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A two-band model with repulsive interband coupling and interband ¢ransport (potential) scattering
is considered to elucidate their effects on material properties. In agreement with previous work, we
find that the bands order parameters A o differ and the large is at the band with a smaller normal
density of states (DOS), Nn2 < Nn1. However, the bands energy gaps, as determined by the energy
dependence of the DOS, are equal due to scattering. For each temperature, the gaps turn zero at
a certain critical interband scattering rate, i.e. for strong enough scattering the model material
becomes gappless. In the gapless state, the DOS at the band 2 is close to the normal state value,
whereas at the band 1 it has a V-shape with non-zero minimum. When the normal bands DOS’
are mismatched, N,1 # Np2, the critical temperature 7. is suppressed even in the absence of
interband scattering, Tc(Nn1) has a dome-like shape. With increasing interband scattering, the
London penetration depth at low temperatures evolves from being exponentially flat to the power-
law and even to near linear behavior in the gapless state, the latter being easily misinterpreted as

caused by order parameter nodes.

PACS numbers: 74.20.-z, 74.20.Rp

I. INTRODUCTION

It is by now an accepted view that the interband scat-
tering in two-band +s superconductors suppresses the
critical temperature, i.e., has a pair-breaking effect, see
e.g. Refs.1-4. The interband coupling and interband
scattering are of a particular interest because both are
thought to play a special role in physics of two-band ma-
terials in general®3 and of the extensive family of Fe-
based compounds, in particular.® Theoretical description
of multiband situation requires multitude of parameters
to represent couplings along with intra- and inter-band
scatterings.” For this reason, we focus here on a model
with only interband coupling (repulsive, to have +s order
parameter) and with a nonmagnetic interband scattering.
Although such a model cannot be applied to real mate-
rials, it allows one to single out physical consequences of
the interband scattering which may help in data inter-
pretation.

II. APPROACH

Our approach is based on the quasiclassical version of
the weak-coupling BCS theory for anisotropic Fermi sur-
faces and order parameters A.® In the absence of mag-
netic fields we have for the Eilenberger Green’s functions
f(k,w) and g(k,w):

0=2Ag—2wf+1, 1=g%+ f2. (1)
(h = 1). Here, A(k) is the order parameter, k is the
Fermi momentum w = #7'(2l + 1) with an integer [ are
Matsubara frequencies. The scattering term I is given

by the integral over the full Fermi surface:

10 = [ Eapl@) Wk o)1 (@) - f)g(@)] (2

with W (k, q) being the probability of scattering from g
to k. The DOS p(q) is normalized: [ d*qp(q) = 1.
We use approximation of the scattering time 7:

/ 2q plq) W (k. q) () = (@) /7 3)

(...) stands for the average over the Fermi surface.
Clearly, the approximation amounts to the scattering
probability W = 1/7 being constant for any k and q.
However, for two well-separated Fermi surface sheets, the
probabilities of intra-band scatterings may differ from
each other and from processes involving k and g from
different bands. The effects of the inter- and intra-band
scattering upon various properties of the system are dif-
ferent. Hence, Eq. (3) is replaced with:®

/ q, p(a) Wk, @) (@) = no(®) /7. (4)

Here v, u = 1,2 are band indices; (...),, denotes averaging
over the v-band, and n, = [ d?q, p(q,) = N,/N(0) are
relative densities of states: ny +ng = 1.

We assume the order parameter taking constant values
A and Aj at each of the two bands. Writing Eq. (1) for
k in the first band, we have:

0=2A101 —2wfi
(@ = flah) + (D2 = Bilg) - ()

In zero field and with k independent A’s in each band,
f, g are k independent, i.e., (f), = f, and (g}, = g,:

0=A191 —wfi +n2(g1fo — f192)/2712 . (6)



The equation for the second band differs from this by
replacement 1 <> 2. The fact that 71 and 792 do not
enter the system (6) is similar to the case of one-band
isotropic material for which non-magnetic scattering has
no effect upon 7, (the Anderson theorem). It is the inter-
band scattering that makes the difference in the two-
band case, the fact stressed already in early work.?3 For
brevity, we use the notation 72 = 7 unless 71, 722 should
be explicitly distinguished from 7.
Egs. (6) are complemented with normalizations,

g+ fi=1, v=12, (7)

and by the self-consistency equation for the order param-
eter:

A(k) = 27TN,, Z< Vik, k') f

w>0

K.w) - ®

Here, N,, is the total density of states at the Fermi level
per spin in the normal phase; wp is the Debye frequency
(or the energy of whatever “glue boson”). Within the
weak-coupling scheme, the coupling potential V' respon-
sible for superconductivity is a 2 x 2 matrix of constants

Vi The self-consistency Eq. (8) takes the form:'°
WD
Ay =21T > mdufu, v=12, (9)
Lyw

Avy = N, V,,, are dimensionless coupling constants.

