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Vacuum Arcs?
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Simplified schematic of the LBNL Mevva II ion source, from Ian 
Brown, “Vacuum arc ion sources: A review”, XXVth ISDEIV, 
Tomsk, Russia, 2012.

CLIC accelerating cavities.

Sprytrons. Taken from B M Coaker, C Bell, R J Seddon, and J S 
Bower, “Miniature triggered vacuum switches for precise initiation of 
insensitive loads in demanding environments”, 39th ICOPS, 
Edinburgh, UK, 2012.

Also: space applications, high 
voltage breakdown in vacuum 
electronics.



Outline

3

I. Cartoon of Vacuum Arc
II. Physics Modeling Requirements
III. Direct Simulation Monte Carlo (DSMC)
IV. Particle-in-Cell (PIC)
V. Combined PIC-DSMC
VI. Surfaces
VII. Circuits
VIII. Bringing it all together



Cartoon of Vacuum Arc Discharge Evolution
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(1) Initial electrons are extracted from the cathode.

V = 0 V = Vhigh

d = separation distance

Initial constant field E0 = Vhigh/d.
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Cartoon of Vacuum Arc Discharge Evolution
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(1) Initial electrons are extracted from the cathode.
(2) Electrons accelerate and some find a neutral to ionize. 

(There is no perfect vacuum. Cathodes are imperfect.)

e- + N  e- + N+ + e-
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Cartoon of Vacuum Arc Discharge Evolution
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(1) Initial electrons are extracted from the cathode.
(2) Electrons accelerate and some find a neutral to ionize. 

(There is no perfect vacuum. Cathodes are imperfect.)
(3) Ions are created near the cathode (where ionization 

energy is reached) and move slowly to the cathode 
while electrons stream to the anode.

e-

N+

e-

Unlike higher pressure systems, there 
is no multiplicative electron growth 
across the gap.

V

x
0

Vhigh

e- has reached 
ionization 
energy peak



Cartoon of Vacuum Arc Discharge Evolution
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(3) Ions are created near the cathode (where ionization 
energy is reached) and move slowly to the cathode.

(4) A cathode plasma begins to grow due to accumulation 
of ions near cathode surface. 
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Cartoon of Vacuum Arc Discharge Evolution
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(4) A cathode plasma begins to grow due to accumulation 
of ions near cathode surface.

(5) Additional growth occurs due to secondary electron and 
neutral emission from ion impact on cathode. A 
multiplicative surface-based process takes place 
growing the cathode plasma.

N+

e-

e-

N+

N+

N+

V

x
0

Vhigh

e-

N Growth factors:
• Ion impact leads to increased 

neutral and electron emission.
• Surface heating leads to increased 

neutral and electron emission.
• Increased neutral density leads to 

increase in ions due to ionization.
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Cartoon of Vacuum Arc Discharge Evolution
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(5) Additional growth occurs due to secondary electron and 
neutral emission from ion impact on cathode. A 
multiplicative surface-based process takes place 
growing the cathode plasma.

(6) Plasma density increases to the point it modifies the 
local field.
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Cartoon of Vacuum Arc Discharge Evolution
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(6) Plasma density increases to the point it modifies the 
local field.

(7) Explosive growth occurs as the field in the cathode 
sheath achieves Fowler-Nordheim (cold field emission) 
threshold. Plasma size and density grows to form 
conducting path  arc.

V

x
0

Vhigh

Enormous surface field.



Physics Modeling Requirements
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 Electrostatics.
 Kinetic description, especially for electrons.
 Electron chemistry (elastic collisions, ionization, excitation, 

photoemission).
 Neutral-ion elastic collisions.
 Photoemission / photoelectric current.
 Driving circuit.
 Surface response to fields, temperature, ion impact.

At SNL, we use some combination of:
 Direct Simulation Monte Carlo (DSMC): collision framework.
 Particle-in-Cell (PIC): couples charged particles and fields.
 Finite element method for electrostatics. Other treatments 

recommended if you can do so (e.g., finite difference method on 
a Cartesian mesh).



