

Exceptional service in the national interest

Interactions with INE regarding Updates for Am(III) Model for the WIPP Thermodynamic Model

September 21, 2015; Carlsbad, NM, USA

Yongliang Xiong
Sandia National Laboratories Carlsbad

This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Updating Am(III) Model

- Previous model was developed in the ionic strength range from 0.3 m to 5.0 m in NaCl solutions.
- Since the Recertification of the WIPP in 2009 (CRA-2009), new experimental data in the ionic strength range from 0.10 m to 6.60 m in NaClO₄ solutions have been produced at Florida State University (FSU) (e.g., Thakur, Xiong, Borkowski, and Choppin, 2014; Thakur, Xiong, and Borkowski, 2015).

Thakur, P., Xiong, Y.-L., Borkowski, M., and Choppin, G.R., 2014, Improved thermodynamic model for interaction of EDTA with trivalent actinides and lanthanide to ionic strength of 6.60 m. *Geochimica et Cosmochimica Acta*, 133:299-312.

Thakur, P., Xiong, Y.-L., and Borkowski, M., 2015, Improved thermodynamic model for the complexation of trivalent actinides and lanthanide with oxalic acid to high ionic strength. *Chemical Geology*, 413:7-17.

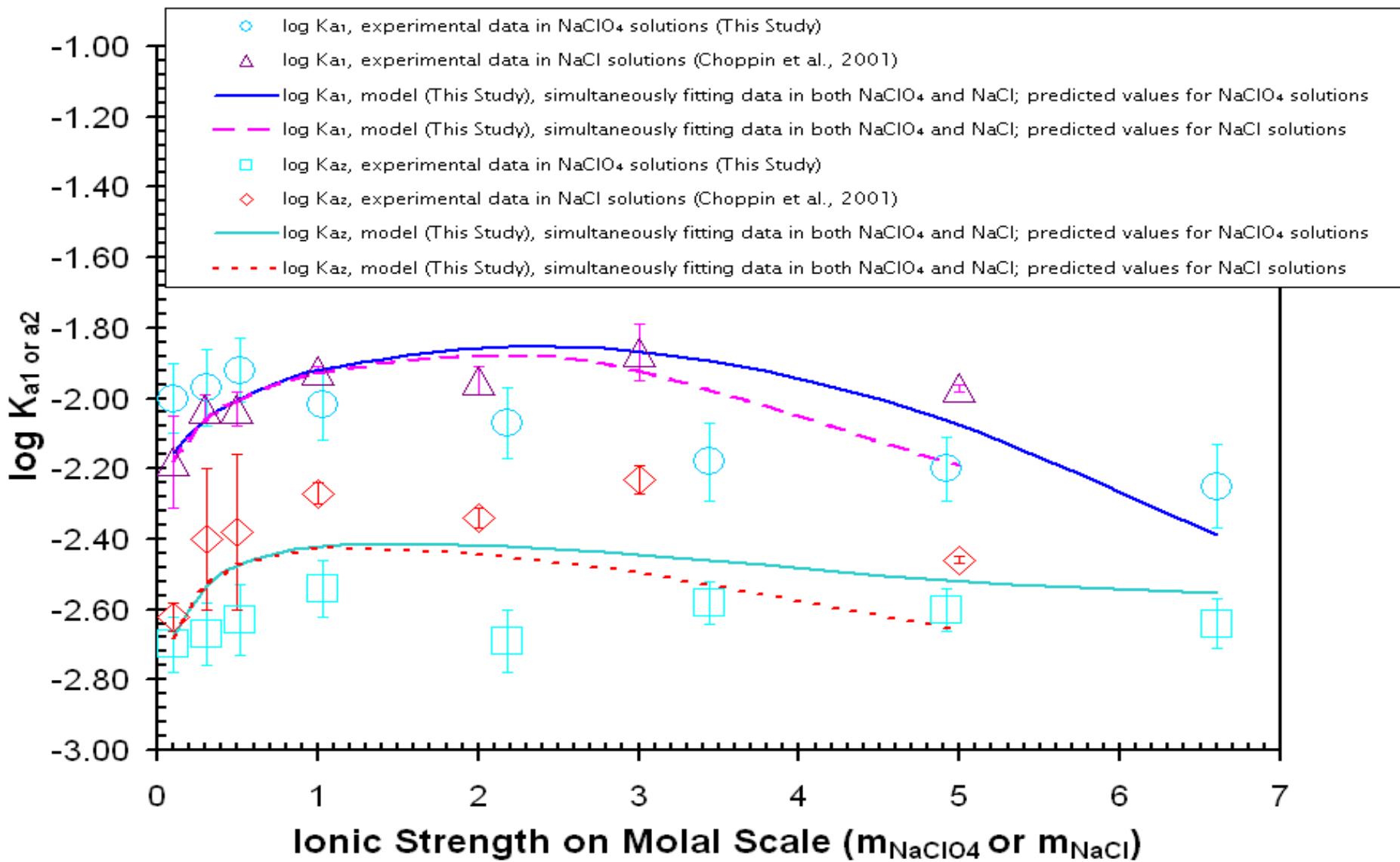
Am(III)-EDTA Model

- Na-H-Am(III)-Cm(III)-Eu(III)-Cl-ClO₄-EDTA System
- The materials for the following presentation are from Thakur, Xiong, Borkowski and Choppin (2014), and Thakur, Xiong, and Borkowski (2015), which are the collaborative work between Carlsbad Environment Monitoring and Research Center (CEMRC) and Sandia National Laboratories (SNL). Dr. Thakur is a research scientist at CEMRC.
- The experimental work was performed by Dr. Thakur at FSU.
- The Pitzer calculations were performed at SNL by Dr. Xiong.