To separate effects of the interband coupling and scat-
tering from other possible multiband consequences, we
set A11 = A2 = 0, whereas A\12 (denoted as A in the text
below) is assumed negative. This leads to the order pa-
rameters A; and A, having opposite signs,>%!! ie. to
+s superconductivity, which presumably exists in many
Fe-based materials. Hence, we have

WD WD

Al = 271'TATL2 Z f2 ; AQ = 27TT)\711 Z f1 . (10)

Hereafter, we take A; as being positive. Since A < 0,
these equations imply negative Ay. Accordingly, in the
currents free phase f; > 0 and fo < 0; in particular, this
prescribes the sign of the square root if the normalization
(7) is used to express fs: fi1 = /1 —¢%, fo = —\/1 — g3.

As in original work by Eilenberger,® the energy func-
tional €2 can be constructed so that Egs.(6) and (10)
follow as extremum conditions relative to variations of

foand A,:

Nf(zo) _ 2A/1\A2 _ QWT%: { 21;27%[Auf1, + w(g, — 1)]

o

e (fifa + 9192 — 1)} - (11)

Here, g, are abbreviations for /1 — f2, and dg, =
—(fv/gv)df,. If f, are solutions of Egs. (6) and A, sat-
isfy the self-consistency Egs. (10), Q coincides with the

condensation energy Fg — Fy and can be used to study
thermodynamic properties of a uniform two-band system.

Equations (6), (10), and (11) form the basis of our
approach. Only in a few simple situations, the results
can be obtained in a closed form. In most cases, the
analytic approach, if at all possible, is too cumbersome,
and we resort to numerical solutions which are relatively
straightforward with available tools, such as Mathemat-
ica or Math-Lab.

III. CLEAN CASE

It is instructive to begin with the clean limit, 7 — oo,
although it has been considered in literature.'> 14 In this
case, we have from Egs. (6) and (7):

fv :Av/ﬂw 9v :w/ﬂva 53 :w2+A3' (12)

At T = 0, the sums in Egs. (10) are evaluated replacing
27Ty, — [7 dw that gives:

wp

A1 = AngAgl = Ani1Aql 13
1 n2 2H|A2| n1 1D|A1| (13)
Expressing the log-factors and subtracting the results,
one obtains for the ratio R = |Ag/Aq]:
R 1
AnR=— - —. 14
MInR=-—" =% (14)

Given n; 2 and A, this can be solved numerically for R.
E.g., for A = —0.6 and n; = 0.6, no = 0.4, we obtain
R =~ 1.27, whereas for ny = 0.4, ny = 0.6 we have R ~
0.79. Hence, the order parameter value is larger at the
band with a smaller DOS.'?
)
nifAl)’

For a given R, Egs. (13) yield:
1
— . 1
n2|>\|R) 18)

Hence, n1|A|/R and ns|A|R are effective coupling con-
stants for the first and second bands, respectively.

To evaluate the condensation energy at T' = 0, consider
the sum which enters the energy (11):

47rTZn1 {er (611)] 2n1/OwD(51 — w)dw

|A1] = 2wp exp (—

|Ag| = 2wp exp (—

w>0

AQ 2wD n1A2 A1A2
= Alln = L 16
”<2+ |A1|> > T (19

where Egs. (13) have been used. Hence, we obtain:

n1A2 +nyA2 A?

(Fs — FN)p—g = — Ny — 2 — = _Nn< 2 >' (17)
Recall: in isotropic one-band superconductors this en-

ergy is —N,,A%/2.



As T — T.(ny) (the critical temperature of a clean
material for a given n;) f, = A,/w and the sums in
Egs. (10) can be evaluated:

2wpe” Ay i I 2wpe”
) N 1

Al ’/TTCO

Multiplying these, one extracts the log-factor and the
critical temperature:

e Ty = 2wp exp(—l/j\),

Aq
b S VP Y
AQ = An " 7TTCO

(18)

— Ay, (19)

Hence,

A= [\l (20)

plays the role of the overall coupling constant.

It is worth noting that for a fixed coupling A, the criti-
cal temperature T as a function of relative DOS n; has a
dome-like shape; see Fig.1. Thus within the model of ex-
clusively interband coupling, a mismatch of bands DOS’
suppresses T, even in the absence of scattering. Qualita-
tively, this happens because for ni # no, the number of
unpaired carriers is proportional to |ny — ns.