The Boltzmann Equation

12

The particle methods we use generate solutions to the Boltzmann 
equation,

where
f(x, v, t) = distribution function in phase space,
x = particle location,
v = particle velocity,
F = external applied force, and
(∂f/ ∂t)coll represents changes due to particle collisions.

For example,                                    .

In 3D the Boltzmann equation is 7-dimensional (!).
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The Boltzmann Equation
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Repeating: in 3D the Boltzmann equation is 7-dimensional (!).

We discretize the Boltzmann equation in space and time. We 
discretize the spatial portion of (x, v) phase space by employing a 
mesh. We discretize in time by using a time integration method 
over discrete time steps tn, tn+1, … This effectively reduces the 
problem to evolving the velocity distribution function in each cell 
and over each time step:

where the second line demonstrates how we generally use “f” to 
mean the velocity distribution function (vdf). We also often use f
as if it were an energy distribution function. And we often drop 
the explicit connection to the discretization.
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The Boltzmann Equation
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We approximate f(v) in each cell by a discrete set of particles with 
individual velocities. Because the physical number of particles in a 
cell can be quite large, we will further approximate the vdf by 
assuming each computational particle (or notional particle) 
represents some number of real ones. This ratio is referred to as 
the “macroparticle weight” or just “particle weight”, wp.

The basic solution methodology advances a set of computational 
particles in a mesh from one discrete time to another accounting 
for particle motion, particle forces, and particle collisions. Unlike 
continuum methods where densities, velocities, energies, etc., are 
the primary “solution variables”, the primary “solution variables” 
in the kinetic methods we use are particle positions and particle 
velocities. Everything else is derived from this.



PIC is focused on part of the Boltzmann equation,

where PIC typically assumes collisionless particles (RHS = 0).
Replacing F with electric and magnetic forces,

gives us the Vlasov equation with q the particle charge, E the 
electric field, and B the magnetic field. We consider the 
electrostatic (ES) case where we assume B = 0,

and will couple to Poisson’s equation, although there are many 
electromagnetic (EM) PIC codes that couple to Maxwell’s 
equations and solve for a consistent B.

Particle-in-Cell (PIC)

15
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In addition to integrating charged particle trajectories, we need to 
solve Poisson’s equation,

where ε0 is the permittivity of free space, ni,total is total ion 
number density (assuming only singly ionizations) and ne is 
electron number density. We generally don’t care about V directly 
but need to compute the electric field,                .

There are many ways to solve Poisson’s equation. If using a 
Cartesian mesh with fixed spacing a finite difference method 
(FDM) is a great choice, e.g., in 1D,

where k subscripts indicate the values at grid point k and Δx is the 
mesh spacing. Note the lack of a time derivative.

Particle-in-Cell (PIC)
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Much of the diversity of PIC methods involves evaluating the RHS 
of

in different ways. Methods are “nearest neighbor”, “cloud-in-
cell”, etc., and they resolve to being higher order approximations 
to the discrete particle charge distribution. Higher order 
approximations require larger computational stencils.

Once V is available, there are a number of ways to compute E at 
the particle locations. Again, they are of different orders and 
require growing stencils for better approximations.

There are compatibility constraints between the charge-to-grid 
and field-to-particle interpolations.

Particle-in-Cell (PIC)
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 Because of the elliptic Poisson equation the overall method is 
globally coupled and requires solution of a global linear system. 
This has considerable impact on parallel implementations and 
performance. It can also cause instantaneous “action-at-a-
distance”. For finite perturbation speed you need to use an EM 
method.

 The methodology described here is explicit in time. There are 
methods that are semi-implicit, and even fully implicit.

 Particle weight wp is used for computing charge density, but not 
inertial response (e.g., it’s not really a “heavy” particle).