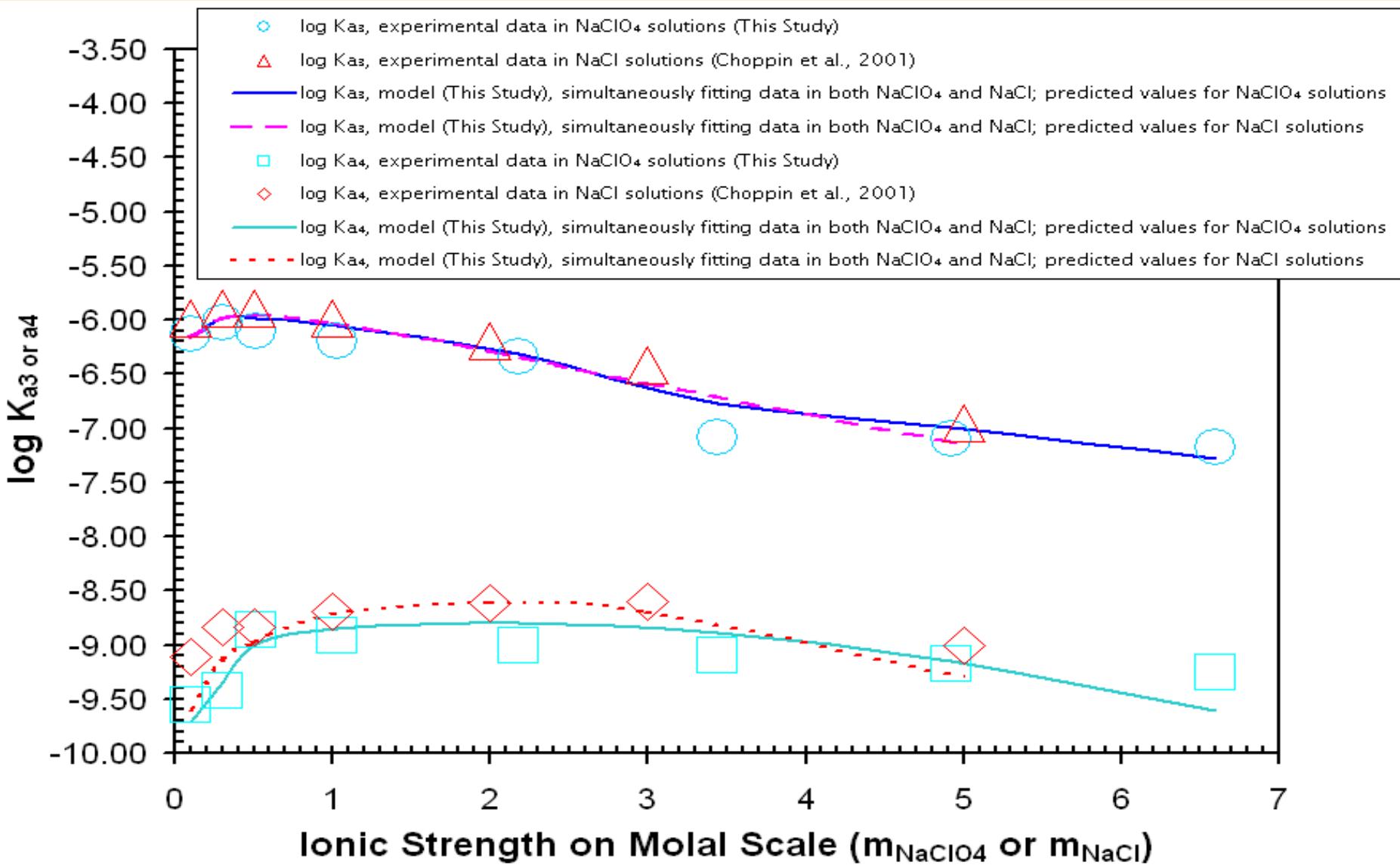
Table 4. Binary and Ternary Pitzer parameters for Am^{3+} , Cm^{3+} and Eu^{3+} complexation with EDTA used and calculated in the present work.

Binary Interaction Parameters					
Species <i>i</i>	Species <i>j</i>	$\beta^{(0)}$	$\beta^{(1)}$	C^Φ	Remarks
Na^+	H_3EDTA^-	-0.2345	0.29	0.059	Choppin et al. (2001)
Na^+	H_3EDTA^-	-0.2262	0.29	0.059	This study, simultaneously fitting of experimental data in both NaClO_4 and NaCl .
Na^+	$\text{H}_2\text{EDTA}^{2-}$	-0.1262	1.74	0.054	Choppin et al. (2001)
Na^+	$\text{H}_2\text{EDTA}^{2-}$	-0.1176	1.74	0.054	This study, simultaneously fitting of experimental data in both NaClO_4 and NaCl .
Na^+	HEDTA^{3-}	0.5458	5.22	-0.048	Choppin et al. (2001)
Na^+	HEDTA^{3-}	0.5908	5.22	-0.048	This study, simultaneously fitting of experimental data in both NaClO_4 and NaCl .
Na^+	EDTA^{4-}	1.016	11.6	0.001	Choppin et al. (2001).
Na^+	EDTA^{4-}	1.087	11.6	0.001	This study, simultaneously fitting of experimental data in both NaClO_4 and NaCl .
Na^+	ClO_4^-	0.0554	0.2755	-0.00118	Pitzer (1991).
Na^+	$\text{Am}(\text{EDTA})^-$	-0.2239	0.29	0.002	Choppin et al. (2001), fitting data in NaCl .
Na^+	$\text{Am}(\text{EDTA})^-$	0.4372	0.29	-0.01303	This study, fitting data in NaClO_4 for μ^Φ/RT of $\text{Am}(\text{EDTA})^-$ and $\beta^{(0)}$ of Na^+ - $\text{Am}(\text{EDTA})^-$
Na^+	$\text{Am}(\text{EDTA})^-$	0.4372	-0.6794	-0.01303	This study, simultaneously fitting data in both NaCl and NaClO_4 for μ^Φ/RT of $\text{Am}(\text{EDTA})^-$ and $\beta^{(1)}$ of Na^+ - $\text{Am}(\text{EDTA})^-$
Na^+	$\text{Cm}(\text{EDTA})^-$	0.3791	0.29	-0.01303	This study
Na^+	$\text{Eu}(\text{EDTA})^-$	0.4423	0.29	-0.01303	This study
H^+	ClO_4^-	0.1747	0.2931	0.00819	Pitzer (1991)
Am^{3+}	ClO_4^-	0.800	5.35	-0.0048	Felmy et al., (1990)
Am^{3+}	Cl^-	0.5856*	5.6*	-0.0166*	Konnecke et al., (1997)
Ternary Interaction Parameters					
Species <i>i</i>	Species <i>j</i>	Species <i>k</i>	θ_{ij}	ψ_{ijk}	
Na^+	H^+	ClO_4^-	0.036	-0.016	Neck et al., (1995)
Na^+	Am^{3+}		0.100		Fanghanel and Kim (1998)