Turning back to Egs. (18) one finds the ratio'4

Top) = AI\—f (21)

Compare this with Eq. (14) for 7' = 0 to see that in fact
As/A; depends on T

Next, we calculate A, with the help of the self-
consistency system (10). Note first that near Ty, 8, =

w(1+ A2/2w?) and, therefore,

A, A3
fuzi_

w 203

here A o (6t)Y/2, 6t = 1 — T/Tw. The sums in Eq. (10)
are:

(651)°/2, (22)

wp

0

2 71
WDe = = +6t,

27T 7¢(3)
e A Z Wb (23)

3 22
T W 4m2T5

and we obtain:

1 7¢3) A2
= AnoQo (5\+6t_8 ZTQA ,

1 7¢3)
AQ = )\nlAl (5\ + ot — . 2T(,20 A2) (24)

This system should be solved keeping terms of the order
not higher than (6¢)3/2. One substitutes Ay from the

second equation to the first to obtain:'*
16m2T2 6t 16m2T2 6t
A2 = ., A= —— D (25
=) 2= T @

Thus, the gaps ratio near T, is the same as at T,o.'6
The energy near T,y should be evaluated including
terms of the order (§t)2. In particular,
LB b sal
2 8 20?2 8wt

(26)

A straightforward algebra shows that terms of the order
A? ~ §t cancel out and the rest give:

167272 T\?
Fs—Fy=—-N(0 1) . (27
s G
Thus, the specific heat jump is:'%'7
Cs—Cn 48
= . 28
Cx Ir.— 7¢(3)™M"? (28)

The maximum value of this ratio 12/7((3) = 1.43 is
achieved if ny = ng = 1/2.

IV. EFFECTS OF SCATTERING

In general, in the presence of the interband scattering,
the system of Eqs. (6) and (10) can be solved only numer-
ically. Near T, however Egs. (6) can be linearized and f,
are readily expressed in terms of A,:

W 2ww't’

(A) = n1A1 + nglg,

W =w+1/27. (29)

Substituting this in the self-consistency system (10) one
obtains a system of linear homogeneous equations for
A2, which has non-trivial solutions only if its deter-
minant is zero. This gives an implicit equation for T:

0=1-2n1n9AB — nina)\>A(A+ B), (30)

A= 2 —¢<p0+1)

c0 Pc+1 1

oo () ee(l).
pet+1 1 1

B= ¢< ) ¢<2)’ pc_27TTc7" (32)

If ny = ny = 1/2 and A = |A|/2, Eq. (30) reduces to a
quadratic equation for In(T.y/T.). This gives

TcO_ pc+1 _ 1
wi= o (ZF) v (). e

which coincides with the equation for 7T, suppression
by impurities for a d-wave one-band superconductor, or
generally, for order parameters with zero Fermi surface
averages.'®19 In particular this means that for this case
T. turns zero at a critical value of interband scattering
time 7 = 1/A(0), one-half of the Abrikosov-Gor’kov’s
value for the effect of magnetic impurities upon one-band
s-wave isotropic superconductors.?0:2!

1
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1. Tc(nl,'r)

Consider now how the critical temperature changes
with changing n; and the scattering rate 1/7. Solving
Egs. (30)—(32), we have to take into account that the



clean case T,y depends on ni. To proceed with numerical
calculations in this particular problem, we normalize the
temperature:
T T
= — th= " . (34)
T.0(0.5) T.0(0.5)
Here, T.(ni,7) is the actual critical temperature and
T.0(0.5) is the maximum possible critical temperature
of the clean material reached at ny; = 0.5.
Also, we introduce the scattering parameters

« 1 1 P

P ot To(05) P w39

27T, T

c

so that p* is independent of n,. Next, we transform the
log-term in A of Eq. (31):

One should also replace p. — p*/t% in B of Eq. (32). The
numerical solutions of Eq. (30) for the critical tempera-
ture are given in Fig. 1.

T, () T =500 K

FIG. 1. (Color online) Tc(n1,p") for Tp = 500K, A = —0.6.
The red line at the dome base gives the critical value of p, =
1/27T¢0(0.5)7er at which the superconductivity is destroyed.
For n1 = 0.5, pi, = e 7/2 = 0.28 and the critical rate is
1/Ter = Ao(0), Ao(0) is the order parameter of clean material
with nqy =ng at T'=0.

Hence, not only T, is suppressed by the interband scat-
tering for a fixed n1, but the DOS asymmetry (n; — 0.5)
also causes T, suppression.

One thus concludes that for negative interband cou-
pling A, there are two mechanisms for the T, suppression
(pair breaking): the interband transport scattering and
the mismatch of the densities of states of two bands. In
particular, in the presence of interband scattering, the in-
terval of DOS mismatch, in which the superconductivity
exists, shrinks.

