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Motivation
Divergence Free Lagrangian Motion

@ Given cell x at initial time ¢°

@ Compute nodal displacement from
velocity field u

@ Updated cell #(t1) has both temporal and
spatial errors

Violation of volume preservation

)
— dv #0
dt J () 7

Consider p = const

M,
Let cell mass M (t) = / pdV and cell density p,, = K(t),
#(t) k(2]
where |k(t)] = [, ;) dV

 Me(tY) |, M%)
D= Ty 7 ey~

Cannot maintain a constant density!
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Geometric Conservation Law (GCL)

di dv = u-nds
L0 E0)

Some recent work:
Use more Lagrangian points
@ Enforces GCL approximately

Lauritzen, Nair, Ullrich, A conservative semi-Lagrangian
multi-tracer transport scheme on the cubed-sphere grid, JCP
229/5 (2010).

Heuristic mesh adjustment procedure Adjusted point to emain
@ No theoretical assurance of completion S e
of the characteristic.

Arbogast, Huang, A fully mass and volume conserving Points adjusted  “side-
implementation of a characteristic method for transport ways” to the flow.
problems, SISC 28 (6) (2006).

x

i X Flow
Monge-Ampere trajectory correction
@ Requires nontrivial solution of the Pi; =P+ (t —ta)V;
nonlinear MAE det opi; _ 1
Cossette, Smolarkiewicz, Charbonneau, The Monge-Ampere ox -

trajectory correction for semi-Lagrangian schemes, JCP (2014).
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Optimization-Based Solution

Given a source mesh K (), and desired cell volumes ¢, € R™ such
that

m
D =19 and ¢,;>0vi=1,..,m
i=1
Find a volume compliant mesh K (Q2) such that
@ K (Q) has the same connectivity as the source mesh
@ The volumes of its cells match the volumes prescribed in co
© Every cell x; € K(Q) is valid or convex
@ Boundary points in K(Q) correspond to boundary points in K ()
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For Quadrilateral Cells We Need

Oriented volume of quad cell:

ci(K(Q) = % (=i 3)(Yi2—yia)H(@i2—zia)(yiz—yi1))

Partitioning of quad into triangles:

(1,2,4) r=1

) (23,4 r=
(ar,br7C7") - (17374) r=3
(1,2,3) r=a4.

Oriented volume of triangle cell:

r 1
£ (K(Q)) = 5(@iar (Wi =Y, ) =i, Wiar —Yiser )= Tiser (Yirbr ~Yisa,)-
Convexity indicator for a quad cell:

1 ifVE] € ki, |t >0
0 otherwise

T(K(Q) = {
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Optimization Problem

Objective:
Mesh distance  Jy(p) = %d(K(Q),f((Q))2 =p—-p3

Constraints:
(1) Volume equality Vi € K(Q), |ki| = o
(2) Cell convexity Vi € K(Q),Vt] € K4, [t >0

(8) Boundary compliance Vp; € 9Q,~v(p;) =0

Nonlinear programming problem (NLP)

p* = arg min{ Jo(p) subject to (1),(2), and (3)}
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Simplified Formulation

For polygonal domains
@ boundary compliance can be subsumed in the volume constraint
@ convexity can be enforced weakly by logarithmic barrier functions

Objective:
m 4
Mesh distance - log barrier .J(p) = Jo(p) — 8 _ > logt;(p)
i=1 r=1
Jo(p) = |p — PI7:
Constraints:

(1) Volume equality  Vk; € K(Q),|ki| = co,

Simplified NLP

p* = arg min{J(p) subject to (1)}
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Scalable Optimization Algorithm

Based on the inexact trust region sequential programming (SQP) method
with key properties:

@ Fast local convergence

@ Use of 'inexact’ solvers

@ Requires efficient preconditioner

Linear systems of optimization iterate p* are of the form

(vew "8 ) ()= (5 )

where C(p*) is a polynomial matrix function of coordinates.

@ ¢ > 0 small parameter 10~ 81,
@ vC(p*)VC(p*)T formed
ok ( I . 0 . . ) explicitly

0 (VCEVC([P") +eI) @ Smoothed aggregation AMG

Preconditioner

used for inverse
Heinkenschloss, Ridzal, A matrix-free trust-region SQP method for equality constrained optimization SIOPT 24/3

(2000).
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Scalablility Test

To challenge the algorithm we test performance as follows:

@ Start with uniform n x n mesh and advance to final time using velocity field
@ Apply algorithm to the deformed mesh at the final time using initial mesh volumes

Analytic Hessian

n SQP CG GMREStot. GMRESav. CPU % ML time
64 5 15 101 2.8 2.475 66
128 4 9 106 41 8.799 78
256 5 5 130 5.0 45.733 83
512 6 1 100 3.8 184.446 83
Gauss-Newton Hessian
n SQP CG GMREStot. GMRESav. CPU % ML time
64 5 5 64 25 1.666 63
128 4 4 79 3.8 6.466 82
256 5 5 126 4.8 43.241 86
512 6 6 100 3.8 183.697 86

@ Almost constant GMRES iterations

@ CPU per SQP iteration scales linearly with problem

@ CPU and inner CG iteration counts are mesh independent
@ The algorithm inherits its scalability from the AMG solver
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Lagrangian Motion

Swirling velocity field:

ity — [ (&) sin(mx)? sin(2my)
( 7t) - ( — cos (t?”) sin(ﬂ'y)zsin(2ﬂ'$) )

Use 8x8 mesh, T' = 8, forward Euler for trajectories.
Uncorrected

Exact Optimized
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Lagrangian Motion

Swirling velocity field:

u(x,t) = ( cos (&) sin(wx)? sin(2my) >

i
— cos (&) sin(7y)? sin(2mz)
Use 8x8 mesh, T' = 8, forward Euler for trajectories.

