lowed configuration) is subtracted to give the total HO
excitation quanta. The smallest model space for each
nucleus is then Nmax = 0 and increases in units of 2 for
the states of the same parity. Odd values of Nmax cover
the states with opposite parity. With this scheme, basis
states where one nucleon carries all the Nmax quanta are
included, in which cases one nucleon occupies the highest
HO shell.

In both NCSM and SA-NCSM, the Nmax cutoff in the
HO basis is valuable for preserving Galilean invariance.
That is, with the Nmax cutoff, we guarantee that all so-
lutions factorize into a product of intrinsic and center-
of-mass motion components. With a Lagrange multiplier
term acting on the center-of-mass [4, 56–58], we remove
states of center-of-mass excitation from low-lying spec-
trum. All observables may then be evaluated free of spu-

rious center-of-mass motion contributions.

B. Ab initio SA-NCSM

The SA-NCSM framework allows one to down-select
from all possible configurations to a subset that tracks
with an inherent preference of a system towards low-spin
and high-deformation dominance – and symplectic mul-
tiples thereof in high-Nmax spaces [18] – as revealed to
be important in realistic NCSM wavefunctions [34–36].

The many-nucleon basis states of the SA-NCSM are
decomposed into spatial and intrinsic spin parts, where
the spatial part is further classified according to the
SU(3)⊃SO(3) group chain. The significance of the SU(3)
group for a microscopic description of the nuclear collec-
tive dynamics can be seen from the fact that it is the
symmetry group of the successful Elliott model [19, 20],
and a subgroup of the physically relevant Sp(3,R) sym-
plectic model [21, 22], which provides a comprehensive
theoretical foundation for understanding the dominant
symmetries of nuclear collective motion. The SA-NCSM
basis states are labeled schematically as

|~γ;N(λµ)κL; (SpSn)S; JM〉, (2)

where Sp, Sn, and S denote proton, neutron, and total
intrinsic spins, respectively, N is the total number of HO
excitation quanta, and (λµ) represent a set of quantum
numbers that labels an SU(3) irreducible representation,
or “irrep”1. The label κ distinguishes multiple occur-
rences of the same orbital momentum L in the parent
irrep (λµ). The L is coupled with S to the total angu-
lar momentum J and its projection M . The symbol ~γ
schematically denotes the additional quantum numbers
needed to specify a distribution of nucleons over the ma-
jor HO shells and their single-shell and inter-shell quan-
tum numbers. Specifically, in each major HO shell η
with degeneracy Ωη, protons (or neutrons) are arranged
into antisymmetric U(Ωη) × SU(2)Sη

irreps [62], with
U(Ωη) further reduced with respect to SU(3), providing
the single-shell labels

[
f1, . . . , fΩη

]
αη(λη µη)Sη. Note

that a spatial symmetry associated with a Young tableau[
f1, . . . , fΩη

]
is uniquely determined by the imposed anti-

symmetrization and the associated intrinsic spin Sη [62].
A multiplicity index αη is required to distinguish multiple
occurrences of SU(3) irrep (λη µη) in a given U(Ωη) irrep.
Coupling of these single-shell configurations further yield
inter-shell SU(3)×SU(2)S quantum numbers for protons
and for neutrons; the proton and neutron configurations
are finally coupled to good (λµ)κLS; JM . All of these

1 The SU(3) irrep labels (λµ) bring forward important informa-
tion about nuclear shapes and deformation, according to an es-
tablished mapping [59–61]. For example, (00), (λ 0) and (0µ)
describe spherical, prolate and oblate deformation, respectively.
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FIG. 1: Complete J = 0 model space for 12C and Nmax = 8 given in terms of proton (Sp), neutron (Sn) and total (S) spin
values (vertical axis) and deformation (λµ) (horizontal axis). Each circle represents basis states carrying the same (Sp, Sn, S)
and (λµ) quantum numbers within a ~Ω-subspace, with the radius being proportional to log10 of the number of such states.
Filled light yellow circles indicate the 〈6〉8-A restricted model space employed by the SA-NCSM for calculations of 0+ states
in 12C, while all filled circles indicate the 〈6〉8-B restricted model space. Similar selection rules are applied to higher-J states.

labels uniquely determine the SA-NCSM basis states (2).