2. Te(7) for a fized n4

In the rest of the text, we consider system properties
for a fixed normal state DOS n;. It is more convenient
to employ reduced temperatures

T T
t = ——— 5 tC = 37
Teo(n1) Teo(n1) (87)
and the scattering parameters
1 1 Po
= = = . 38
po QWTTco(nl) e 27TTT¢: te ( )

Fig.2 shows the T.(pg) for n; = 0.5 and 0.7 obtained
by solving Egs. (30)-(32). Note that for nq; = ns, the crit-
ical value of pg is €77 /2 = 0.28. Note also that pg charac-
terizes the scattering along with the DOS’ mismatch. For
this reason, the critical value pg ; for ny = 0.7 exceeds
0.28 since Tx0(0.7) < Tep(0.5).

o n=05
A=06 n,=0.7
08 ’ .
o 06 b
h A=-0.6)
0.4 E
o \ O from calculated specific heat\ n,=0.7
‘ /
n,=0.5 |
0.0 1 1 1
0.0 0.1 0.2 0.3

Po

FIG. 2. (Color online) t. = T./Teo versus po according to
Egs. (30)-(32). Lower curves are for A = —0.6; the black line is
for the partial DOS n; = 0.5, the red line is for n; = 0.7. The
upper curves are for positive (attractive) interband coupling
constant A = 0.6. The dotes are obtained by independent
calculation of the specific heat jumps.

If A2 > 0, T is only weakly reduced by the inter-
band scattering. This behavior is qualitatively similar
to the one-band s-wave materials with anisotropic Fermi
surfaces, see e.g. Refs. 17, 10, 7. Note, that the T, sup-
pression is stronger for larger differences of ny and ns.

A. Order parameters

To find A, (T) we have to solve the system of Egs. (6)
and (10). Near T, one can do this analytically and verify
that A, o« /1. —T. We, however, resort to numerical
evaluation for arbitrary temperatures and use the ana-
lytical limits to verify the results. We use dimensionless
variables:

A, T 1

5, = b= py= .
27T To' 7 2xTor

(39)



The first of Eqs. (6) for fi, fo takes the form:

200
2

where [ is the Matsubara integer and g, = y/1 — f2. The
second equation is obtained by replacing 1 <> 2.
The first self-consistency Eq. (10) is, see Appendix A:

BT S (L
W 2 \I+1/2

The second is obtained by replacing 1 <> 2. Solving the
system of four Egs. (40) and (41) numerically we obtain
A, (T). Examples are shown in Fig.3. We note that, as
in the clean case, the order parameter is larger at the
band with smaller DOS at all T's and for all pg. One

d1g1 — frt(l+1/2) +

(f2g1 — fr92) =0, (40)

tf2> . (41)

0.4 T T T T T

FIG. 3. (Color online) |A, /27T, vs t = T/Teo for A = —0.6,
ny = 0.7 and a few values of po = 1/27T07.

sees that near T, A, x V8t as it should. This is shown
analytically for n; = no in Appendix B.

B. Density of states

As long as A, (T') are known, one can evaluate DOS’
N, as functions of energy € at any fixed T*:

N, (T, €) = n, N, Re[gy (w — i€)] . (42)
To this end, one can replace w — ie already in Egs. (6):
0=A1g1 —iefi +n2(91fo — f192) /27,

fi=y\/1-9i, fo=—\/1-g5. (43)

Dimensionless system of equations for g, becomes:

, n
0=10191 —iefi + QTpo(glﬁ —g2f1),

€
E =
27TTCO

(the second equation has 1 « 2). The total DOS is
N(T,e) = Ni(T,¢e) + No(T,¢). Note that DOS depends
on T via A,(T). Fig.4 shows examples of DOS for pa-
rameters given in the caption. The situation is similar

(44)

t=0.2 0.218 (a)
n,=0.7
10 1
p,=0 0.356
= 3,=0.218
= NeN N 3,=-0.356 '

P

<

pz4

Z p,=0.27

z

T s p,=0.26 |
< p,=0.25

p,=0.2
00 1 1 1 1
-0.4 -0.2 0.0 0.2 0.4

€

FIG. 4. (Color online) (a) The clean limit DOS as a function
of energy ¢ = ¢/2nTo for A = —0.6 and ny = 0.7 at t =
0.2. (b) The same as (a), but for the interband scattering
parameter po = 0.1. The bands order parameters for this
case are d;1 = 0.186, |d2| = 0.304; N(¢) has a typical two-band
shape, although the two maxima do not exactly positioned at
|61,2]. (c) The total DOS for a set of scattering parameters
po. Note that with increasing scattering, in the gapless state,
the DOS acquires a V-shape with a non-zero minimum.

to the Abrikosov-Gor’kov pair-breaking by magnetic im-
purities where the gap does not coincide with the order
pamabrneter.m’21

A remarkable feature of DOS’ is worth to note: al-
though Ay # |As|, the calculated energy intervals where
N,(g) = 0 (the energy gaps) are the same for the two
bands, see panel (b) of Fig. 4. This has been noticed time
ago by Schopohl and Scharnberg who studied two-band
model for superconducting transition metals.?

At Fig. 5b the positions of maxima DOS N (e) is shown
along with the bands order parameters |d1 2| to show that
while the first peak is positioned only slightly under 47,
the second peak is well above |d3| for all scattering pa-
rameters pg. This feature has to be taken into account
when, e.g., STM data on N(g) are interpreted.

