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The work by Campbell et. al.1 was recently brought to my attention. This comment is written to 

provide greater clarity to the community to prevent misconceptions regarding the entropies being 

discussed in that work, and to clarify the differences between the adsorbate standard states suggested by 

Campbell and by Savara. For distinguishable independent molecules, the canonical partition function is 

Qdist = qN, where N is the number of molecules, and q is the molecular partition function given by q = 

qtrans*qrot*qvib*qelectronic. For indistinguishable independent molecules (such as a gas), the canonical partition 

function is Qindist = qN/N!, and the denominator can be considered a type of quantum configurational term 

(this quantum configurational term is used for indistinguishable particles when the number of available 

molecular quantum states is much greater than the number of particles -- which is generally true except in 

the cases of extreme densities2).  For mathematical convenience, when dealing with gases, the terms are 

typically evaluated as follows: Qindist = (qtrans
 )N/N!  x (qrot*qvib*qint)N.  Note that for mathematical 

convenience, the translational term has been grouped with N! to yield the combined term (qtrans
 )N/N!. 

When evaluated, this term illustrates that the entropy can be treated as a function of the gas phase density 

(and subsequently gas phase pressure) giving rise to the Sackur-Tetrode equation. For a gas with D 

translational dimensions, the Sackur-Tetrode equation is given by: 
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where n is the number of moles, NA is Avogadro’s number, R is the ideal gas constant, L is the length of 

the box, m is the molar mass, k is the Boltzmann constant, h is planck’s constant, and T is the temperature 

in Kelvin.  In this equation, nNA/LD is a density. The Sackur-Tetrode equation can also be written as: 

SSackur−Tetrode(𝐷) =  𝑛R ln (e𝐷/2 (
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ℎ
)
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) + 𝑛R ln(e1)   (2) 

which emphasizes that the latter term in Equation 2 has no dimensional dependence, and originates from 

the indistinguishability of the particles (i.e., the N! term associated with quantum configurations). For the 

remainder of this comment, we will refer to Equation 2 when discussing the Sackur-Tetrode equation. 

Note that not only does the first term depend on the number of dimensions, it is in fact linear with the 

number of dimensions -- such that D = 2 has twice the entropy as D=1 for the same box length, L, while 

D=2 has 2/3 of the entropy associated with D = 3 for the same box length, L. For most real-world 3-D gas 

phase densities, Equation 2 is dominated by the first term. The linearity of this first term with the number 

of dimensions, and its dominance, is the reason that Campbell,1 Savara,3 and de Boer4 each suggested that 

the 2-D gas standard state be defined as a state with one third less translational entropy relative to the 3-D 

gas standard state. Unfortunately, equation 3 of Campbell et al.1 removes the factor of one third from the 
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entire Sackur-Tetrode equation (the entire Eq. 2), rather than just the term related to the dimensional 

contributions. In effect, Campbell et al.’s procedure artificially lowers the 2-D gas standard state 

entropy’s quantum configurational term – the second term in equation 2 – as though scaling that term to 

reflect a smaller number of molecules. This ultimately leads to an artificial coefficient of 1.40 in equation 

7A of reference 1 (and also leads to a choice for the 2D gas standard state pressure/concentration that 

differs from that put forth by Savara and by de Boer). 

Consider the following example: if we take the tabulated gas phase standard entropy of methanol5 

as (239.81 J mol-1 K-1) and multiply it by two thirds, the result is 159.87 J mol-1 K-1. That calculation 

would be considered an inappropriate way to remove the effects of one translational mode from the 

entropy -- because that procedure would also have reduced the entropy associated with the molecular 

vibrations and rotations by one third.  While less easily appreciated, the value of 159.87 J mol-1 K-1 also 

reflects having artificially reduced the quantum configurational contribution by one third.  Similar to this 

example, Campbell et al’s 1 equation 3 inadvertently reduces the quantum configurational entropy 

contribution by one third when attempting to calculate a 2D gas standard state entropy in relation to a 3D 

gas standard entropy.  

Let’s take a closer look at what happens with the example of methanol when applying the 

suggestion given by Campbell1 versus that given by Savara3. Both authors have written that the intent is 

to subtract one third of the translational entropy of a 3-D gas standard state.1, 3, 6 Campbell recommends 

subtracting one third of the entropy provided by the Sackur-Tetrode equation for the 3D gas standard 

state, based on the idea that this is sufficiently intuitive and accessible to experimentalists. In this case: 

S𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙°(2𝐷−𝑔𝑎𝑠)  = S𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙°(3𝐷−𝑔𝑎𝑠) −
1
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While Savara suggest to only remove one third of the first term, which is the term that has a dimensional 

dependence: 

S𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙°(2𝐷−𝑔𝑎𝑠) = S𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙°(3𝐷−𝑔𝑎𝑠) −
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The entropy difference between Campbell’s suggestion and Savara’s suggestion is on the order of 10% 

for a typical 2D gas standard state.3 So if one of the equations was dramatically simpler, that simplicity 

could justify use of a less correct equation. However, we see that Campbell’s suggestion is not only less 

correct since it subtracts one third of the quantum configurational term, it is additionally marginally less 

simple of an equation than Savara’s suggestion.  There seems to be no benefit in either accuracy or effort 

to subtract one third of the entire 3-D Sackur-Tetrode entropy rather than just reducing solely the term 

associated with the number of translational dimensions. 