To accommodate highly-deformed configurations with
high-energy HO excitations together with essential mix-
ing of low-energy excitations, typical SA-NCSM calcu-
lations span the entire (complete) space up to a given
N⊥max, while beyond this, calculations include only se-
lected many-nucleon basis states limited by theNmax cut-
off [18, 33, 63]. We adopt a notation where an SA-NCSM
model space of “〈N⊥max〉Nmax” includes all the configu-
rations up through N⊥max and a restricted subspace be-
yond N⊥max up through Nmax. For example, the selec-
tions of basis states employed in this paper for a 〈6〉8
model space , “〈6〉8-A” and “〈6〉8-B”, are illustrated
for 12C and J = 0 states2 in Fig. 1. The 〈6〉8 space
includes all configurations up through 6~Ω with the ad-
ditional restriction of the 8~Ω subspace to only selected
deformations as well as selected proton spin, neutron
spin, and total spin values as shown in Fig. 1. Namely,

2 Lists of the resulting configurations for other J-values are avail-
able upon request.

(Sp, Sn, S) = (0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1),
and (1, 1, 2). A similar selection pattern is employed for
J = 1, 2 and J = 4. The selection is based on high-
deformation and low-spin dominance, along with sym-
plectic Sp(3,R) excitations thereof. Hence, configura-
tions of largest deformation (typically, large λ and µ)
and lowest spin values are included first, that is, the lower
right corner of the 8~Ω subspace in Fig. 1. The math-
ematical prescription for retaining states in these model
spaces, together with the associated quantitative cutoff,
is based on equations and conditions expressed within
the SU(3) and Sp(3,R) groups [63] that are beyond the
scope of this presentation.

A very important feature of the SA-NCSM is that any
SA-NCSM selected model space of SU(3) × SU(2)S ir-
reps, that is, a space spanned by all configurations carry-
ing a fixed set of SpSnS and N(λµ) quantum numbers,
permits exact factorization of the center-of-mass motion
[57]. As a result, a reduced model space 〈N⊥max〉Nmax, de-
fined by a set of physically relevant (λµ) and important
intrinsic spins, yields eigenfunctions that exactly factor-
ize into a product of intrinsic and center-of-mass com-
ponents. With the help of a Lagrange multiplier term,
the wavefunctions, and associated observables, for states
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of interest (those free of center-of-mass excitation) are
generated efficiently.

III. 12C PROPERTIES AND MODEL-SPACE
SELECTION CONSIDERATIONS

To examine the applicability of the SA-NCSM, we se-
lect the ground state and eight low-lying positive-parity
excited states of 12C. Namely, three 0+ states, three ex-
cited 2+ states, an excited 4+ state, as well as two excited
1+ states. We evaluate and compare results for the bind-
ing energy, excitation energies, the ground-state point-
particle matter rms radius, the electric quadrupole mo-
ment of the 2+

1 and 4+
1 states as well as the B(E2; 2+

1 →
0+

gs), the B(M1; 1+
1 → 0+

gs) transition strengths to the
ground state and the magnetic dipole moment of the first
excited J = 1, T = 1 state.

TABLE I: 12C observables for selected Nmax values, namely,
binding energy BE (MeV), excitation energies E (MeV), elec-
tric quadrupole moments Q (e fm2) and magnetic dipole mo-
ment µ (µN ), as well as B(E2) (e2 fm4) and B(M1) (µ2

N ) re-
duced transition strengths, together with point-particle mat-
ter rms radius rm (fm). The observables are calculated for
~Ω=20 MeV using the bare JISP16 interaction and compared
to the experiment (“Expt.”) [64]. The SA-NCSM results are
obtained in a reduced 〈6〉8 model space with a complete space
up to 6~Ω (“B” selection). Comparing MFDn and LSU3shell
results up through Nmax = 6 shows they are the same, to
within the quoted precision.

