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Introduction 
Novozymes and others have effectively used biotechnological methods to improve enzyme cocktails for 
conversion of pretreated materials to sugars. Cellic® CTec and HTec cocktails are robust enough to convert 
variously pretreated feedstocks, and support a range of biomass types, with strong performance in a broad range 
of process contexts. By delivering individual enzyme components, and optimized novel enzyme cocktails 
containing these components on a diverse set of pretreated feedstocks, Novozymes has delivered an 
exceptionally performing, robust enzyme platform for the industry in Cellic® CTec3/HTec3 (hereafter called 
CTec3/HTec3). Novozymes has recently worked with specific customers to further reduce costs by way of 
individualized enzyme development programs.  Beyond delivering enzyme dose reductions, economic 
improvements may be achieved by delivering enzymes that are specifically designed to reduce operating costs. 
Examples of value generation through enzyme innovation include enabling milder pretreatments to allow for 
lower capital expenditures, reducing salts in process streams, and permitting the use of innovative pretreatment 
processes which produce lower levels of biological inhibitors. 
 

Synthetic biology offers a route to allow for rapid “enzyme tailoring.” The knowledge regarding mechanisms and 
paradigms exploited by biomass degrading enzymes, and the vast collection of genetic diversity that has been 
assembled by us and others over the past decade is powerful, but the diversity of processes that have been 
developed for converting biomass to product dictates that enzyme innovation must occur more rapidly than it has 
in the past if tailored enzyme solutions that “match” the diversity of processes. In addition, the explosion in 
number of available biological “parts” that must be screened, and the combinatorial expansion of potential 
groupings of these catalytic parts which may be assembled to look for effective synergies begs for a high 
throughput solution for examining the vast biological store of diversity. 
 
Our concept for the SynTec platform was to develop a tool that permits direct screening of an array of different 
combinations of synergistic enzyme domains. Rather than rational selection of candidates, and individual 
production of gene products and an exhaustive assay of their properties, we developed a streamlined, modular 
system for direct screening of cellulolytic cocktails. The system allows for a more streamlined discovery timeline, 
and rapid discovery of cocktails that can meet process‐specific requirements and thereby dramatically reduce 
overall process costs. 
 

Approach 
The key goal was to deliver a synthetic screening tool that enables rapid assessment of unexplored natural 
diversity to deliver cost effective enzyme solutions tailored to specific industrial biorefineries. As proof of concept 
for viability of the novel screening approach, we aimed to deliver a novel enzyme cocktail for hydrolysis of AFEX™ 
pretreated corn stover (AFEX™ PCS), allowing production of sugars that are clean enough to be used as 
intermediates for a diverse range of products. 
 
The work falls under the DOE/EERE Biomass Program’s biochemical conversion R&D goals, which focus on 
reducing the cost of converting biomass to sugars.  Specifically, the technical barrier “Bt‐G. Cellulase Enzyme 
Loading: Reducing the cost of enzymatic hydrolysis” (Biomass Multi‐Year Program Plan 2012) was addressed in 
this project. The focus on technology development is aligned with the DOE’s directive that innovations in the area 
of synthetic biology will be harnessed toward accelerating the pace of cost reductions for production of advanced 
biofuels. 
 
The proof of concept deliverable (cost effective enzymes tailored for AFEX™ PCS) addresses the particular need 
for biomass fractionation processes which produce cleaner sugar streams, with the expectation that production 
of some advanced biofuels and chemicals other than ethanol may be more sensitive to salts and other inhibitors 
in process streams, due to limitations in downstream conversion of sugars to product, and product recovery. 
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We optimized the unit operations in the screening process to reduce the noise in output sugar from the AFEX™ 

PCS hydrolysis assays.  We observed <5% CV for controls where multiple repeats of a given enzyme domain 

loaded and isolated on scaffoldin were tested. Later use of the assay in screening of enzyme libraries showed 

consistent ranking of top candidates among independent screens. Finally, 384 well high throughput screens were 

established to minimize need for protein input.  The screening flow is summarized in Fig. 2.   