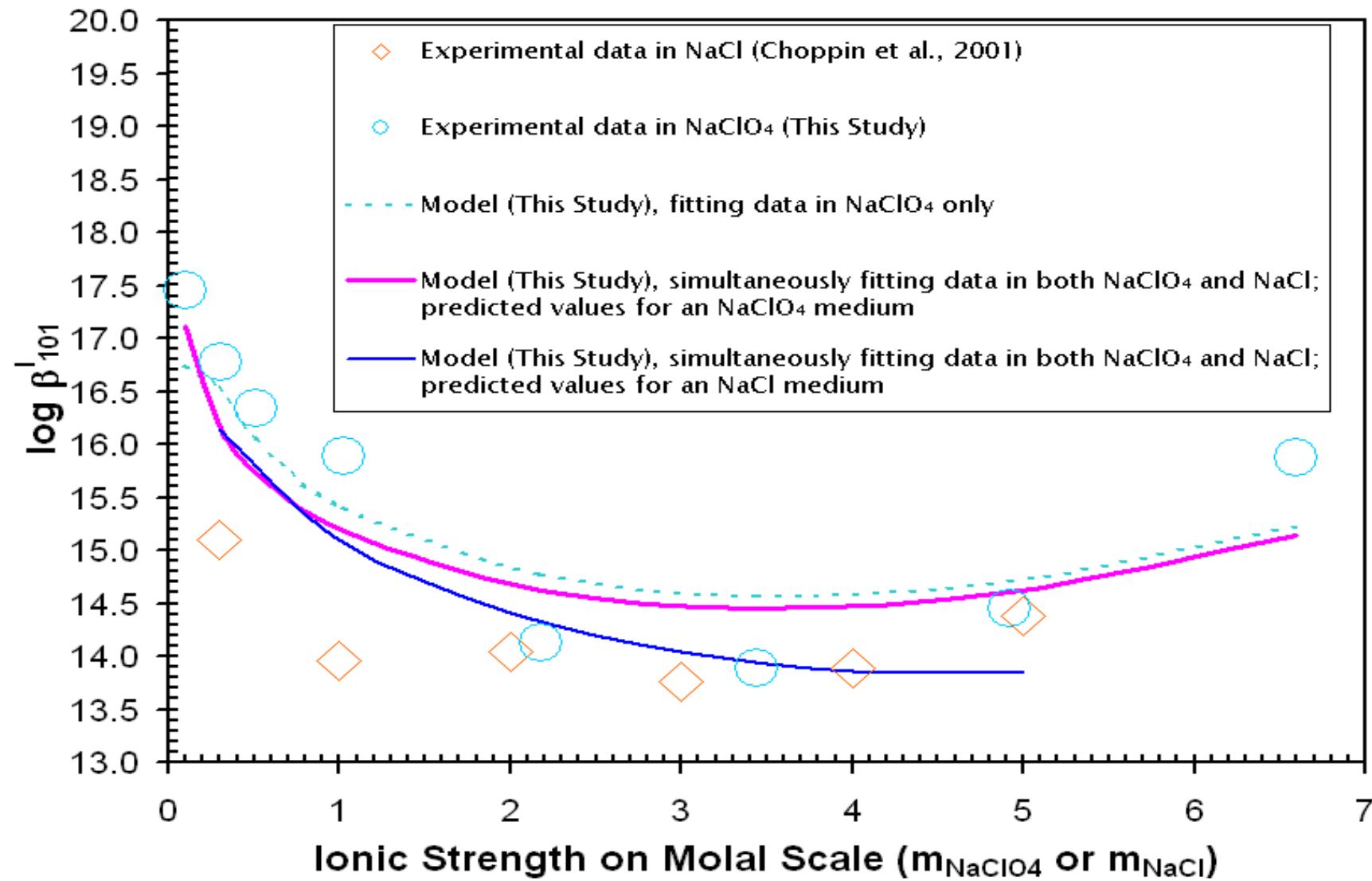
* Analogs for the interaction parameters for Am^{3+} - Cl^- .