Nmax

Expt. 4 6 8 〈6〉8-B
BE 92.162 72.654 82.192 87.902 85.951
E

2+1
4.439 6.415 5.356 4.685 4.644

E
1+1

12.71 17.024 15.307 14.161 14.199

E
4+1

14.083 20.071 17.854 16.255 16.324

Q
2+1

+6(3) 3.316 3.546 3.741 3.735

Q
4+1

N/A 4.285 4.597 4.864 4.845

µ
1+1

N/A 0.948 0.876 0.848 0.839

B(E2; 2+
1 → 0+

gs) 7.59(42) 2.723 3.051 3.342 3.301
B(M1; 1+

1 → 0+
gs) 0.0145(21) 0.028 0.018 0.013 0.012

rm(0+
gs) 2.43(2)a 1.996 1.995 2.003 2.005

aRef. [65]

We aim to study here model-space selection consid-
erations in the SA-NCSM by comparing results to the
NCSM calculations for the same Nmax cutoff. We con-
sider two SU(3)-based selection schemes, determined by
symmetry considerations, namely, “〈6〉8-A” (a smaller
set of basis states, Fig. 1, filled circles, light yellow colors)
and “〈6〉8-B” (a larger set of basis states, Fig. 1, filled
circles), with dimensions listed in Table II and discussed
in Sec. IV.

We present the gs energy of 12C obtained with MFDn
in the M -scheme basis using the bare JISP16 interaction

in Fig. 2 through a sequence of Nmax truncations and as
a function of ~Ω. The energy converges uniformly from
above as expected with increasing Nmax and the curves
become increasingly independent of ~Ω (i.e. flatter) with
increasing Nmax. Both of these features are signals of gs
energy convergence. We obtain significant increases in
binding with each increment in Nmax. The experimental
result is indicated as a horizontal line. For completeness,
we also show the NCFC extrapolated result (extrapo-
lation method “A” of Ref. [40]) based on the results
through Nmax = 10 [42, 43].

FIG. 2: Ground state energy of 12C as a function of ~Ω for
a sequence of Nmax cutoffs with the JISP16 NN interaction.
The quoted NCFC extrapolated energy is obtained using ex-
trapolation method “A” of reference [40].

In Table I, we compare the results for 12C observables
at ~Ω = 20 MeV obtained with MFDn (see also [66]) and
LSU3shell at the SU(3) selection scheme “〈6〉8-B” men-
tioned above and discussed in Sec. IV below. Table I
reveals the remarkable result that only 0.48% of the 8~Ω
subspace included in 〈6〉8-B provide 66% of the complete
Nmax = 8 model-space increase in binding energy with
respect to the Nmax = 6 outcome. Overall the binding
energy in 〈6〉8-B reproduces 98% of the Nmax = 8 NCSM
binding energy. In fact, the 〈4〉8-B model space al-
ready reproduces 96% of this observable. This points
to the fact that complete 0~Ω, 2~Ω, and 4~Ω model
spaces (N⊥max = 4) and only selected physically relevant
6~Ω and 8~Ω basis states suffice to capture most of the
physics that governs the 12C ground state. Further im-
provements are observed in the case of 〈6〉8-B, but these
improvements are less significant for various observables.
In Table I, we also provide the experimental counter-
parts and note that, in general, meaningful comparisons
between computations and experiment require both con-
vergence with Nmax and N⊥max, along with quantification
of numerical uncertainties due to basis truncations.