Variance, Task A 

We originally anticipated that the task A should run for 6 months, while it in fact took 12 months.  We generated 

the initial scaffoldin that was fully functional in capturing all 3 dockerins in 3 months.  However it took us another 

9 months to obtain a scaffoldin that maintained dockerin:cohesin binding throughout hydrolysis. The design of 

the stable scaffoldin ensured that co‐localized domains screened stayed bound throughout the hydrolysis.  The 

potential for improving enzyme performance through co‐localization of individual enzyme domains was a 

direction we aimed to pursue with this screening system. 

  

Because design of a the stable scaffoldin‐enzyme complex required iterative testing of various cohesin modules, 

we worked with a series of generations of scaffoldin structures, each improved over the previous generation. This 

required parallel re‐design of dockerin vectors, and re‐cloning/ and re‐expression of libraries of enzyme 

candidates; as we changed cohesin “landing pads” in the scaffoldin, this required that we coordinated with 

change of dockerin modules.  Thus, additional time was needed complete dockerin‐enzyme library generation, 

which impacted the timelines for Task B in particular (see below).  Finally, the automation of the sub‐steps 

required to screen libraries took more time than we initially planned.  

 

Task B. Identify effective hemicellulases. 
This task focused on discovering and optimizing hemicellulase cocktails for AFEX™‐PCS 

Subtask B.1 Hemicellulase library 

Goals: Bioinformatic identification of hemicellulase candidates in libraries, codon optimization and gene synthesis, 

cloning into vector libraries, transformation into hosts.  

 

Our hemicellulase genes are split into three libraries, namely xylanases (Xyn), beta‐xylosidases (bXs), and “other” 

hemicellulases.  Genes of each of the three libraries are constructed to express as fusions to a library‐specific 

dockerin domain, to allow capture of all three types of enzyme activity on to scaffoldin (Fig. 6).  Because 

Novozymes’ prior enzyme screening had focused primarily on fungal hemicellulases, we skewed the selection 

under SynTec to prokaryotic domains. 
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Variance, Task C 

Cellulase screening was delayed as a result of our extending hemicellulase screening (which, as discussed above, 

was mainly due to our need to re‐clone library candidates with appropriate dockerin domains).  

 

Task D. Technoeconomic modeling of accomplishments. 
This task allowed us to verify the feasibility of using the SynTec method to rapidly tailor enzyme cocktails. The 

proof of concept work, tailoring of cocktails for specific use in conversion of AFEX‐™to sugars, was evaluated by 

MBI and Novozymes. 

Subtask D.1 Production of AFEX™‐PCS for screening and benchmarking.   

A single batch of AFEX™ PCS pellets was used to generate proposal data, and also used for initial and final 

performance validations (called “validation substrate”).  Use of a single batch reduces variability between 

comparative tests, allowing us to better isolate the differences in enzyme performance.  However, insufficient 

quantities of this particular batch were available to support the screening activities for the full duration of the 

project.  MBI was tasked with delivering a similarly pretreated batch of AFEX™ PCS in the first few months of work, 

which they accomplished. While the PCS was pretreated under identical conditions as for our validation substrate, 

we noted that the same CTec3/HTec3 baseline enzyme preparation consistently showed higher conversion on the 

“screening substrate” relative to our proposal and initial validation results with the “validation substrate.”  All 

technoeconomic analysis for initial and final validation was based on results from the “validation substrate.” 

Subtask D.2 Benchmarking of improved enzyme cocktails.  

To inform the screen design and to validate the concept of performing hydrolysis without pH adjustment, MBI 

and Novozymes engaged in testing different enzyme loadings in our standard validation assay, testing different 

blends of CTec3/HTec3 at both pH 5 and unadjusted pH, assessing pH drift at 3, 5, and 7 days hydrolysis, and 

understanding contamination risk at both pH conditions. Briefly, the profile of pH drift during hydrolysis at 

unadjusted pH was captured, informing the screening assay design parameters (Task A.4).  Contamination risk 

was tested in range of set ups and it was concluded that control of infection would be feasible in a commercial 

scale facility. 