Particle-in-Cell (PIC)
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Particle-in-Cell (PIC)
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Basic ES PIC iteration to advance from time step n to n+1 uses a 
time-splitting method:

1. Update particle velocities over Δt/2 and positions with Δt,

2. Solve Poisson’s equation to get new fields,

3. Compute final update to velocities with new forces,
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Particle-in-Cell (PIC)
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Requirements/assumptions for employing ES PIC include:
1. Cell sizes must resolve Debye length λD to avoid numerical 

heating,

where kB is the Boltzmann constant and Te is the electron 
temperature.

2. Time step must resolve plasma frequency ωp,

3. Should satisfy Courant-Friedrichs-Lewy (CFL) condition similar 
to continuum CFD,
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Particle-in-Cell (PIC)
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Requirements/assumptions for employing ES PIC include: (cont)
4. Electrostatic solvers usually expect some resolution of grad(V) 

or grad(V)2. It is often unclear how to interpret this as there 
are combinations of quasi-neutral plasma, non-neutral 
regions, and high applied fields.

These constraints would ideally apply to the most extreme 
constraints (minimum λD, maximum ωp, maximum v on minimum 
Δx), but because particle properties are stochastic this cannot be 
guaranteed. This is a recurring theme in kinetic particle methods.



DSMC is focused on computing solutions to a different part of the 
Boltzmann equation,

where DSMC typically assumes F = 0 (no external forces).

 DSMC is a completely local method. Only information within a 
computational cell is required. (Not true for electrostatic PIC.)

 Within a single cell actual particle locations are assumed 
irrelevant. All particles in the cell are candidates to collide with 
all other particles in a cell.

 Assume instantaneous binary collisions separate from motion.

Direct Simulation Monte Carlo (DSMC)

22
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Direct Simulation Monte Carlo (DSMC)
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Letting N = number of computational particles in a cell (N = nVc/wp

or n = wpN/Vc), there are N(N - 1)/2 potential collision pairs. We 
could step through all of them every time step. The No Time 
Counter (NTC) DSMC method is a way to effectively sample the 
same collision pairs without doing as much work…

The probability of a computational particle moving at velocity v
colliding with a randomly placed stationary computational particle 
in a cell of volume Vc over a time period of Δt is

where here σ is assumed to be a constant cross-section. The 
numerator is the cylindrical volume spanned by the particle’s 
collision cross-section over the time interval.
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Direct Simulation Monte Carlo (DSMC)

24

Since both particles are moving, the probability of them 
interacting becomes

where vi,j = vi - vj is the relative velocity between particles i and j. 
The expected number of collisions is thus

The last term is the number of pairs we will select to check for 
collisions by rejection sampling.
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mmh1 check the w_p should be here, and below, or not. I think it might not belong.
Hopkins, Matthew M, 8/23/2015



Direct Simulation Monte Carlo (DSMC)
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Why is sampling

so much better than sampling N(N-1)/2? Generally, the factor 
multiplying N2 is < 1.

For performance, when Δt is “too small” in a cell, we sample 
fewer potential collision pairs, sometimes drastically. Δt is a global 
quantity chosen for the most challenging (collisional) portion of 
the problem. “Most” of the domain does not need the resolution.

In practice, σ is dependent on velocities and (|vi,j|σ)max is required 
instead of just |vi,j|max. This is updated as new |vi,j|σ maximums 
are found through sampling rather than direct computation.
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Direct Simulation Monte Carlo (DSMC)
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Basic NTC DSMC iteration to advance from time step n to n+1:
1. Move particles over Δt with their velocities vi,

2. In each cell compute the number of potential collision pairs to 
check,

3. Randomly choose pairs and determine if they collide via 
rejection sampling,

If they collide, update post-collision velocities.
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Direct Simulation Monte Carlo (DSMC)
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Requirements/assumptions for employing NTC DSMC include:
1. Cell size must resolve the collision mean free path λmfp,

2. Time step must resolve collision frequency νc (this is usually a 
natural consequence of (1) but is good to check),

These constraints would ideally apply to the most extreme 
constraints (minimum λmfp and maximum νc), but because particle 
properties are stochastic this cannot be guaranteed. This is a 
recurring theme in kinetic particle methods.
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Surface Models
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Each surface in the domain typically needs a particle-surface 
boundary condition for each particle type as well as an 
electrostatic boundary condition for Poisson’s equation. 
Additionally, surfaces can be given additional particle boundary 
conditions that generate/emit particles. LOTS of variety.