To study convergence of excitation energies, we present
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JISP16 interaction for ~Ω = 20 MeV as a function of Nmax.
The corresponding SA-NCSM results for 〈6〉8 are shown for
the “A” (filled circles) and “B” (empty squares) selection
schemes; the order of the empty squares is as follows, from
bottom to top, 2+

1 (2+; 0), 1+
1 (1+; 0), 0+

3 (0+; 0), 4+
1 (4+; 0),

2+
2 (2+; 0), and 0+

4 (0+; 1). Note that the 7.65-MeV 0+
2 state

(the so-called Hoyle state) is not included in the plot.

the low-lying spectrum of 12C at ~Ω = 20 MeV as a func-
tion of Nmax (Fig. 3). The outcome reveals that with
increasing Nmax, the difference between the theoretical
and experimental excitation energies is seen to decrease.
The 〈6〉8-B SA-NCSM calculations for the isospin-zero
2+

1 , 1+
1 , and 4+

1 excited states (Table I and Fig. 3, empty
squares) deviate from the corresponding Nmax = 8 re-
sults only by 0.9%, 0.3%, and 0.4%, respectively. Higher-
lying states, such as 0+

3 , 2+
2 , and 0+

4 , exhibit a slightly
larger deviation, with the largest difference observed for
0+

4 , which is still only about 800 keV. These states are
found to lie remarkably close to the complete-space coun-
terparts even when the smaller 〈6〉8-A SA-NCSM model
space is utilized (see Fig. 3 for 2+

1 and 4+
1 , filled circles).

In addition, we compare excitation energies as a function
of ~Ω in the range of 15 to 25 MeV. In this region, we find
that restricted SA-NCSM model spaces yield excitation
energies that change only slightly with ~Ω, e.g., for the
2+

1 and 4+
1 T = 0 states, the energies change by less than

1 MeV through a change of 10 MeV in the ~Ω oscillator
energy (Fig. 4).

Table I also presents restricted-space and complete-
space results for the electric quadrupole moment of the
first excited 2+ and 4+ states of 12C, the reduced prob-
ability for the E2 transition of 2+

1 and M1 transition
of 1+

1 to the ground state, as well as the point-nucleon
matter rms radius of the ground state. These observ-
ables are remarkably well reproduced by the SA-NCSM
calculations in the 〈6〉8-B space. Similar results are ob-
tained already in the 〈4〉8-B model space. For example,
B(E2; 2+

1 → 0+
gs) = 3.339 e2fm4, which represents 99.9%

of the complete space result. The smaller 〈6〉8-A model
space yields, Q2+

1
= 3.712 efm2, Q4+

1
= 4.826 efm2,
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FIG. 4: 12C eigenenergies as a function of ~Ω obtained with
the SA-NCSM and the bare JISP16 interaction for the 〈6〉8-
A selection scheme (filled circles, solid lines), and compared
to the complete Nmax = 8 model space (open circles, dashed
lines).

B(E2; 2+
1 → 0+

gs) = 3.289 e2fm4, and rm(0+
gs) = 2.007 fm,

which already reproduce more than 99% of the Nmax = 8
NCSM results. This indicates that these observables are
not sensitive to the fine-tuning of the selected space and
only a few configurations of the 8~Ω subspace (shown in
Fig. 1) appear sufficient for their accurate description.

In short, we show that SA-NCSM yields results in re-
duced SU(3)-based model spaces that practically coin-
cide with the ones obtained in the corresponding com-
plete space. The computational complexity associated
with such calculations is examined next along with ex-
ploration of memory savings achievable in larger spaces
using the examples of 6Li and 12C.

IV. COMPUTATIONAL COMPLEXITY

Issues governing the required computational resources
include the model space dimension, the number of non-
vanishing many-body matrix elements and the computa-
tional effort required by those matrix elements [50–53].
For the highly scalable algorithms we have developed and
implemented, the computational resources can be viewed
primarily in terms of memory and time requirements. We
now turn our attention to these computational complex-
ity issues.

The nuclear many-body calculations we address here
involve evaluating the Hamiltonian in a selected basis
representation and solving the resulting matrix for a
small set (typically less than 20) of its low-lying eigen-
values and eigenvectors. To solve the large sparse matrix
for its eigenvalues and eigenvectors on a massively par-
allel architecture is recognized as computationally hard.
The challenge in nuclear physics is compounded by the
strong inter-nucleon interactions referred to in Eq. (1)
[50] that induce significant short- and intermediate-range
inter-nucleon correlations. The model space must there-
fore be sufficiently large to account for these correlations
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and, at the same time, account for the long-range “tails”
of the nuclear wavefunctions. The need for accurate rep-
resentations of the short, intermediate and long-range
features of the wavefunctions drives the computational
resources in different ways for the methods we employ.
For example, the need for particular excited states (such
as members of a rotational band) that lie in a region of
high level density motivates the fixed-J basis.