It is worth noting that the energy dependence of DOS
N(e) in the gapless state, shown in the panel (c) of Fig. 4,
has a “V” shape which should not be confused with a sim-
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FIG. 5. (Color online) Peak positions of DOS N(g) vs po

marked as dotes along with the bands order parameters |d1 2|,
solid lines for ¢ = 0.2. The dashed lines are |01,2| for ¢ = 0.05.
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FIG. 6. (Color online) The density of states N normalized on
N, vs energy ¢ (in units 277) for ny = 0.7, t = 0.2 in the
gapless state with pg = 0.27.

ilar shape, e.g., in one-band d-wave materials. Another
feature worthy of notion is that in the gapless state (in
this case py > 0.25) the two-band signature is hardly
seen. This feature is pronounced in Fig. 6 where both Ny
and N, are shown for n; = 0.7. We also observe that
the band with no = 0.3 and a larger value of the order
parameter (|d2] = 0.083) has nearly constant density of
states Na(e)/N,, = 0.3 at all energies, close to the normal
state value, the fact with implications for, e.g., thermal
conductivity.

1. Zero-bias DOS Ny

At zero energy, the system (44) is simplified. Mul-
tiply the first equation by mp, the second by ns and

N(e=0)

0.24 0.26 0.28

FIG. 7. (Color online) At the left: the zero-bias DOS (nor-
malizeed to N,) as a function of pp for A = —0.6, t = 0.2,
and n1 = 0.5; in this case, p &~ 0.236 and p. = 0.26 so that
for 0.236 < po < 0.26 the superconductivity is gapless. At
the right: DOS(po) at zero energy for the same A and ¢, but
ny = 07

add them up: 0 = m10191 + nodage. Next, substitute
g2 = —(n101/n2d2)g1 back to the first of Egs. (44) to ob-

tain for gy:
20 262 1)
S 1- Bl L g2 (45)
nap nso; no0o

This equation can be resolved relative to g;. After simple
algebra one obtains the total zero-energy DOS Nj:

No _ mi(d2 =) % _ [(n303 —n30?)pf — 46263

N, Ja 16n2p30403
(46)
For ny = ny, 41 = —d5 = 9, this reduces to
No(po,T) 462(po, T)
—_— = 1—-—. 4
N, Re pe (47)

Clearly, the solution of p = 2|§(p)| separates the do-
main pyg < p where Ny = 0 and the superconductivity
is gapped, and the gapless region p < pg < pe-

An example of numerically evaluated DOS for n; = 0.5
at t = T/T.o = 0.2 is the left curve of Fig. 7. The lower
boundary of the gapless domain, p =~ 0.236, is ~ 0.91
of the critical value 0.26, close to the estimate for this
domain at T' = 0 for magnetic impurities of a single band
isotropic material.2°

Similarly one can extract an equation for p from
Eq. (46) for ny # no:

20162

_ 48
n161 + na|ds| (48)

ﬁ:



An interesting feature of Ny(g) seen at the right of
Fig.7) is a sharp drop near py = 0.28 at which ¢ = 0.2
corresponds to the critical temperature. This feature is
seen better yet on the plot of N as a function of tem-
perature at fixed py in Fig.8. We observe that the tem-

1.4
08
o I
= o < T T T T T
=0 €=0, n1—0.7§ 1
10 F 02 !
0'%0 0.1 0.2 0.3
Py
0.8 |- p,,=0.295
ZE | p1z‘=—0___2_9—|/
Z 06 -
+ p,,=0.285 T
Z L 1
0.4 | p,=0.28 i
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p,,=0.27
0.0 L i
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 8. (Color online) DOS Ny/N,, at zero energy vs reduced
temperature T'/T, for n1 = 0.7 and a set of scattering param-
eters indicated. Note that the temperature is normalized here
on actual T, unlike the most of the text where T'/T¢o is used.

perature interval of the gapless state near T, increases
with growing pg and covers all T’s when pg — p, with
p of this case slightly larger than 0.28. Another feature
worth noting is a fast drop of zero-bias Ny near T,, the
nature of which at this stage is not clear.

C. Energy and specific heat

Substituting the self-consistency Eqs. (10) in the func-
tional (11) one obtains:

S Sy [Auf + 2(g — 1)

Nn v,w
nin
—2nT lT : Z(fle +9192 —1). (49)
We normalize Q(T)/N,, on 472T2%:
F, - F,
oo AT v Ov)v 2 1 vy —1
TN, t;n [0, fy + 42U+ 1) (g, — V)]
+tninapio Z(flfQ + 9192 — 1). (50)

l

Since we can calculate §,, and f, at a given temperature,
it is an easy task to evaluate the condensation energy, see
Fig.9. The inset to this figure shows that the normalized
condensation energy at T = 0 scales approximately as 72,
a nearly universal property of all superconductors.?2:23

iONn)

(F&-F)/(4TeT

FIG. 9. (Color online) The temperature dependence of the
condensation energy normalized on 47r2TC20Nn for ny = 0.7
and a set of scattering parameters pg. The inset shows that
the normalized condensation energy at T' = 0 scales approxi-
mately as T2.
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FIG. 10. (Color online) The thermodynamic critical field
he(t) = He/Heo for ny = 0.7 and A = —0.6.