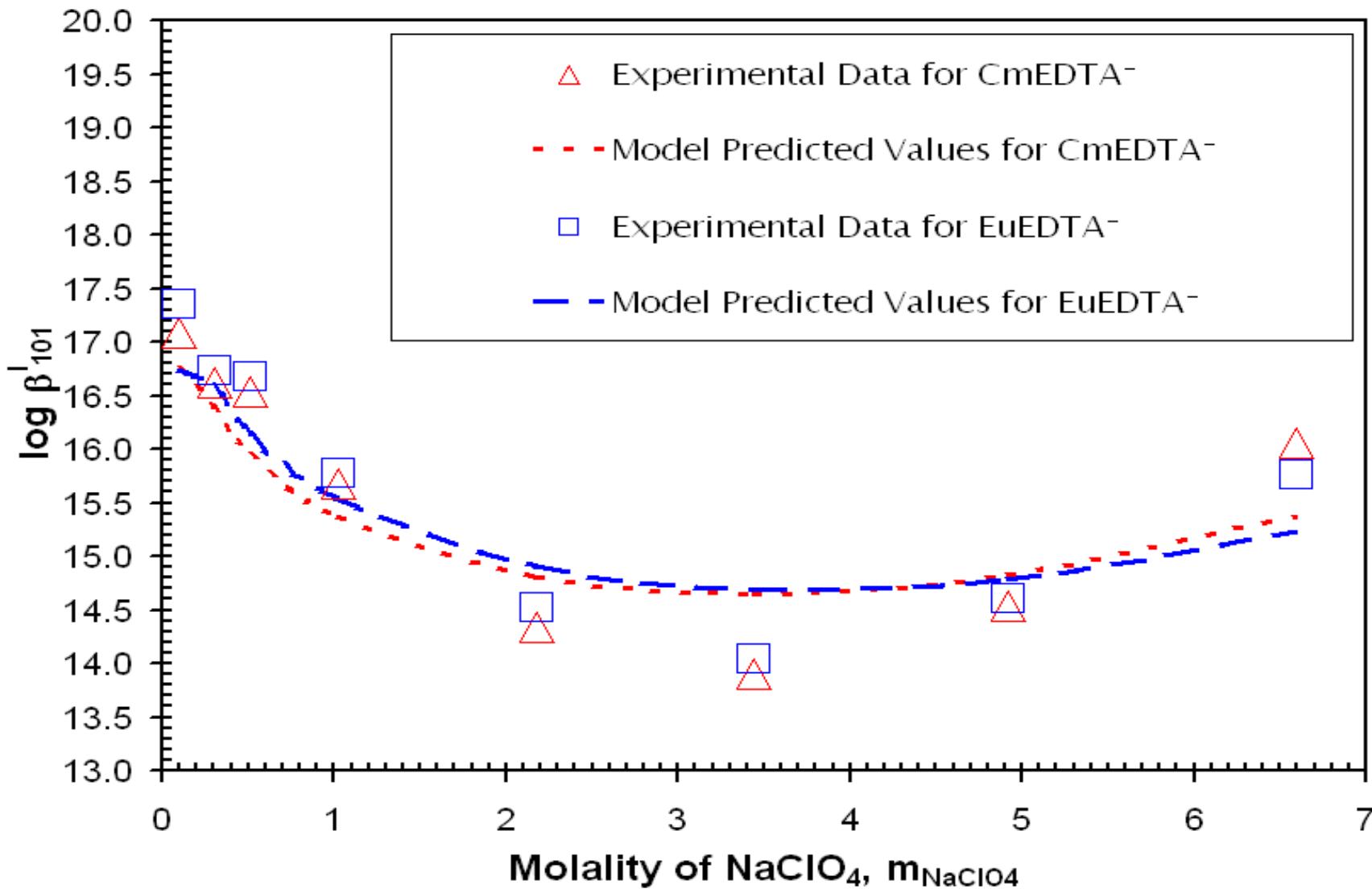

Table 5

Thermodynamic dissociation or formation constants (infinite dilution reference state) at 25 °C and 1 bar.


Dissociation or formation reaction	$\log K_a$ or $\log \beta_{101}$	μ°/RT for aqueous complexes ^A	References and remarks
$H_4EDTA \rightleftharpoons H^+ + H_3EDTA^-$	-2.40 ± 0.17	5.53 ± 0.39 (2 σ) for H_3EDTA^-	This study, simultaneously fitting data both in an NaCl medium from Choppin et al. (2001) and in an NaClO ₄ medium from this work
$H_3EDTA^- \rightleftharpoons H^+ + H_2EDTA^{2-}$	-3.13 ± 0.19	12.74 ± 0.44 (2 σ) for H_2EDTA^{2-}	This study, simultaneously fitting data both in an NaCl medium from Choppin et al. (2001) and in an NaClO ₄ medium from this work
$H_2EDTA^{2-} \rightleftharpoons H^+ + HEDTA^{3-}$	-6.85 ± 0.07	28.52 ± 0.17 (2 σ) for $HEDTA^{3-}$	This study, simultaneously fitting data both in an NaCl medium from Choppin et al. (2001) and in an NaClO ₄ medium from this work
$HEDTA^{3-} \rightleftharpoons H^+ + EDTA^{4-}$	-10.86 ± 0.08	53.53 ± 0.18 (2 σ) for $EDTA^{4-}$	This study, simultaneously fitting data both in an NaCl medium from Choppin et al. (2001) and in an NaClO ₄ medium from this work
$Am^{3+} + EDTA^{4-} \rightleftharpoons Am(EDTA)^-$	18.97	-232.324	Choppin et al. (2001); uncertainties not evaluated
$Am^{3+} + EDTA^{4-} \rightleftharpoons Am(EDTA)^-$	20.55 ± 0.18 (2 σ)	-235.48 ± 0.43 (2 σ)	This study, fitting data in NaClO ₄ medium from this work, using auxiliary parameters for EDTA acid from this work
$Am^{3+} + EDTA^{4-} \rightleftharpoons Am(EDTA)^-$	20.05 ± 0.40 (2 σ)	-234.33 ± 0.90 (2 σ)	This study, simultaneously fitting data both in NaCl medium from Choppin et al. (2001) and in NaClO ₄ medium from this work using auxiliary parameters for EDTA acid from this work
$Cm^{3+} + EDTA^{4-} \rightleftharpoons Cm(EDTA)^-$	20.43 ± 0.20 (2 σ)	-233.86 ± 0.46 (2 σ)	This study, fitting data in NaClO ₄ medium using auxiliary parameters for EDTA acid from this work
$Eu^{3+} + EDTA^{4-} \rightleftharpoons Eu(EDTA)^-$	20.65 ± 0.19 (2 σ)	-225.61 ± 0.44 (2 σ)	This study, fitting data in NaClO ₄ medium using auxiliary parameters for EDTA acid from this work

^A The standard dimensionless chemical potentials are consistent with the auxiliary μ°/RT of 0 for H_4EDTA and H^+ from Choppin et al. (2001); μ°/RT of -241.694 for Am^{3+} from Fuger and Oetting (1976); μ°/RT of -240.357 for Cm^{3+} from Fuger and Oetting (1976); and μ°/RT of -231.602 for Eu^{3+} from Haynes and Lide (2011).