Each method we employ involves a transformation of
stored NN (and possibly NNN) matrix elements to the
chosen many-nucleon basis representation. This process
begins with initial interaction matrix elements stored in
the HO basis that are reduced matrix elements, i.e. ma-
trix elements in a basis coupled to total angular momen-
tum J (and sometimes total isospin T ), and accommo-
date charge-dependent interactions. Currently, this ini-
tial interaction scheme is employed for both NN and
NNN interactions but only NN interactions are em-
ployed here.

The transformation of these initial interaction data
sets to the representation of the basis of choice involves
“recoupling transformations” that may be viewed as mul-
tiplications of 3 non-square matrices (see Ref. [67] for a
graphical illustration). Our different choices of many-
nucleon basis (e.g., M -scheme basis, J-scheme basis, and
SU(3)-scheme basis) involve different recoupling trans-
formations (see Ref. [32] for the SU(3) scheme). While
for the NCSM, this transformation is part of the MFDn
code, the SA-NCSM invokes a separate algorithm, which
transforms each interaction set only once and stores it
for use by the LSU3shell. Improving the efficiency of
the recoupling transformations themselves and reducing
their memory footprints are subjects of intensive ongo-
ing research and involves, among other issues, efficient
exploitation of computer architectures such as Graphics
Processing Units. We will limit our considerations here to
the computationally demanding evaluation of the many-
body Hamiltonian and computation of the corresponding
eigenvalues and eigenvectors.

Figure 5 presents model space dimensions (size of the
many-body Hamiltonian matrix) in the M -scheme over
a range of Nmax values for even-even N = Z nuclei. The
figure illustrates the dramatic increase of matrix dimen-
sions with increasing Nmax and increasing atomic num-
ber A. For example, the corresponding 12C data points
show the size of the M -scheme basis used at each Nmax

to produce the results of Fig. 2. This increase in dimen-
sionality and associated increase in the number of non-
zero many-body matrix elements motivate the search for
model spaces with the aim of reducing the computational
complexity as also pursued by other efforts mentioned
earlier [8, 37–39].

For modern realistic NN and NNN interactions, we
have found for p-shell nuclei that Nmax values of 8 and
above are desirable for achieving results approaching con-
vergence [40, 42–45, 68, 69]. The calculation of 12C in
the complete Nmax = 8 model space by the MFDn takes
between 10 and 15 minutes of actual CPU time using 124

nodes of Edison, a Cray XC30 system installed at the
National Energy Research Scientific Computing Center.
Each node of Edison has two 12-core Intel “Ivy Bridge”
processors running at 2.4 GHz and 64 GB of main mem-
ory. Namely, it takes less than 3 minutes to read and
process all necessary input data, set up and distribute
the M -scheme basis, determine the sparsity structure,
and generate the nonzero matrix elements. Subsequently,
each Lanczos iteration takes about 1.2 seconds. The fi-
nal time depends on the number of eigenstates, and which
(if any) observables are calculated for these eigenstates.
Typically, several hundred iterations are needed to con-
verge the lowest 10 states.
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FIG. 5: Dimensions of the M -scheme (with M = 0) natural
parity model spaces for the even-evenN = Z nuclei withNmax

truncation. The sequence of dimensions for unnatural parity
states (odd values ofNmax) lie intermediate to the neighboring
natural parity dimensions.