Having the condensation energy, one finds the thermo-
dynamic critical field H, = /87 (Fy — Fs). We normal-

ize it to the zero-T value H" = /4mN(0)Ap(0) for the
clean case and ny = ng to get:

}}IIC((O”;) =2v2e7/2(t), (51)

(&

he(t) =

where ®(t) is the RHS of Eq. (50). With this normaliza-
tion, the clean limit h.(0) = 1 for ny = na.

The specific heat can now be evaluated for fixed n; and
po- An example is shown in the upper panel of Fig. 11.
The lower panel of Fig. 11 shows the specific heat vs re-
duced temperature for a few n; of clean materials. Note
that the jump at T, in this case is given in Eq. (28) as a
function of nq, ma. On the other hand, T,.o(n1) is given
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FIG. 11. (Color online) The upper panel: the specific heat
vs T/Teo(0.7) for a few scattering parameters po. The lower
panel: the specific heat vs T/Tw(n1) for n1 = 0.5, 0.7 and
0.9. Inset: the specific heat jump at the critical temperature
calculated numerically (dots) and according to Eq. (52), the
solid line.

in Eq. (19) which allows one to evaluate the jump AC/C,,
as a function of T,g:

AC 48 1
= = n
Cp 1. 7¢(3)A2

TcO(nl) _3 -2
Too(0.5) A|> - (52

The inset in the lower panel shows this dependence. For
n1 = ng, analytic evaluation of the specific heat jump is
done in Appendix B for any scattering rate.

D. Penetration depth

If the ground state functions (called FO 4O in this
section) are known, one can study perturbations of the
uniform state by a weak magnetic field, i.e., the problem
of the London penetration depth. The perturbations,
fO . ¢M should be found from the Eilenberger equa-
tions which include gradient terms and magnetic field.®

We have for the first band:?
n
v ILf) = 2491 — 2wfi + ;11[91<f>1 — f1{g)]

+%[91<f>2 ~ filg)a], (53)

Here, v is the Fermi velocity, IT = V +271iA /¢ with the
vector potential A. The second equation is obtained by
1 <+ 2. Two equations for the “anomalous” functions f*
are obtained from these by complex conjugation and by
v — —v.8 Normalizations g2 + f, f}7 = 1 complete the
system.

We now note that the London approximation suffices
for the problem of weak field penetration. In this approx-
imation only the overall macroscopic phase 6 depends
on coordinates whereas the order parameter modulus re-
mains unperturbed. We thus replace A — Ae®(™) and
look for solutions in the form

fo= (F0 4+ fE90) e, g = (f9 + D)0,
gV:gl(/0)+g(1)7 V:172. (54)

v

Note that the first corrections f,gl)), gl(,l) depend on k (or
v) in the form v P with P = V0 +21A/¢o, so that their
Fermi surface averages vanish.

We obtain for the corrections in the first band:

g = f{w) = if{" o P2,

gg())g;l) + fl(())ffl) _ 0, (55)
where
A=Ay 4+ £ 200 + o f0 J2r (56)
1 1 1J1 11 2J2 12
W = w4+ 119" /2111 + nags” /21 (57)
contain only the unperturbed f(©, ¢, System (55)
yields:?4
w___iffeP 7%
VT O O LA CL)
2(A1f; 7 +wigr ) 1

The correction gél)

replacement 1 — 2.
To evaluate the penetration depth we turn to the Eilen-
berger expression for the current density,®

j = —4nle|N, T Im " (vg), (59)
w>0

for the second band is obtained by

where (vg) = (vg™M) since (vg(?)) = 0. Substitute here

g,(jl) of Eq. (58) and compare with the London relation

47 —1{ %o

—ji=—(\) 0 (=Ve+A) . 60

R €Y I
Here, ()\2);%1 is the tensor of the inverse squared pene-

tration depth; summation over k is implied. Hence, the
in-plane component of this tensor is:

1672e2N,, T 2,
A2 = D7€ Ant an,(vi)l,f”lg .

61
Tx 2 £ w!, ( )



A% (0,0)/A% (T,p,)

T/T

c0

FIG. 12. (Color online) The inverse square of the in-plane
penetration depth normalized on the zero-T' clean limit value
vs t = T/Teo for a set of scattering parameters po. In this

calculation (v2)1/(v2)2 = 1 and the intraband p11 = p22 = 0.

Only the unperturbed functions f(©, g(®) enter the pene-
tration depth; for brevity we dropped superscripts (0).
Since we know how to evaluate f’s at each tempera-
ture, the evaluation of the London penetration depth is
straightforward.