Exact Uncorrected Optimized
Shess
upPesy
Sputguny
O T
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Lagrangian Motion

Swirling velocity field:

[ cos (%) sin(mx)? sin(27y)
u(x.t) = ( —cosT(t%) sin(my)? sin(2m) >

Use 8x8 mesh, T' = 8, forward Euler for trajectories.

Exact Uncorrected Optimized
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Lagrangian Motion

Swirling velocity field:

u(x, t) = ( Cos(t?ﬂz_:in(m)z sin(27y) >

— cos (&) sin(7y)? sin(2mz)

Use 8x8 mesh, T' = 8, forward Euler for trajectories.

Exact Uncorrected Optimized
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Lagrangian Motion

Swirling velocity field:

u(x,t) = ( cos (%ﬂ) sin(mx)?sin(27y) >

— cos (&) sin(7y)? sin(2mz)

Use 8x8 mesh, T' = 8, forward Euler for trajectories.
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Improvements in Mesh Geometry

We observe significant improvements in the geometry of the corrected mesh:

@ The shapes of the corrected cells are close to the exact Lagrangian shapes
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Improvements in Mesh Geometry

We observe significant improvements in the geometry of the corrected mesh:

@ The shapes of the corrected cells are close to the exact Lagrangian shapes
@ The barycenters of the corrected cells are close to the exact barycenters

@ - cxact Lagrangian mesh
M - uncorrected
Y - optimized
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Improvements in Mesh Geometry

We observe significant improvements in the geometry of the corrected mesh:

@ The shapes of the corrected cells are close to the exact Lagrangian shapes
@ The barycenters of the corrected cells are close to the exact barycenters

@ The trajectories of the corrected cells are close to the exact Lagrangian
trajectories

Rotation Swirl

—=—uncorrected
0.7k corrected
—exact

—=—uncorrected ¥ 06
—k-corrected X i
—cexact ]
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Application to Semi-Lagrangian Transport

Given cell volume ¢; = [ dV/, cell mass m; = / p(x,t)dV, and cell
Kq Kq

average density p; = m;/c; attime ¢

Remap Lagrangian Update

K2 K,(2)

K@l

@ Define Lagrangian departure cells: ¢; — &;
e Remap from fixed grid to departure grid: p; — p;, m; = p;;
© Lagrangian update: m;(t + At) = 1y, pi(t + At) = my(t + At)/e;
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Application to Semi-Lagrangian Transport

Given cell volume ¢; = / dV, cell mass m; = / p(x,t)dV, and cell
Kq Kq

average density p; = m;/c; attime ¢

Remap Lagrangian Update

K,(2) K,(Q)

K@l

0 Define Lagrangian departure cells: ¢; — &;

@ Volume correction: & — &

© Remap from fixed grid to departure grid: p; — f;, M = pici

@ Lagrangian update: m;(t + At) =, pi(t + At) = my(t + At)/e;
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Application to Semi-Lagrangian Transport

Given cell volume ¢; = / dV, cell mass m; = / p(x,t)dV, and cell
Kq Kq

average density p; = m;/c; attime ¢

Remap Lagrangian Update

Ky(2) K,(2)

K@l

0 Define Lagrangian departure cells: ¢; — &;

@ Volume correction: & — &

© Remap from fixed grid to departure grid: p; — f;, M = pici

@ Lagrangian update: m;(t + At) =, pi(t + At) = my(t + At)/e;
We use linear reconstruction of density with Van Leer limiting for remap.
Dukowicz and Baumgardner, Incremental remapping as a transport/advection algorithm, JCP 2000.
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Semi-Lagrangian Transport Results

Constant density, rotational flow

Uncorrected Corrected Comparison

Forward Euler with At = 0.006.
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Semi-Lagrangian Transport Results

Cylindrical density, rotational flow

Uncorrected Corrected Comparison

Forward Euler with At = 0.006.
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Multi-Material Semi-Lagrangian Transport

Consider transport of volume fraction

of material s )
oT.
Bts +V- - (Tou)=0, s=1,...,5, W’
Lty T WV Jraa()]
Tsi(t) = = =
Fow @ Imi(®)] -
3 material, swirling velocity e

ol =20 Tl il
’Qs - i=1 Ts,z Ki
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Conclusions

Presented a new approach for improving the accuracy and physical
fidelity of numerical schemes that rely on Lagrangian mesh motion

@ Optimization-based volume correction
@ Is computationally efficient
@ Provides significant geometric improvments in corrected meshes
@ Enables semi-Lagrangian transport methods to preserve volumes
and constant densities

@ Future work

@ Further development of mesh quality constraints and rigorous
enforcement of mesh validity
@ Investigate utility of algorithm for mesh quality improvement
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