SA-NCSM runtime and number of single-shell
configurations. – Computing the nuclear many-body
Hamiltonian matrix in an SU(3) symmetry-adapted ba-
sis within the SA-NCSM framework represents the most
computationally intensive task – one that typically takes
over 95% of the total CPU time. Fortunately, this task
can be considered a perfectly parallel problem and en-
dows LSU3shell code with good scalability to hundreds
of thousands of cores and possibly even beyond (Fig. 6).
Each MPI process is assigned a submatrix of the Hamil-
tonian and invokes OpenMP threads to share the work-
load. The communication network is used merely to
distribute data between collaborating processes during
the initial set-up phase. No other communication be-
tween processes is needed, as each matrix element of
the many-body Hamiltonian matrix can be evaluated
independently. SU(3) basis states are mapped to the
MPI processes in a block round-robin fashion, where the
blocks are defined by similar SU(3) structures using the
same set of SU(3) coupling coefficients and reduced ma-
trix elements needed to evaluate Hamiltonian matrix el-
ements, as described below. This approach leads to a
uniform distribution of matrix elements and thus allows
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one to achieve a reasonably good load balancing.
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FIG. 6: (a) Strong scaling of the Hamiltonian matrix con-
struction for J = 0 states of 24Mg (blue curve, dim =
0.98 × 106) as a function of the number of MPI processes
(in units of thousands). (b) Strong scaling of LSU3shell on a
single Cray XE6 compute node as a function of the number of
OpenMP threads. (Scaling results are obtained on the Blue
Waters system.)

The SA-NCSM implements fast methods for calcu-
lating matrix elements of arbitrary operators in the
symmetry-adapted basis. This facilitates both the evalu-
ation of the Hamiltonian matrix elements and the use
of the resulting eigenvectors to evaluate other experi-
mental observables. The underlying principle behind
the SA-NCSM computational kernel is an SU(3)-type
Wigner-Eckhart theorem, which factorizes interaction
matrix elements into the product of SU(3) reduced ma-
trix elements (RME) and the associated SU(3) cou-
pling coefficients. To compute the Hamiltonian ma-
trix elements, LSU3shell adopts state-of-the-art group-
theoretical methods [62], implemented in C++ pro-
gramming language, and optimized Fortran numeri-
cal subroutines [70] for computing required SU(3) cou-
pling/recoupling coefficients. As described above, the
SA-NCSM configurations are constructed as the inter-

shell coupling of a set of single-shell irreps of U(Ωη) ×
SU(2)S with U(Ωη) ⊃ SU(3). Therefore, all the multi-
shell RME are constructed from a set of single-shell RME
computed in a configuration space of the single-shell ir-
reps. This reduces the number of key pieces of informa-
tion required to the single-shell RME, and these track
with the number of the single-shell U(Ωη) × SU(2)S ir-
reps, with U(Ωη) ⊃ SU(3), that represent building blocks
of the SA-NCSM approach. It is therefore significant
that their number grows slowly with the increasing nu-
cleon number and Nmax cutoff as illustrated in Fig. 7, as
this allows these key pieces of information to be stored
in CPU memory in the LSU3shell code. The baseline
implementation of the algorithm for computing many-
nucleon matrix elements in an SU(3) basis takes, e.g.,
in case of 〈6〉8-A space of J = 0 states in 12C, 17 min-
utes of wall-clock time to compute 1011 non-vanishing
matrix elements using 124 nodes of Edison. The main
performance bottleneck of the current implementation
is its dependence on a frequent searching for computa-
tionally expensive data, e.g., SU(3) coupling/recoupling
coefficients, stored in the computer’s memory in look-up
data structures, which lack spatial and temporal local-
ity. This leads to a random memory access pattern with
an inherently suboptimal utilization of hierarchical mem-
ory subsystems. Overcoming this challenge is currently
a subject of ongoing research, in which we aim to find an
optimal ordering of proton/neutron basis configurations
and tensor operators that maximizes the reuse of compu-
tationally expensive data and evades a frequent random
memory access in the computer’s global memory.
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FIG. 7: Number of single-shell U(Ωη) × SU(2)S irreps, with
U(Ωη) ⊃ SU(3), that generate the SA-NCSM model space for
even-even N = Z nuclei as a function of Nmax cutoff.