For numerical work we normalize A;2(T,po) on the
zero-T value for clean bands:

_ 8me? N, 8me2N,,
22(0,0) = 672@12:) =2 Znu<v§>u' (62)

Hence, we have for the dimensionless penetration depth:

—2 )‘;5 (T7 pO) Zu,w % <U2>Vf39u/77u
zx — ) = 2 ) (63)
Azz (0,0) >, n(v2)y
1 Ny GvPvv Ny goP12
v =145 s Py = . (64
e R TE Y Pur = g (O4)

Here, g, = /1 — f2, U denotes the value other than v;
in fact, A=2 depends only on the ratio of averaged Fermi
velocities.

Numerically evaluated A;2(t) is shown in Fig.12 for
scattering parameters indicated. In this particular calcu-
lation p11 = poo = 0; incorporating the intraband scat-
tering does not change qualitatively the behavior of the
superfluid density with respect to interband scattering
and will be presented elsewhere.

We note that for a weak interband scattering the low
temperature superfluid density (SFD) is nearly T inde-
pendent, as expected for gapped materials. With increas-
ing interband scattering, the flat domain of SFD shrinks
and disappears altogether in the gapless state starting
roughly with pg ~ 0.27. Remarkably, in the gapless
state SFD becomes close to linear, the behavior com-
monly ascribed to the order parameter nodes. To show
that this interpretation can be misleading, we plot SFD
for pp = 0.27 along with the known result for the d-wave
materials in Fig. 13.

T T T T T T T T T
10 kge — e =« — - = =0.7, p,=0.27 i
Sl — — clean d-wave
~ N = - = clean isotropic s-wave
>
=
()
[
(0]
©
i)
S osf -
h
(O]
(o}
>
(2]
0.0 ' ' ' ' '
0.0 0.2 0.4 0.6 0.8 1.0
TIT,
FIG. 13. (Color online) The superfluid density ps vs t =

T/Teo for ny = 0.7 and po = 0.27 of the gapless state normal-
ized on the value at T" = 0. Superfluid densities for s- and
d-wave clean cases are shown for comparison.

V. DISCUSSION

Many Fe-based compounds are thought to have +s
symmetry of the order parameter. By considering a
model with the interband coupling A2 < 0 (repulsion)
we assure that the bands order parameters A; and As
have opposite signs.

Using the quasi-classical Eilenberger approach, we for-
mulate equations governing two-band systems with the
exclusively interband coupling and interband scatter-
ing. To describe thermodynamic properties we con-
struct the energy functional, minimization of which gives
the two-band Eilenberger equations along with the self-
consistency equations. This allows us to evaluate the
condensation energy along with the specific heat and, in
particular, the specific heat jump at 7.

Except some limiting cases which can be dealt with
analytically, we resort to numerical solutions which have
advantage of being straightforward, especially when an-
alytic approach is too cumbersome if at all possible. For
completness we reproduce some of the known results
within our approach.

We focus on properties which are affected by the pair-
breaking character of the interband scattering. The
question of pair-breaking in Fe-based materials has been
raised in the past, basically on the basis of Abrikosov-
Gor’kov work on magnetic impurities, see, e.g., Refs. 25,
19. However, the source of the pair-breaking was not
specified, so that this approach was not generally ac-
cepted. Still, formally it seemed to describe a number
of observed properties such as the power-law low tem-
perature dependence of the superfluid density?® or the
experimentally observed scaling of the specific heat jump
AC o T3.27

Interband scattering by non-magnetic disorder have
qualitatively similar pair-breaking features. In fact, for



two bands with equal DOS’, the T, suppression is de-
scribed by the Abrikosov-Gor’kov Eq. (33) for a one-band
d-wave material. By evaluating the energy dependence
of the density of states, we show that sufficiently strong
non-magnetic interband scattering results in a gapless
state and we determine the range of scattering parame-
ters where this state emerges.

The presence of two bands, however, brings in an extra
feature: the critical temperature is suppressed not only
by the interband scattering but also by a mismatch of
bands DOS’ ny and ny. The T, dependence on nq has a
dome-like shape of Fig. 1, which suggests that the ubig-
uitous domes T.(z) at phase diagrams of, e.g., Fe-based
compounds (z is the doping variable) could be related to
changing with x of the DOS’ mismatch of bands involved.
The ability of the model with the interband coupling and
scattering to reproduce this dome structure is one of our
main results.

It is worth noting that the strong pair breaking regime
when T. — 0 in a two-band system with non-magnetic
interband scattering differs from the strong spin-flip scat-
tering by magnetic impurities. The point is that the
latter is always complicated by possibility of moments
ordering or by glassy and Kondo phenomena, which are
clearly absent for the transport interband scattering.