Model Verification


Model Verification

Model Verification

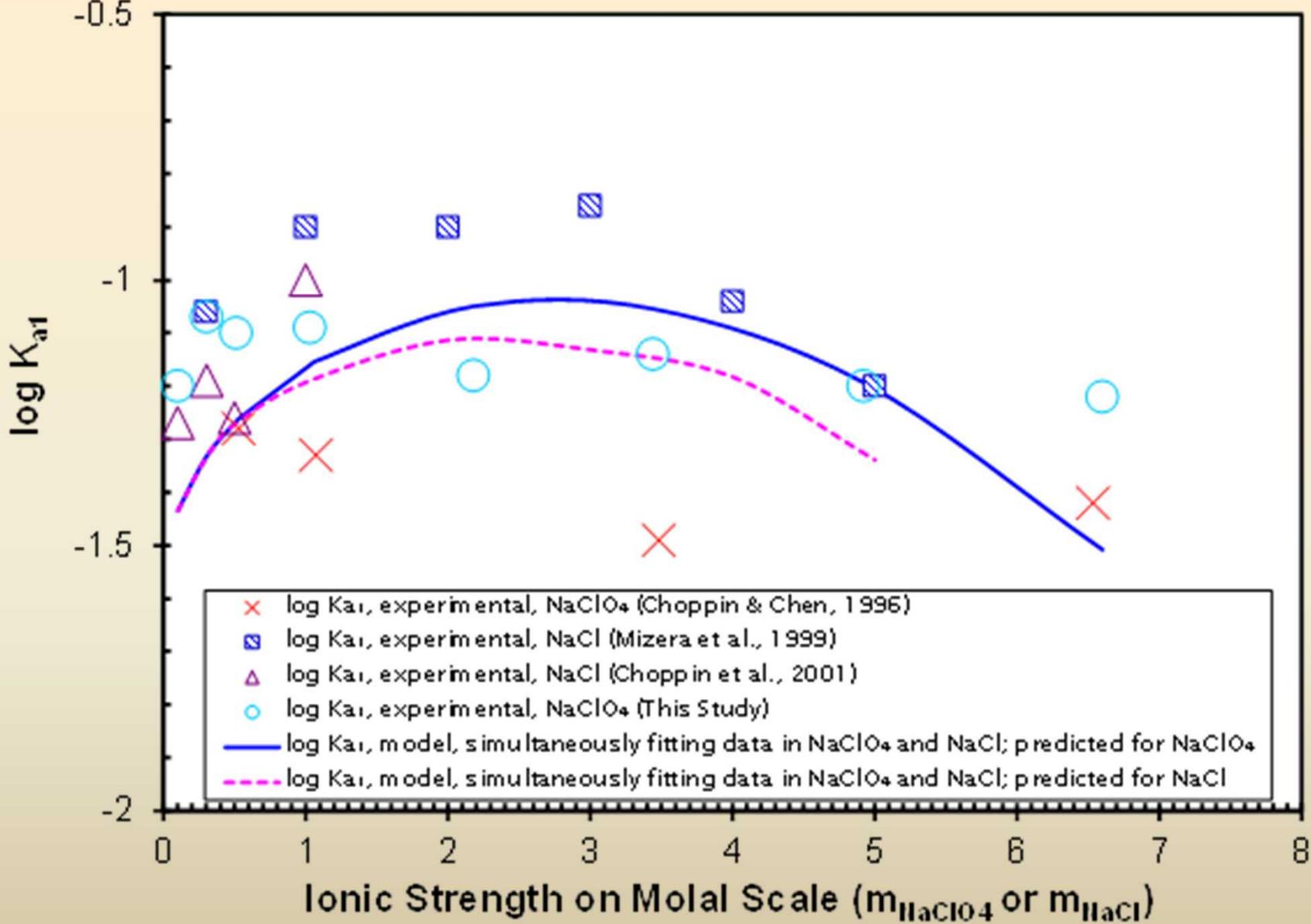
Model Verification

Am(III)-Oxalate Model

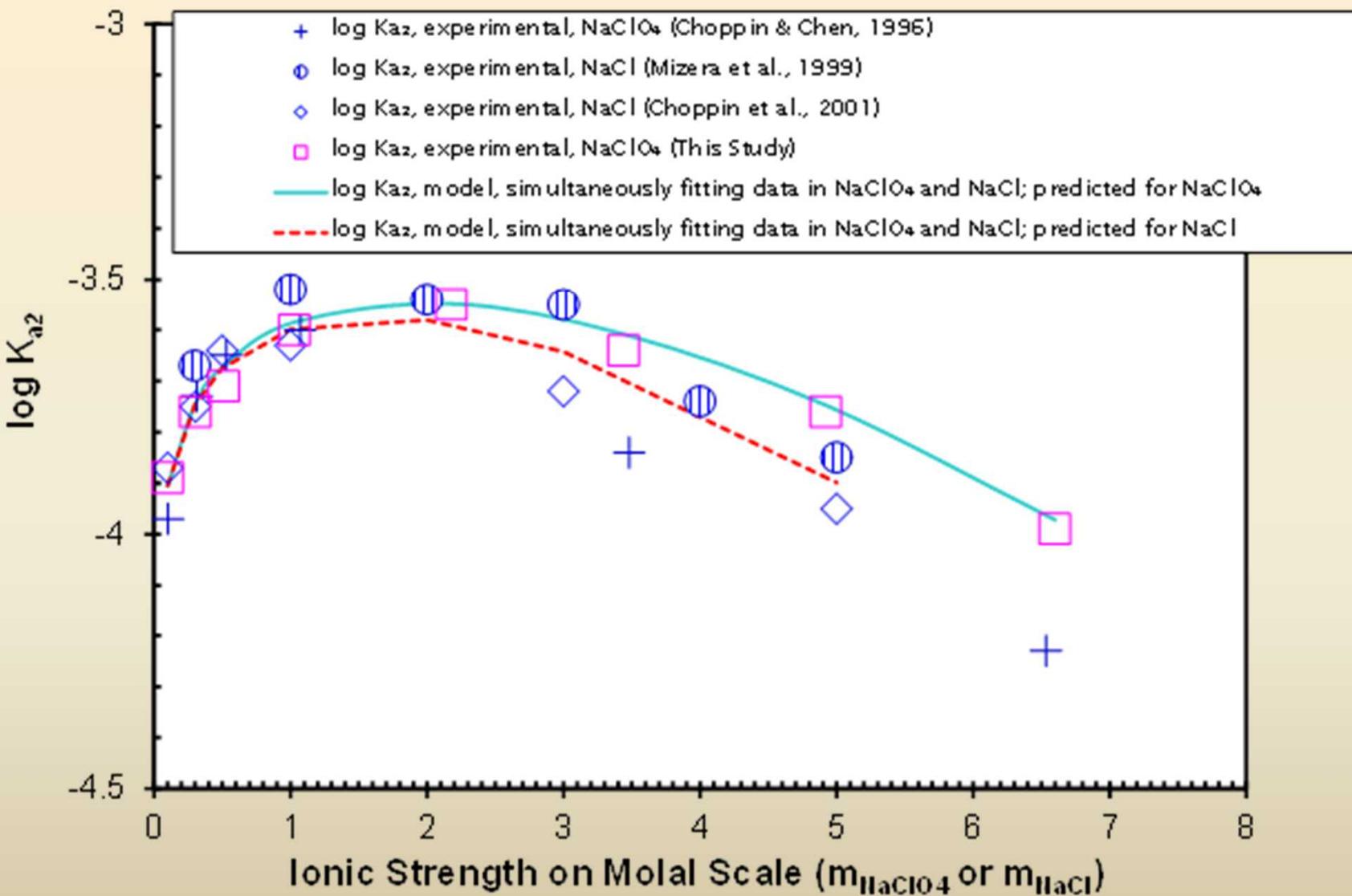
- Na-H-Am(III)-Cm(III)-Eu(III)-Cl-ClO₄-Oxalate System
- The current WIPP model contains only Am(Oxalate)⁺. The updated model will have Am(Oxalate)₂⁻, in addition to Am(Oxalate)⁺.