An additional issue is the choice of the standard state for a 2-D lattice confined adsorbate (i.e., for 

Langmuir adsorption). Campbell suggests setting a standard state density for 2-D lattice confined 

adsorbates to have the same density as the 2-D gas standard state. In my view, intentionally matching the 

2D gas standard state density is inappropriate. To shed light on this issue conceptually, consider the 

following question: Do we set the density of the standard state of a 3-D solid equal to that of a 3-D gas? 

No, of course not: We merely accept that when comparing the 3-D gas standard state to the 3-D gas solid 

standard state that there is compression, which is reflected in the entropy. Similarly, when comparing a 

2-D gas adsorbate state and a 2-D lattice confined adsorbate state (the latter being like a 2-D crystalline 



solid with vacancies), we must recognize that they are different types of phases. There is no reason to 

believe that going from a 2-D gas standard state to a 2-D lattice confined standard state would be a 

comparison without compression.  

 Discussion of the issue of adsorbate standard states is complicated by the fact that – for a fixed 

area – the total chemical entropy of a 2-D gas scales linearly with the number of molecules, N, while the 

total chemical entropy for an immobile adsorbate is not directly proportional to the number of molecules, 

N. As pointed out in the supporting information of reference 3, the implication of this is that the 

differential molar entropy of a 2-D gas is equal to the integral molar entropy of a 2-D gas (i.e., in the 

absence of internal molecular modes, both are equal to Equation 2). In contrast, for an immobile 

adsorbate the differential and integral molar entropies are not equal to each other and must be defined by 

separate equations (see Supporting Information of ref 3). The differential molar entropy is the one that is 

relevant for defining chemical thermodynamic equilibria: the chemical potential is given by a differential 

molar free energies – such as (
𝜕𝐺

𝜕𝑛
)

𝑇,𝑃,𝑛
 or  (

𝜕𝐴

𝜕𝑛
)

𝑇,𝑉,𝑛
 – which must be set to 0 for the condition of 

chemical thermodynamic equilibrium. The standard states should thus be chosen independently for a 2-D 

lattice confined adsorbate and a 2-D gas adsorbate. Savara3 argued that for a 2-D lattice confined 

adsorbate using a relative coverage of θ° = 0.5 for the standard state allows the most direct incorporation 

into tabulations of thermodynamic values and direct comparison between systems (see ref 3 for more 

details). Note that using θ° = 0.5 for 2-D lattice confined standard state leads to the following relation for 

the standard entropy relative to that of a 2-D gas:  

 

S2𝐷−𝑔𝑎𝑠° ≈ S2𝐷−𝐿𝑎𝑡𝑡𝑖𝑐𝑒−𝐶𝑜𝑛𝑓𝑖𝑛𝑒𝑑° + S𝑆𝑎𝑐𝑘𝑢𝑟−𝑇𝑒𝑡𝑟𝑜𝑑𝑒(2𝐷−𝑔𝑎𝑠)   (5) 

This is in line with the idea that when comparing the entropies and free energies of the standard states, the 

differences should be reflective of the changes in molecular degrees of freedom between the different 

phases (or states) being compared.  In contrast, Campbell et al.1 argued that a specified relative coverage 

(or absolute coverage) should be used for the 2-D lattice confined adsorbate, based on the idea that such a 

choice will cause some terms to cancel out when comparing entropies of the 2-D gas standard state and 

the 2-D lattice confined standard state.  The relative coverage specified in the example of Campbell et. 

al.1 is θ° = 0.012. There are two shortcomings associated with Campbell’s method for specifying the 2-D 

lattice confined standard state: 1) the coverage of θ° = 0.012 was chosen by Campbell et al. "arbitrarily" 

based on using a value of 1015 sites cm-2 -- so the 0.012 coverage does not enable appropriate general 

comparison for the same adsorbate on different surfaces nor different adsorbates on the same surface, 

since the saturation densities will not generally be 1015 sites cm-2. 2) such a choice confuses the issue 

because Campbell is trying to cancel part of the translational entropy of the 2-D gas term with a spatial 

configurational entropy of the immobile adsorbate. Although both of the terms are density dependent, the 

statistical mechanical origins of their density dependences are categorically different. Trying to cancel 

those terms only obfuscates molecular entropy comparisons rather than illuminating them.† In contrast, 

the standard state suggestions put forth in ref. 3 were chosen for enabling molecular knowledge to be 

gained by comparison to tabulated standard entropies – in line with existing practice.

                                                           

† For an ideal 2-D gas, the translational entropy is density dependent, while the quantum 

configurational entropy is not. In contrast, for a 2-D lattice confined adsorbate, the particles are 

distinguishable and there is a spatial configurational entropy term which is density dependent.   
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Finally, by definition, the standard chemical potential is given by the chemical potential at the 

standard state of that phase,7 µ°(T) = µ(T,P°) or µ°(T) = µ(T,π°), where P° is the 3D standard state 

pressure and π° is the standard state 2D pressure. In this context, making an appropriate choice for the 

standard states not only enables molecular information to be gained, it also enables equilibria to be 

calculated using chemical potentials relative to that of the standard state. For this reason, standard states 

should be chosen based on the equations associated with differential molar entropies, and in a way that 

enables useful molecular information to be gained by comparing standard state thermodynamic quantities 

(entropy, enthalpy, free energies).  I agree with the spirit of the ideas published by Campbell et. al.,1 and 

hope that the community finds this comment to provide additional understanding of the details and to be 

helpful at preventing misconceptions. 
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