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Experiment on growing highly-uniform quantum-dot samples 

Questions: 

• What does a perfect (homogeneously-broadened) 

quantum-dot sample look like? 

 

• Is there a way to determine degree of nonuniformity 

(i.e. inhomogeneous broadening)? 

Answer:  Yes, by calculating optical response with rigorous 

description of dephasing (due to Coulomb correlations) 

Usually treated as 

free parameter 
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InAs QDs and 
wetting layer 

In0.2Ga0.8As 

6nm QW 
5nm 

24nm 

GaAs 

GaAs 

Ndot = 5 x 1010cm-2  

Calculated quantum-dot optical response 

Spontaneous emission and 

effect of QD nonuniformity 
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Overview: Chow & Jahnke, Progress in Quantum Electronics 37, 109 (2013) 
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Extraction of inhomogeneous broadening 
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From lasers 
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Chow, Liu, Gossard and Bowers, ‘Extraction of inhomogeneous 

broadening and nonradiative losses in InAs quantum-dot 
lasers,’ (submitted APL) 
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Approach (quantized electrons, classical optical field) 



Single particles Correlated pairs Correlated 3-particle clusters 

+ + +   ... Cluster expansion 

Approach (quantized electrons and optical field) 
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Chow, Gies & Jahnke, Light: Science and Applications, online 29 August, 2014 
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Light-carrier 

+ Carrier-carrier and carrier-phonon interactions 



Single-photon source 

What is the right Q? 

Fundamental limit to efficiency, rate and error? 
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Single-photon purity and emission rate 

Cavity-enhanced rate  109s-1  (expt) 

All emission into single resonator mode 

𝜷 =
𝜸𝒍
𝜸𝒔𝒑
= 𝟏 

2   Nanocavity  Spontaneous 

emission 

Frequency 

2nm In0.3Ga0.7As 

AlGaAs 

4nm GaAs 

18 nm dia. 

AlGaAs 

1   Shallow quantum dot 

Only s-shell transition 

℘
𝝂

ℏ𝝐𝒃𝑽
 𝑾 𝑹𝑸𝑫  𝑪 𝑹𝒏

𝒏

𝑽 𝑹𝒏  

3   Scaling with electron-light coupling 
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Concern: Extraneous quantum dots 
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Single-photon emission probability 
 = 

Multi-photon emission probability 
Single-photon purity:  
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Gies, Jahnke, Chow, ‘Photon antibunching from few quantum dots in a cavity,’ PRA 91, 061804 (R) (2015) 

Full photon statistics vs. g(2)(0) 
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Single particles Correlated pairs Correlated 3-particle clusters 

+ + +   ... Cluster expansion: 
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Substrate 

Preliminary result 
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Single-photon (quantum dots, 

nanocavities and single-QD sources) 
Beyond single-photon sources 

 (squeeze-light, parametric down conversion) 
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