 

The primary focus for this task was collaborative testing to verify the top candidate enzymes for improved 

performance in hydrolysis. Novozymes performed smaller scale assays, at low solids and at high solids, to refine 

enzyme mixtures and select top candidates for larger scale tests at MBI. Typical assays employed shake flask scale 

analysis, 18% solid loading, unadjusted and pH 5 buffered conditions, with samples taken at 24, 48, 72 and 168 hr 

for sugar analysis. Varying doses were applied to estimate required protein needed to achieve a given level of 

biomass conversion to sugar on a glucan and xylan basis (“dose response curves”).  Because top enzyme 

candidates showed superior or equivalent performance as free enzymes relative to performance when co‐

localized to the scaffoldin, we assayed performance as free enzymes under Task D.  MBI performed assays where 

candidates were incorporated into a CTec3/HTec3 blend, or fully synthetic blend (comprised of purified proteins), 

and compared to the benchmark CTec3/HTec3 blend at the same total protein dose. Initially, we saw dramatic 

improvements in xylan conversion relative to the benchmark at unadjusted pH, due to incorporation of key 

hemicellulases. Improving glucan conversion was more challenging, but as we began to test cellulases in addition 

to hemicellulases, we gradually improved C6 sugar yield in the validation style assays.  Towards the end of the 

project, MBI and Novozymes collaborated to optimize the ratios of components in SynTec cocktails. We employed 

response surface methodology at small scale (plate based assays), and followed up on a limited set of high 

performing mixtures, using the validation SOPs, to identify optimal ratios of components for the final 

performance validation. 
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Subtask D.3. Validations with external validation team.  

Our validations of the starting and final enzyme performance were essential in evaluating the viability of our new 

screening platform for rapid tailoring of synthetic cocktails.  Both validations (initial and final) were performed at 

MBI with an external validation team (CNJV/NREL/DOE) along with Novozymes and MBI team members. 

 
The initial validation visit was completed in the week of September 23rd, 2013. Prior to the visit all of the relevant 

SOPs, detailed schedule for the visit, and list of the planned experiments were sent to the validation team for 

their review and approval.  The initial validation verified the experimental data and cost information provided in 

the SynTec proposal; this serves as a baseline of commercially relevant enzyme performance on AFEX™‐PCS at pH 

5.  Additionally, a baseline of performance for CTec3/HTec3 was generated at unadjusted pH.  Specifically, the 

validation experiments included triplicate runs of: 

 

1.  Avicel (internal control, for comparison to historical runs with CTec3/HTec3) 

2.  No substrate +enzyme 

3.  No enzyme + substrate 

4.  Experiment at pH adjusted to 5.0, with buffer 

5.  Experiment without pH adjustment and without buffer 

 

In the resulting initial validation report, the external team confirmed the reasonableness of Novozymes’ 

technoeconomic model, which is used to estimate resulting sugar price. Evaluations of process and cost data, 

process engineering were accomplished through observation of the process, review of supporting 

documentation, and critical discussions with the team members. 

 
During the course of the project, the MBI team refined the technoeconomic model to ensure an accurate 
assessment of the current state of technology. As a result of this work, a new model, based on the Humbird 2011 
NREL economic model, was constructed.  In addition to the NREL model, internal Novozymes numbers were used 
for the cost of enzymes, internal MBI values were used for the cost of the AFEX™ pellets, and a modified 
saccharification section based on MBI’s experience with large‐scale liquefaction of AFEX™ pellets was used 
instead of the base NREL saccharification model. 
 
The model boundary was assumed to be sugar production, as was used in the proposal.  Because sugar is an 
intermediate product, and that the form of that intermediate product would depend on the final product, it is 
impossible to have one model that is directly comparable across all scenarios.  To simplify matters, the sugar 
consumer was assumed to be co‐located with the sugar producer, and thus the intermediate product was not 
refined.  It was assumed that the sugar stream would not be concentrated, although the lignin would be 
removed.  As such, it was assumed that no wastewater treatment would be performed in the model.  However, 
the soluble components were not included as potential sources of electricity either.  Given that all of these extra 
steps would be identical for all scenarios, this approach was deemed adequate. 
 