An important feature of the SA-NCSM is that the
symmetry-guided organization of the model space allows
the full space to be systematically down-selected to the
physically relevant subspace. As a second illustrative ex-
ample, we consider SA-NCSM results for 6Li low-lying
states that, as shown in Ref. [18], have achieved sig-
nificantly reduced dimensions for equivalent large shell-
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model spaces without compromising the accuracy of the
ab initio NCSM approach (see Fig. 2 and Fig 3 of Ref.
[18] for gs and excitation energies, B(E2) values and Q
electric quadrupole moments). The runtime of the SA-
NCSM code exhibits a quadratic dependence on the num-
ber of (λµ) and (SpSnS) irreps – there are 1.74 × 106

such irreps for the complete Nmax = 12 model space
of 6Li, while only 8.2%, 8.3%, 8.9%, 12.7%, and 30.6%
of these are retained when keeping all allowed irreps at
N⊥max = 2, 4, 6, 8, and 10, respectively. The net result is
that calculations in the 〈10〉12, 〈8〉12, . . . , 〈2〉12 spaces
require one to two orders of magnitude less computa-
tional time than SA-NCSM calculations for the complete
Nmax = 12 space.

Number of non-vanishing many-body Hamilto-
nian matrix elements – A very small fraction of the
SA-NCSM runtime is devoted to the eigenvalue proce-
dure. Since MFDn as well as the current implementa-
tion of LSU3shell, which utilizes the Lanczos parallel
eigensolver of MFDn, store the non-vanishing many-body
Hamiltonian matrix elements, the number of these ele-
ments in a specified basis dominates the storage require-
ments in our applications. For example, the number of
the non-vanishing matrix elements in the 〈6〉8-B space are
less or up to an order of magnitude greater than the M -
scheme counterparts, while less than the J-scheme ones,
as shown in Fig. 8 (see the Nmax = 8 entries) for 6Li
(observables obtained in the model spaces discussed here
for 6Li are presented in Ref. [18]) and in Table II for
12C. The 12C scenario probably realizes the complexity
upper limit of the SU(3) scheme, since it is actually an
exception rather than a typical performance. The reason
is that the dominant deformation in 12C is oblate and
this results in relevant subspaces that usually consist of
less deformed configurations of comparatively larger di-
mensionality. A more typical performance is expected
for a nucleus like 6Li (Fig. 8) with low-lying states of a
prolate dominant deformation, which is the deformation
favored by most nuclei.

Above all, as shown in Fig. 8, an important feature of
the SA-NCSM is that the number of the non-vanishing
matrix elements shows a slower increase with Nmax, as
compared to the J and M schemes. Clearly, this number
for the ‘B’ selection is 50%, 17%, 8%, and 4% of the cor-
responding J-scheme calculations in the complete Nmax

= 8, 10, 12, and 14 basis (it is 38%, 14%, 7%, and 3.5%
compared to the M -scheme basis). This indicates that
model spaces that are currently accessible on modern-day
computer architectures can reach higher Nmax within the
SA-NCSM framework (e.g., 〈2〉6 for 24Si [71]). Such an
efficient computational scaling with Nmax is essential for
the applicability of the SA-NCSM to larger model spaces
needed to address largely deformed and spatial cluster
configurations.

Dimension of model space (Hamiltonian matrix)
– Analysis of results reveals that the SA-NCSM accu-
rately reproduces corresponding complete-space results
by using only a fraction of the model space. For example,
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FIG. 8: (a) Matrix dimensions and (b) number of non-zero
(nnz) many-body matrix elements for 6Li and J = 1 as
functions of the Nmax cutoff for selected SU(3) model spaces
〈6〉Nmax-A, 〈6〉Nmax-B, and for the complete Nmax space for
the SU(3), J , and M schemes. The dimension for the J
scheme coincides with that for the SU(3) scheme; the total
M -scheme dimension is shown for all J ≥ 1 (for M = 1). The
nnz entries are quoted for an input NN interaction.