1D:

2D and
axisymmetric:

AK

A

K

A

K

3D:
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BREAK?



Examples
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We will take a “jump” and move to recent and current vacuum 
discharge simulations.

Mostly SNL, some HIP/CERN.

LOTS of advanced/specialized techniques.

“Ugly” truth: most “vacuum” arc models have some amount of 
neutrals laid in or artificially injected. It is not well understood 
how the first particles are introduced. However, at a non-zero 
temperature, there must be some particles in the gas region. Real 
surfaces are “dirty” (e.g., water, residual material).

There is a theme that the model problem (mathematical 
description) sets up a more challenging problem than reality.



1D Vacuum Arc
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The following is work based on a collaboration between SNL, Univ. 
Helsinki, and CERN (cf. Helgo Timko’s dissertation). One of our 
goals was to compare code results for the “same” 1D arc problem.



1D Vacuum Arc
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Injection “cathode”
fCu = 1022/cm2/s
fe = 1024/cm2/s
vCu = ve = 0m/s
Te = 2.9 x 103K
TCu = 2.9 x 106K (250 eV)
V = 0V

Wall “anode”
V = 10kV

Simulation parameters
Δx = 0.5 um
Δt = 1 fs

Δx

20 μm

Side walls
dV/dn = 0
specular

Two solutions:
• Fixed particle weight
• Dynamic particle weight 

(Merge + Clone)

Both “electrode” surfaces sputter
e-  Cu (2.9 x 106K) at 1% yield

Cu+  Cu (2.9 x 106K) at 100% yield
Cu is also reflected specularly

One bulk reaction
e- + Cu  e- + Cu+ + e-





1D Vacuum Arc
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Cathode on left, anode on right,
120 V drop across 3.88 mm,
1 Torr background Cu,
Trickle influx of cold e- (1010 #/cm2/µs), 
300 K Cu “sputters” at:

1% vs. e-,
100% vs. Cu and Cu+,

1 eV SEE from Cu+ impact,
Δx = 1.38 µm, 2812 cells.

t = 166 ns, Δt = 5 ps

Simulation diagnostics: average e- CFL,
Δt·νc, Δt·ωp, Δx/λD, Δx/ λmfp

t = 236 ns, Δt = 5 ps t = 236 ns, Δt = 1 ps

Growing average e- CFL prompts restarting with smaller Δt.



1D Vacuum Arc
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Circuit-drivenNative 1D

?

1D Vacuum Arc
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Injection “cathode”
fCu = 1022/cm2/s
fe = 1024/cm2/s
vCu = ve = 0m/s
Te = 2.9 x 103K
TCu = 2.9 x 106K (250 eV)
V = 0V

Wall “anode”
V = 10kV

Simulation parameters
Δx = 0.5 um
Δt = 1 fs

Δx

20 μm

Side walls
dV/dn = 0
specular

Both “electrode” surfaces sputter
e-  Cu (2.9 x 106K) at 1% yield

Cu+  Cu (2.9 x 106K) at 100% yield
Cu is also reflected specularly

One bulk reaction
e- + Cu  e- + Cu+ + e-

IMPROVEMENTS

Next slides



Vacuum Arc Electrode Models
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Sputtering is energy-dependent.

Auger processes?