The variables changed throughout the model, based on experimental costs, are as follows: 
‐ The amount of enzyme used, which impacts enzyme operating cost and capital cost of storing enzymes 
‐ Whether or not pH is controlled, which impacts capital and operating costs of storing and handling sulfuric 

acid 
‐ The residence time, which impacts capital cost of saccharification 
‐ The hydrolysis temperature, which impacts energy use and therefore the electricity credit 
‐ The sugar yield, which impacts the cost per lb sugar 
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For simplicity, secondary effects, such as the amount of solids recovered in each scenario, were not taken into 
account, as they were not measured in the process.  It is assumed that all downstream operations are identical in 
order to focus the model on the saccharification process. 
 
The final performance validation was held at MBI, starting 11 Jan 2016, where the MBI team hosted Novozymes 

along with external validation team (DOE, Allegheny Science & Technology, NREL).  The specific cost assumptions 

of the resulting refined model, as developed by MBI over the project, were discussed in detail at the final 

performance validation, including specific capital and operating cost assumptions. During these discussions it was 

evident that we had not fully captured the expected cost benefits of removing a pH adjustment step prior to 

hydrolysis. Some of the expected benefits are difficult to model given the boundaries of the economic model, 

which essentially ends after sugar production step.  Following the validation, we delivered a document detailing 

potential areas where further cost savings might be realized, depending on the processes following sugar 

production. Some of the issues evaluated included waste water pretreatment, recovery of products from process 

streams at with reduced salts, ability to ferment with Z. mobilis without requirement for a pH adjustment step, 

and cost savings associated with eliminating the need for pH control and monitoring in the hydrolysis and 

fermentation tanks. 

 

To assess the final enzyme cocktail, comprised of top candidates from Tasks B and C, the SynTec team provided 

two improved enzyme cocktails for assay during the final performance validation.  These enzyme cocktails were 

compared to the starting benchmark, CTec3/HTec3, as internal controls to compare with proposal data and initial 

validation data. The two new cocktails were “semi‐synthetic” cocktails, meaning that they included a complex T. 

reesei expressed enzyme (CTec3), augmented with newly delivered individual purified enzymes.  

 
SynTec cocktails and the CTec3/HTec3 benchmark were compared. The same mass of CTec3/HTec3 product blend 

was dosed in the final validation experiment for pH 5 condition as in the initial validation and as in the proposal.  

The key assumption for benchmarking purposes is that SynTec cocktails could be produced at same cost per gram 

protein as CTec3/HTec3. BCA assay of the desalted enzyme preparations were performed, utilizing the method 

provided prior to the initial validation (Aug 2013).  As improved performance was expected for the SynTec 

cocktails vs. CTec3/HTec3 benchmark, the new cocktails were loaded at lower enzyme dose relative to the 

benchmark commercial enzyme preparation. Each enzyme was assayed at its optimal temperature (50⁰ C for 

CTec3/HTec3; 53⁰ C for the SynTec cocktails). As the targets for the project are measured against CTec3/HTec3 

performance at the benchmark cocktail’s optimal pH, a key experiment is CTec3/HTec3 assayed at pH 5.  

CTec3/HTec3 was also run at unadjusted pH, at two loadings; this allows “apples to apples” comparison of what 

improvement in enzyme performance has been made under the challenging condition where pH is not controlled.  

For all conditions, 3 replicates were run, at 18 % TS, in 50 g samples, with 24 hr, 72 hr, and 168 hr time points 

taken. Additional analysis was run to measure background sugars in each of the enzyme preparations. Further, a 

control reaction was run with Avicel as the substrate, to allow direct comparison of CTec3/HTec3 performance on 

a model substrate between the initial and final validation.  Finally, a no‐enzyme control set was run to measure 

free sugars coming from feedstock. 

Results, shown as average yield obtained glucan + xylan (G+X) conversion basis, at 72 hr is plotted in Figure 8. 