Properties of the gapless state in the two-band case are
richer than in the one-band Abrikosov-Gor’kov situation.
Interesting in particular are properties of DOS in the gap-
less state. We show that whereas the energy dependence
Ni(g) of the “major” band with larger normal state DOS
ny has the ubiquitous V-shape, the DOS on the “minor”
band is close to being normal. This suggests a high heat
conductance often seen in Fe-based compounds.

Turning to our results on effects of the interband scat-
tering upon the penetration depth, it is instructive to
recall the experimental situation. What is commonly
measured with high accuracy are changes in the Lon-
don penetration depth, AX(T) = A(T) — A(0). At low
temperatures, these are related to the superfluid density
ps = M0)2/XNT)% ~ 1 — 2AX/X(0). Tt is convenient to
analyze low-temperature behavior as AAN(T) ~ 1 — AT™.
According to conventional picture, the line nodes of the
order parameter result in a linear behavior, n = 1,
whereas fully gapped order parameters (e.g., s+4 or s4)
give nearly flat exponential variation, which in practice
is indistinguishable from n > 3.

In the presence of symmetry-imposed line nodes (e.g.,
d-wave), intensifying transport scattering causes mono-
tonic increase of the exponent from n = 1 to n = 2,30:31
whereas in the conventional s-wave (including multiband
S4+) the low temperature SFD ps(T) remains exponen-
tially flat (whereas T, does not change).

However, we show in this work that for fully gapped
s+ pairing, where potential interband scattering is pair-
breaking, the superfluid density evolves from exponen-
tially flat to nearly linear as shown in Figs.12 and 13.
The corresponding exponents in power-law fits would
change from n > 3 to well below n = 2. In fact, for
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a strong T, suppression, in the gapless regime, the entire
curve of ps(T) is surprisingly close to a clean d-wave de-
pendence, see Fig.13. Thus, in principle, one can change
the s-wave-like to the d-wave-like behavior of ps(T) just
by introducing disorder, resulting in a change of the in-
terband scattering. Interesting enough, such a behavior
has been seen in BaFesAsy doped with Co or Ni: the
exponent n decreased after irradiation.3?
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Appendix A: Self-consistency equations

Consider the first of self-consistency Egs. (10):

A ZQWTWZDfQ.

7|/\\n2 (A1)

Add and subtract to the RHS 27T >~ " (As/w) to have

QWTf:% —27TT§: (fj —f2> .

In the second convergent sum, wp can be replaced with
00, whereas for the first sum use the identity

(A2)

wp
2szw:i = % —1nT%, A= |Ayninz. (A3)
We then obtain:
Agln 10 VAL ViR
T W
= 27TT§ (iz — f2> .

w

(A4)

Appendix B: The case n1 = n2

In this case Ay = —Ay = A, f1 = —fa = f, and
g2 = g1 = ¢g. Examine first the situation near T:

A A3 A2 3A%
f:J_%J’?” =17 952 T gt (B1)
The self-consistency condition for this situation is
wp
A/X=-7T> f. (B2)



Substituting here f of Eq. (B1), one has

_ A D 3
A=-3 (AA—2A> , (B3)

with

- 2T L WD _ p+ 1
w 27rT ’
27rT 1 pe+1
D= = N . B4
z Ww( ;)

Here, p. = 1/2nT.7. Near T, only terms of the order
not smaller than (§¢)%/2 should be retained. Since A o
(6t)*/2, one can set T' = T, in the coefficient D. Hence,
one obtains:

2 2
A= (A+2). B5
5(13) ®5)
We now transform the log-term in A:

wWp wWp T T,

In— =1In In —

Dol MarTg T TC T
= = In ot B6
P <2) + = 3 + Tc + (B6)

where the definition of T,g, In(2wpe? /7To) = 2/|A|, has
been used. Next, we expand the psi-function term in A,

p+1 B pc+1 Pc 4 pc+1
o(258) = (2 )+ v (2 ) e )

11

Finally, using Eq. (33) for T,, we obtain

—167;,T3 (1-5v)ot, (BS)

where psi-functions are taken at (p. + 1)/2.
Now we turn to the functional (11):

A? =

Q 2A2

N—n————QnTZ{ Af +w(g—1)] -

£} o

Substituting here f of Eq.(B1) and A of Eq.(B8) we
obtain after straightforward algebra:

F.— F. 4 2T2 " ) 2
s B AT () bt (1—& ’) (56)2,
Nn ¢// 32/}// 2
(B10)

where the psi-functions are taken at (p. + 1)/2. The
specific heat jump follows:

B 24 pe” peil 2
o (- 5) (1-5) e

In the clean limit, this gives 12/7¢(3) = 1.43. Since T,
can be evaluated for each p., one can plot the jump vs
T./T.o, Fig. 11(b).

In fact, this behavior of AC/C,(T¢) is qualitatively
similar to the one-band d-wave (although there the clean
limit value is 2/3 of 1.43). One can associate this simi-
larity to the fact that in both cases (A) = 0.
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