Table 5 Interaction parameters involving oxalate system

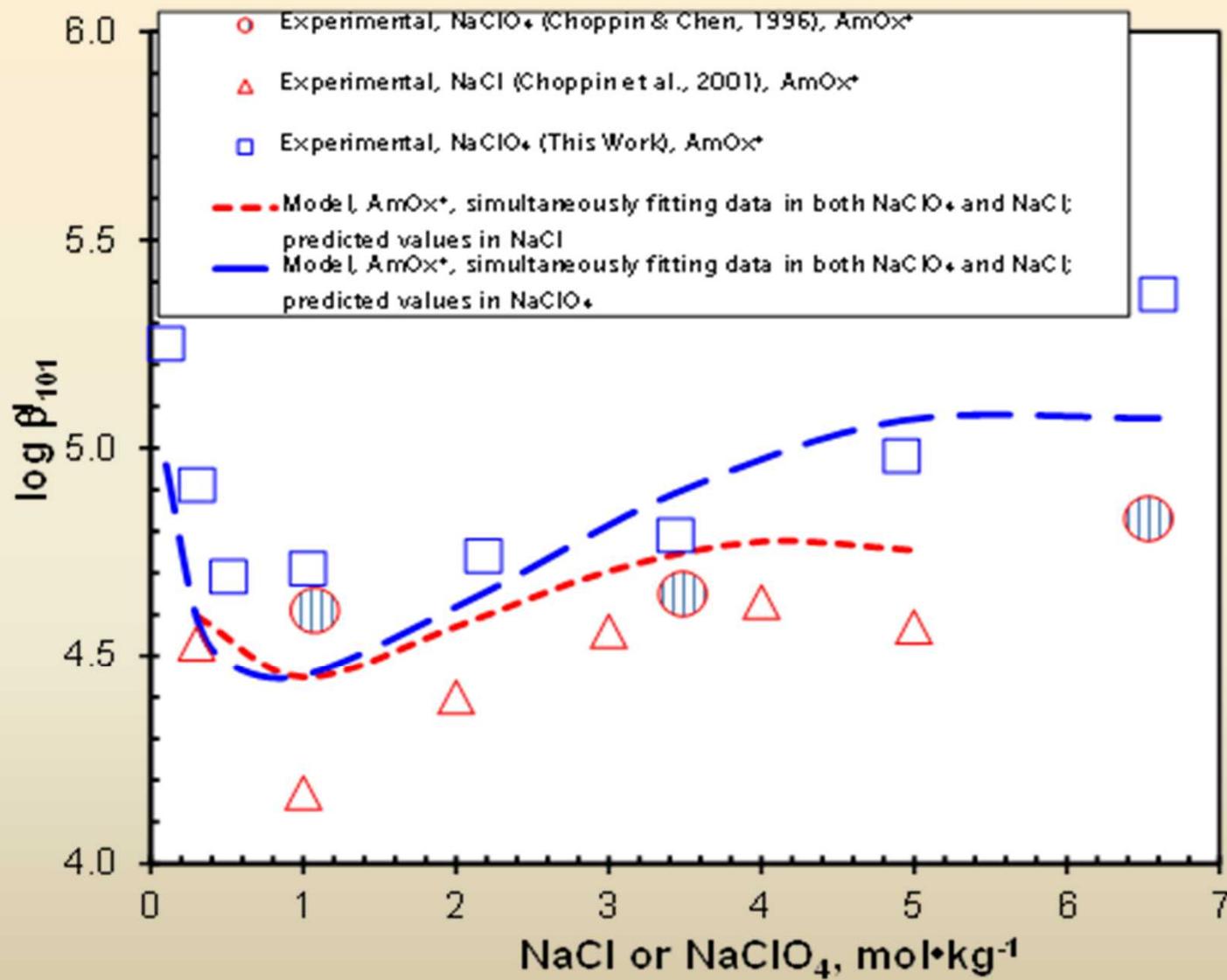
Binary Interaction Parameters					
Species <i>i</i>	Species <i>j</i>	$\beta^{(0)}$	$\beta^{(1)}$	C^ϕ	References and Remarks
Na ⁺	HOx ⁻	-0.2448	0.29	0.068	Choppin et al. (2001)
Na ⁺	HOx ⁻	-0.2886	0.29	0.068	This study, by simultaneously fitting data in both NaCl and NaClO ₄ for μ^0/RT of HOx ⁻ and $\beta^{(0)}$ of Na ⁺ -HOx ⁻
Na ⁺	Ox ²⁻	-0.2176	1.74	0.122	Choppin et al. (2001)
Na ⁺	Ox ²⁻	-0.2770	1.74	0.122	This study, simultaneously fitting data in both NaCl and NaClO ₄ for μ^0/RT of Ox ²⁻ and $\beta^{(0)}$ of Na ⁺ -Ox ²⁻
Na ⁺	ClO ₄ ⁻	0.0554	0.2755	-0.00118	Pitzer (1991)
AmOx ⁺	Cl ⁻	-0.9374	0.29	0.248	Choppin et al. (2001), fitting data in NaCl
AmOx ⁺	ClO ₄ ⁻	-0.7655	0.29	0.2424	This study, by simultaneously fitting data in both NaCl and NaClO ₄ for μ^0/RT of AmOx ⁺ , $\beta^{(0)}$ and C^ϕ of AmOx ⁺ -ClO ₄ ⁻
CmOx ⁺	ClO ₄ ⁻	-0.5326	0.29	0.1809	This Study
EuOx ⁺	ClO ₄ ⁻	-0.6063	0.29	0.2173	This Study
Na ⁺	Am(Ox) ₂ ⁻	-1.4349	0.29	0.3718	This Study, by simultaneously fitting data in both NaCl and NaClO ₄ for μ^0/RT of Am(Ox) ₂ ⁻ , $\beta^{(0)}$ and C^ϕ of Na ⁺ -Am(Ox) ₂ ⁻
Na ⁺	Cm(Ox) ₂ ⁻	-1.3302	0.29	0.3665	This Study
Na ⁺	Eu(Ox) ₂ ⁻	-1.3053	0.29	0.3665	This Study
H ⁺	ClO ₄ ⁻	0.1747	0.2931	0.00819	Pitzer (1991)
Am ³⁺	ClO ₄ ⁻	0.800	5.35	-0.0048	Felmy et al. (1990)
Ternary Interaction Parameters					
Species <i>i</i>	Species <i>j</i>	Species <i>k</i>	θ_{ij}	Ψ_{ijk}	
Na ⁺	H ⁺	ClO ₄ ⁻	0.036	-0.016	Neck et al. (1995)
Na ⁺	Am ³⁺		0.100		Fanghänel and Kim (1998)