Yields obtained at the higher dose for CTec/HTec3 at pH 5 were comparable to yields obtained at a lower dose for 

both SynTec blends at unadjusted pH (a similar trend was seen at 168 hr, data not shown).  This allows direct 

quantification of dose reduction achieved relative to the project baseline condition, and significant performance 

improvement of the SynTec cocktails is evident.  SynTec cocktails assayed without pH control performed as well 

as the CTec3 commercial benchmark at the optimal controlled pH, even with significantly less protein. The 

comparison of SynTec blends to CTec3/HTec3 where both were challenged with no pH control in the reactor 
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showed dramatic improvement of the SynTec blend over the CTec3/HTec3 benchmark.  As the CTec3/HTec3 

blend never achieves the same level of conversion as the SynTec blend at the unadjusted pH, it is not possible to 

provide a fold performance (dose reduction) estimate.  

 

Figure 8  Dose conversion plots of CTec3 benchmark and SynTec blends in the final performance validation assays. 

Green arrow denotes equivalent performance between SynTec blends with no pH adjustment and CTec3/HTec3 

at optimal pH. 

 

In addition to allowing a measure of performance improvement through measured dose reduction to achieve a 

given level of conversion, the data obtained in the final performance validation was evaluated to determine the 

conformance between initial and final validations. CTec3/HTec3 were used in both validations, using the same lot 

of enzymes, and the same dose was applied (mass product basis).  Comparison between glucose yields observed 

in Aug 2013 and in Jan 2016 showed less than 5% variance at both 72 hr and 168 hr time points.  However, the 

xylose released was shown to be lower in the final validation, with ~11‐14% variance observed.  Comparison of 

the Avicel control, also run in both validations and with the same enzyme prep, showed very good reproducibility 

(2% variance), suggesting that there is good stability of the cellulase preparation.  We considered whether 

hemicellulase instability over 2.5 years storage at ‐20 ⁰C might have contributed to the instability in benchmark.  

Another source of variability is that the working assay volume changed, from 100 g to 50 g, due to limitations in 

enzyme availability.  Finally, we speculate that changes in the AFEX™ PCS pellets might have occurred over the 2.5 

year, changing enzymatic susceptibility, despite the fact that no change in composition can be observed over 

years of storage of AFEX™ PCS (MBI compositional data). 

Variance, Task D 

 

Our project deliverable is measured in reductions in sugar price achieved through enzymatic performance 

improvements. Given the change in CTec3/HTec3 baseline enzyme performance (xylan activity), it was necessary 

to look at the relative cost reduction in modelled sugar price within each given experiment.  We utilized the 

TechFin tables to evaluate the extent that cost reductions were delivered through SynTec enzyme innovations. 
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Our specific object was to reduce the modelled production costs per lb of sugar, from $0.31 at optimal pH 

(maintained at pH 5), to $0.21 at the more challenging unadjusted pH condition.  This represents a 1.55X 

reduction in production costs. Using the conversion yields achieved in the final validation, and assuming an 

equivalent production cost per mg enzyme as for CTec3/HTec3, we were able to model the net sugar production 

costs.  Comparing the sugar price to the benchmark price delivered through use of CTec3/HTec3 at pH 5 (from 

final validation experiment conversion data), we saw a reduction in price of sugars from 1.2‐1.4X (depending on 

whether 72 hr or 168 hr conversion data formed basis of the comparisons).  

 

This falls short of our ambitious target for reducing the modelled price of biomass derived sugars, but is a 

significant achievement for 2.5 year of R&D, especially considering that a long period of the project was dedicated 

to developing a new screening method (~ 1 year).  To place the magnitude of the improvements delivered in 

context, it is useful to consider that our previous DECREASE award delivered similar performance, though this 

project focused on a different substrate and used different hydrolysis conditions.  
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Biocontainment challenges, unexpected outcomes, and potential societal implications 
SynTec delivered a tool for enzyme discovery.  Containment of genetically modified organisms is tightly controlled 

at Novozymes, Inc, and all recombinant S. cerevisiae and B. subtilis libraries generated through use of the SynTec 

screening method were maintained on site.  We have procedures in place that prevent release of viable GM 

organisms. 

 

 