the 〈6〉8-A (〈6〉8-B) selection for 12C (Table II) produces
dimensions that range from 10% to 15% (from 21% to
27%) of the corresponding J-scheme NCSM basis dimen-
sions as well as from 0.5% to 1.6% (from 0.7% to 3.4%)
of the corresponding Nmax = 8 M -scheme NCSM ba-
sis dimensions (similar fractions are found for 6Li). The
smaller number of basis states needed in the SA-NCSM
for a successful description of these nuclear states points
to a faster rate of convergence achieved in the symmetry-
adapted framework, as shown in Refs. [18] and [63]. The
drastically reduced model spaces that are found sufficient
to describe nuclear properties of p-shell nuclei confirm the
physical relevance of the SU(3) basis for nuclear model-
ing.
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TABLE II: Matrix dimensions (“dim”, first row for each J)
and number of non-vanishing many-body matrix elements
(“nnz”, second row for each J) for 12C at selected values of
total angular momentum and their dependence on the model
space for Nmax = 8. For reference, the total M -scheme di-
mension at Nmax = 8 is 5.9×108 and the total number of
non-vanishing matrix elements in this basis is 4.95×1011. The
dimension in the complete space is independent of the cou-
pling scheme. The nnz entries are quoted for an input NN
interaction and, for the J = 1 and J = 4 J-scheme entries,
are estimates that should be accurate to better than 10%.

〈6〉8 complete space
J A B SU(3) J-scheme

J = 0
dim 2.8×106 4.0×106 1.9×107 1.9×107

nnz 1.0×1011 1.7×1011 2.5×1012 9.5×1011

J = 1
dim – 1.4×107 5.4×107 5.4×107

nnz – 1.9×1012 2.0×1013 1.3× 1013

J = 2
dim 1.0×107 1.6×107 7.9×107 7.9×107

nnz 1.2×1012 1.6×1012 2.2×1013 1.7×1013

J = 4
dim 9.4×106 2.0×107 9.1×107 9.1×107

nnz 1.7×1012 3.9×1012 3.9×1013 3.1× 1013

In short, we have shown that solutions of the SA-
NCSM with symmetry-dictated model-space selections
retain accuracy and are highly scalable on massively par-
allel architectures. They also require computations for
significantly reduced model-space dimensions and nnz
compared with the fixed-J basis of NCSM while enhanc-
ing access to converged nuclear properties.

V. SUMMARY

We have demonstrated the efficacy of the SU(3)-
scheme that utilizes symmetries to reduce the dimension-
ality of the model space and, more importantly, the num-
ber of non-zero many-body matrix elements through a
very structured selection of the basis states to physically
relevant subspaces without compromising the accuracy
of the ab initio NCSM approach.

While applications of the NCSM and SA-NCSM in
complete model spaces necessarily yield identical results
(indeed, this is how the SA-NCSM implementation was
validated), the intended use of the two approaches is com-
plementary. The NCSM offers the possibility to produce
complete-space results for light nuclei; the SA-NCSM
is intended for applications beyond the lightest nuclei
and to cluster formation where deformed structures are
known to dominate the nuclear landscape and symmetry-
guided selections are essential. In addition, the SA-
NCSM is suitable for applications to collective states and
rotational bands, including those that lie in high level-
density regions of nuclear spectra. In particular, the SA-

NCSM enables one to reach beyond currently accessible
model spaces, which are complete through an Nmax trun-
cation, by reducing such model spaces and augmenting
them with configurations beyondNmax that are necessary
to describe collective modes. We have shown that the
current implementation of the SA-NCSM, LSU3shell, is
highly scalable and efficiently manages the added compu-
tational time associated with tracking symmetries. More-
over, it exhibits reasonable scaling of the associated mem-
ory requirement with Nmax. These features make SA-
NCSM calculations feasible on present massively parallel
computer architectures. This, in turn, opens the path to-
ward no-core shell-model descriptions of largely deformed
nuclear states and cluster substructures as well as heavier
nuclei.
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[6] B. R. Barrett, P. Navrátil and J. P. Vary, Prog. Part.
Nucl. Phys. 69, 131 (2013).

[7] G. Hagen, T. Papenbrock and M. Hjorth-Jensen, Phys.
Rev. Lett. 104, 182501(2010).
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