Table 6

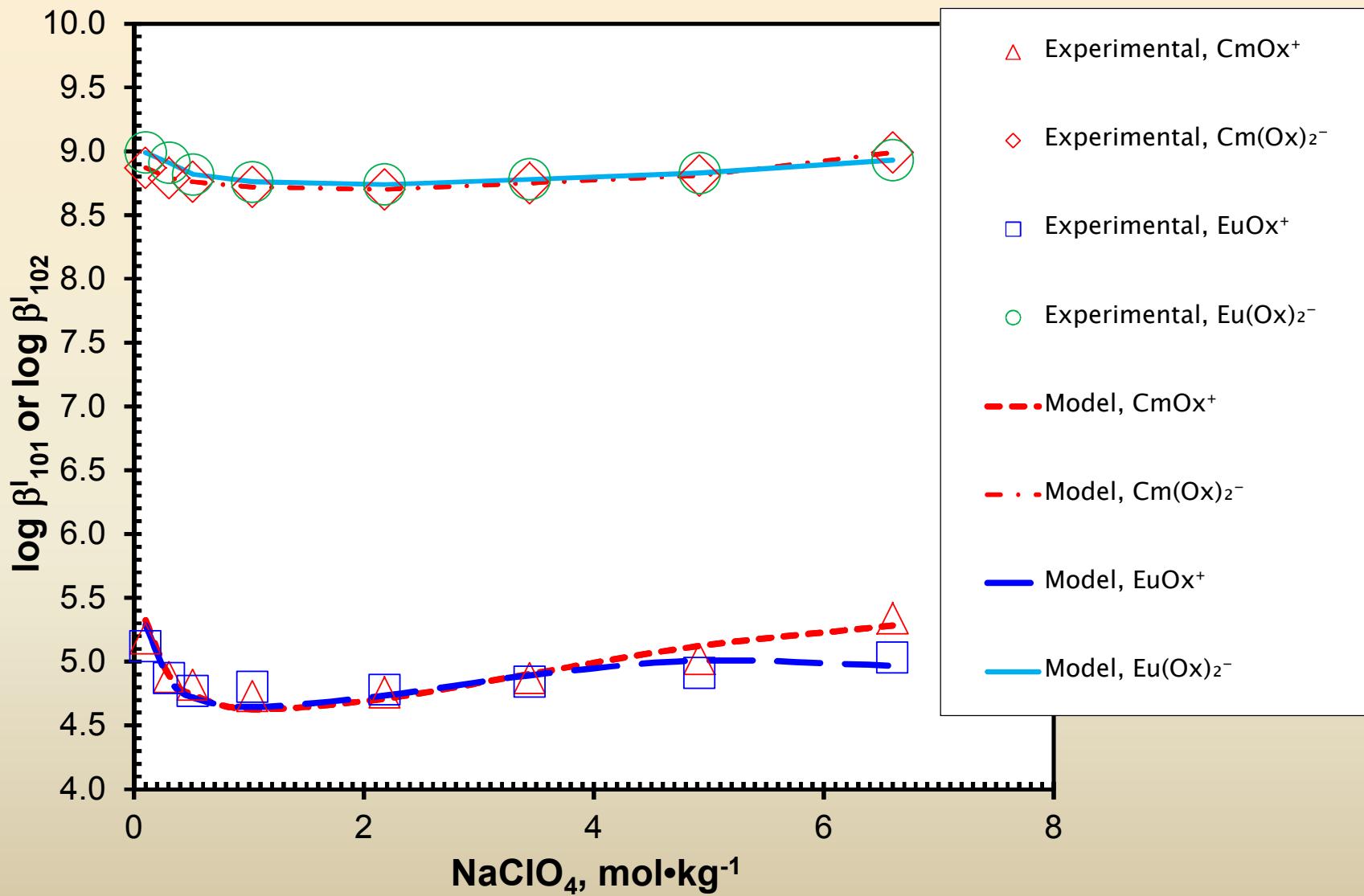
Thermodynamic formation constants (infinite dilution reference state) at 298.15 K and 1 bar obtained in this study.


Acid dissociation or formation reaction	log Ka or log $\beta_{101/102}$	μ^0/RT for aqueous complexes ^a	References
$H_2Ox = H^+ + HOx^-$	-1.39	3.21	Choppin et al. (2001) in NaCl solutions; uncertainties not evaluated
$H_2Ox = H^+ + HOx^-$	-1.71 ± 0.15 (2 σ)	3.93 ± 0.30 (2 σ)	This study, simultaneously fitting data both in NaCl media from Mizera et al. (1999) and Choppin et al. (2001) and in NaClO ₄ media from Choppin and Chen (1996) and those presented in the present work.
$HOx^- = H^+ + Ox^{2-}$	-4.26	13.02	Choppin et al. (2001) in NaCl solutions; uncertainties not evaluated
$HOx^- = H^+ + Ox^{2-}$	-4.36 ± 0.04 (2 σ)	13.96 ± 0.08 (2 σ)	This study, simultaneously fitting data both in NaCl media from Mizera et al. (1999) and Choppin et al. (2001) and in NaClO ₄ media from Choppin and Chen (1996) and those presented in the present work.
$Am^{3+} + Ox^{2-} = AmOx^+$	6.16	-242.85	Choppin et al. (2001) in NaCl solutions; uncertainties not evaluated.
$Am^{3+} + Ox^{2-} = AmOx^+$	6.30 ± 0.06 (2 σ)	-242.23 ± 0.14 (2 σ)	This study, by simultaneously fitting data both in NaCl medium from Choppin et al (2001) and in NaClO ₄ medium from Choppin and Chen (1996) and from this study, using auxiliary parameters for oxalic acid from this work.
$Am^{3+} + 2Ox^{2-} = Am(Ox)_2^-$	10.84 ± 0.06 (2 σ)	-238.73 ± 0.15 (2 σ)	This study, by simultaneously fitting data both in NaCl medium from Choppin et al (2001) and in NaClO ₄ medium from Choppin and Chen (1996) and from this study, using auxiliary parameters for oxalic acid from this work.
$Cm^{3+} + Ox^{2-} = CmOx^+$	6.72 ± 0.08 (2 σ)	-241.86 ± 0.18 (2 σ)	This study, by fitting data in NaClO ₄ medium, using auxiliary parameters for oxalic acid from this work.
$Cm^{3+} + 2Ox^{2-} = Cm(Ox)_2^-$	11.05 ± 0.09 (2 σ)	-237.89 ± 0.20 (2 σ)	This study, by fitting data in NaClO ₄ medium, using auxiliary parameters for oxalic acid from this work.
$Eu^{3+} + Ox^{2-} = EuOx^+$	6.67 ± 0.08 (2 σ)	-233.01 ± 0.17 (2 σ)	This study, by fitting data in NaClO ₄ medium, using auxiliary parameters for oxalic acid from this work.
$Eu^{3+} + 2Ox^{2-} = Eu(Ox)_2^-$	11.15 ± 0.09 (2 σ)	-229.36 ± 0.20 (2 σ)	This study, by fitting data in NaClO ₄ medium, using auxiliary parameters for oxalic acid from this work.

^a The standard dimensionless chemical potentials are consistent with the auxiliary μ^0/RT of -241.694 for Am^{3+} from Fuger and Oetting (1976); μ^0/RT of -240.357 for Cm^{3+} from Fuger and Oetting (1976); and μ^0/RT of -231.602 for Eu^{3+} from Haynes and Lide (2011).


Model Verification

Model Verification


Model Verification

Model Verification

Model Verification

Conclusions

- The Am(III) sub-model in the WIPP Thermodynamic Model will be updated to include the most recent, relevant publications from the collaborative work between CEMRC and SNL.