Secondary electron emission (SEE). Constant yield vs. energy-
dependent vs. energy-and-angle-dependent.
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Vacuum Arc Electrode Models
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Electron emission is critical. In reality it is dependent on material 
(work function), surface field, surface morphology, and surface 
temperature.

Fowler-Nordheim (FN) accounts for modifying the work function 
due to large surface electric fields,

where jFN is the emitted electron current, ES is the surface field, φ
is the material work function, and all other parameters are 
functions of these or material parameters. In practice, the     value 
in FN is set much higher than first principles physics would state. 
FN alone is not a satisfactory model for realistic electron emission.
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Vacuum Arc Electrode Models
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Schottky thermionic (ST) emission accounts for modifying the 
work function due to high temperatures,

The Murphy-Good model incorporates both electric field and 
thermal modifications to the work function. It is complicated.

None of the above models account for aggregate emission, e.g., 
exploding tips or other macroparticle emissions. Models in this 
direction include:
 High-flux sputtering (enhanced emission for high-energy 

impacting ions/neutrals).
 Ectons (electron “explosions” at hot locations).
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e- + Cu  e- + Cu+ + e- is clearly not enough (as expected).

 Electron-neutral elastic scattering reduces available electron 
energy.

 Excitation reduces available electron energy, too, but makes 
multi-step ionization possible.

Plasma Chemistry

40

 Charge exchange can lead to fast 
neutrals.

 Intra-cell Coulomb collisions.

 Multiple charge states? (Seen in 
experiments.)

A. Anders, "A periodic table of ion charge-state 
distributions observed in the transition region between 
vacuum sparks and vacuum arcs," IEEE Trans. Plasma 
Sci., 2001



2D Vacuum Arc
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H. Timko, K. Ness Sjobak, L. Mether, S. Calatroni, F. Djurabekova, 
K. Matyash, K. Nordlund, R. Schneider, W. Wuensch, “From Field 
Emission to Vacuum Arc ignition: A New Tool for Simulating 
Vacuum Arcs”, Contrib. Plasma Phys., 2015.



2D Vacuum Arc
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H. Timko, K. Ness Sjobak, L. Mether, S. Calatroni, F. 
Djurabekova, K. Matyash, K. Nordlund, R. Schneider, 
W. Wuensch, “From Field Emission to Vacuum Arc 
ignition: A New Tool for Simulating Vacuum Arcs”, 
Contrib. Plasma Phys., 2015.



3D Vacuum Arc
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• In vacuum or 4 Torr Ar background

• 1.5 mm inner-to-inner distance

• 0.75 mm diameter electrodes

• Copper electrodes (this picture is Cu-Ti)

• 2 kV drop across electrodes

• 20Ω resistor in series

• Steady conditions around 50V, 100A

• Breakdown time << 100ns

• To meet an ionization mean free path of 1.5 mm at 
maximum σ, ni ~ 1016 – 1017 #/cm3

3D computational 
domain

cathode
anode



3D Vacuum Arc
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3D Vacuum Arc
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Computational Challenges
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 Parallel implementations
 Load balancing
 Dynamic particle weighting
 Small particle weights in 3D
 Patch construction (λD vs. λmfp)
 Complex particle interactions (species, timescales)
 Global adaptive timestep
 Subcycled particle moves
 Explicit vs. semi-implicit vs. implicit
 Circuit model stability
 Output size (Chris Moore current SNL record holder at > 100 TB)
 Visualization
 Post-processing



A Recent Advance: Energy Resolution
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 Vary density (collision rate) 
and hold E/n fixed
• Neutral collisional simulations 

exhibit convergence at ∆t ~ 1/νc

• Error in ionization efficiency 
results in significant error in 
steady state plasma density if 
∆t = 0.5(1/νc) is used

• Charged particle electron 
avalanche exhibits convergence  
at ∆t ~ 0.01(1/νc).

 Examine electron multiplication across gap versus timestep size
• Space charge ignored when solving for E-field → Plasma frequency not 

meaningful timestep constraint 



A Recent Advance: Energy Resolution
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 Collision rate is a function of time for the accelerating e- :

 Large steps in energy caused by large time steps can be seen 
to result in large error in the simulated collision rate.
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A Recent Advance: Energy Resolution

 Normalized error in the number of collisions for a given ∆t and 
initial particle energy:

 Error introduced in steady state arc behavior a function of the 
electron temperature (EEDF) .
• Te ~ 1-10 eV for typical discharge so most probable Ep,0 ~ 10 eV.
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About 
50% error!
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Thank You!



CV: Code Verification. Necessary, woefully insufficient.  Can test single simple 
capabilities.

SV: Solution Verification.  Steps taken to confirm a code solution is the right 
solution to the model problem.  Expensive.

V: Validation. Measure agreement between code prediction and reality.  
Ideally, code prediction has gone through some amount of solution 
verification.

SA: Sensitivity Analysis.  Applies to both code and experiment.  Determine 
which numerical/physical parameters impact the prediction, experimental 
result, and/or validation comparison.  Identifies problem areas and is a 
source of planning decisions/efficiency.

UQ: Uncertainty Quantification.  Estimate uncertainty in a code prediction, 
usually without experimental comparator.  Incorporates error estimation 
and quantified code prediction uncertainties.

All Interesting Arc/Plasma Behavior Is Nonlinear And Coupled – How 
Can We Be Confident In Our Predictions?

CV & SV & V & SA & UQ

ALL OF THIS IS MORE COMPLICATED 
BECAUSE OUR BASIC MODELING METHODS 

ARE STOCHASTIC (PIC, MCC, MD, ...) AND 
DO NOT HAVE TYPICAL “GRID 
CONVERGENCE” BEHAVIOR



Basic algorithm for one time step of length      :

1. Given known electrostatic field     , move each particle for      via:

2. Compute intersections (non-trivial in parallel).

3. Transfer charges from particle mesh to static mesh.

4. Solve for          ,

5. Transfer fields from static mesh to dynamic mesh.

6. Update each particle for another       via:

7. Perform DSMC collisions: sample pairs in element, determine cross section and probability of 
collision.  Roll a digital die, and if they collide, re-distribute energy.

8. Perform chemistry: for each reaction, determine expected number of reactions.  Sample particles 
of those types, perform reaction (particle creation/deletion).

9. Reweight particles.

10. Compute post-processing and other quantities and write output.

11. Rebalance particle mesh if appropriate (variety of determination methods).

Description of Aleph

p1

p2 p3

p4



Surface Models (Electrostatic)
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Dirichlet: V = <value>, V = 0 is popular.

Neumann: dV/dn = E·n = <value>, E·n = 0 is popular.

Circuit: V(t) = VPS + I(t)R

where I(t) is the particle-based current through some 
surface, VPS is some applied voltage (e.g., from power 
supply), R, L, and C, are resistance, conductance, and 
capacitance, respectively.

Surface charging will occur at dielectric surfaces and require 
treatment in the Poisson solver for

σS (t) = qS(t)/AS

where qS(t) is accumulated particle charge and AS is the area.

( ) 1
() ( ) )(
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dI t
I d
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V t V I t R L
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The Truth about Particle Weights
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In 3D particle weights can become < 1…

Te = 5 eV, ne = 1017/cm3 
λD ~ 5 x 10-6 cm 
dx ~ (5/3) x 10-6 cm 
tetrahedron volume ~ 6 x 10-19/cm3.

A single computational particle of weight 1 represents a number 
density of 6 x 10-19/cm3 (compare to ne). In 2D with a 1 cm 
“depth”, the triangle-based volume ~ 1 x 10-12/cm3, which is just 
fine.

Is this a strongly coupled plasma? The plasma parameter = = # 
particles in a Debye sphere ~ 60. However at ne = 1019/cm3, Te = 2 
eV,    = 1.5.     << 1 and     >> 1 are the clear cases.



 


