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Modern graphics processing units (GPUs) have complex architectures that admit exceptional performance
and energy efficiency for high-throughput applications. Although GPUs consume large amounts of power,
their use for high-throughput applications facilitate state-of-the-art energy efficiency and performance.
Consequently, continued development relies on understanding their power consumption. This work is a
survey of GPU power modeling and profiling methods with increased detail on noteworthy efforts. As direct
measurement of GPU power is necessary for model evaluation and parameter initiation, internal and external
power sensors are discussed. Hardware counters, which are low-level tallies of hardware events, share strong
correlation to power use and performance. Statistical correlation between power and performance counters
has yielded worthwhile GPU power models, yet the complexity inherent to GPU architectures presents
new hurdles for power modeling. Developments and challenges of counter-based GPU power modeling are
discussed. Often building on the counter-based models, research efforts for GPU power simulation, which
make power predictions from input code and hardware knowledge, provide opportunities for optimization in
programming or architectural design. Noteworthy strides in power simulations for GPUs are included along
with their performance or functional simulator counterparts when appropriate. Last, possible directions for
future research are discussed.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey; I.3.1 [Hardware
Architecture]: Graphics Processors; H.3.4 [Systems and Software]: Performance Evaluation (Efficiency
and Effectiveness)

General Terms: Experimentation, Performance

Additional Key Words and Phrases: GPU, GPGPU, power profile, power model, simulation

ACM Reference Format:
Robert A. Bridges, Neena Imam, and Tiffany M. Mintz. 2016. Understanding GPU power: A survey of pro-
filing, modeling, and simulation methods. ACM Comput. Surv. 49, 3, Article 41 (September 2016), 27 pages.
DOI: http://dx.doi.org/10.1145/2962131

1. INTRODUCTION

The state of the art in extreme scale computing has maintained exponential growth
in performance for two decades, with peak system performance almost breaching 100
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petaflops (floating point operations per second) [Anthony 2013, 2014; Top500 2016].
Specifically, China’s Sunway TaihuLight at 93.0 petaflops tops the June 2016 Top500,
which lists the world’s most powerful supercomputers, followed by China’s Tianhe-2
(MilkyWay-2) and next U.S. Department of Energy’s Titan exhibiting performance of at
33.9 and 17.6 petaflops, respectively1 [Top500 2016]. As high-performance computing
(HPC) systems continue to grow, ballooning budgets and temperature management
issues caused by the exorbitant power consumption of such large systems are proving
a formidable obstacle to continuing this trend; for example, TaihuLight comsumes 15.4
megawatts with an efficiency (operations/watt) of 6.0 gigaflops/watt, while Tianhe 2
and Titan exhibit about a third of the efficiency (and performance). Currently, the
world’s most power-efficient supercomputer is Shoubu at RIKEN in Japan, exhibiting
7.03 gigaflops/watt (energy efficiency) and 0.413 petaflops (performance). Using
these statistics and linearly scaling to exaflops puts exascale power requirements at
over 142 megawatts [Green500 2015]; hence, the U.S. Department of Energy cites a
∼100-fold increase in power efficiency necessary to reach exascale performance [Ashby
et al. 2010; Tolentino and Cameron 2012]. Modern computing resources are often
over-provisioned, where temperature or power constraints dissuade running all
processors at full load, and questions of resource optimization (e.g, how to allocate
cores, frequency, bandwidth) are necessary for continued development [Rountree
et al. 2012]. Emerging research is addressing the need for understanding power and
performance profiles for such systems and applications.

Noteworthy strides in power-efficient hardware have come from graphics process-
ing units (GPUs), especially for parallelizable scientific applications. Computational or
general-purpose GPUs have exhibited greater performance and energy efficiency than
CPUs for high-throughput, high-latency applications, for example, simulations involv-
ing partial differential equations or convolutions used in image processing [Chung
et al. 2010; Huang et al. 2009; Rofouei et al. 2008]. Consequently, GPUs are now used
in conjunction with CPUs that handle the more serial operations. Because of their
energy efficiency, GPU accelerated HPC systems are increasingly prevalent in both the
Top500 and Green500 lists, which rank the world’s fastest and most energy efficient
supercomputers, respectively [Green500 2015; Top500 2016]. As of November 2015,
72 of the Top500 computers employ GPU accelerators. Furthermore Top500 systems
relying on coprocessor or GPU acceleration have increased from 1% (5 systems) in June
2009 to 18% (89 systems) in November 2015. Looking forward, NVIDIA Volta GPUs are
in the building plans for Summit, a 150- to 300-petaflop computer that is expected to be
deployed at Oak Ridge National Laboratory by 2018 [Smith 2014]. Although GPU ac-
celerated systems are being quickly adopted by the HPC industry, power consumption
remains a pressing issue [Hruska 2014]. Furthermore, as GPUs continue to develop,
understanding their power and performance profiles on real applications is increasingly
difficult [Song et al. 2013]. Analogously to the large-scale distributed systems, the GPU
itself is often over-provisioned, and research for how to use GPUs both effectively and
efficiently is in progress [Jia et al. 2015]. As GPUs are an increasing prevalent and
power-hungry asset in HPC envrionments, understanding and predicting the energy
cost of GPU sub-processes is a necessity in this power-constrained computing era.

Originally designed to assist the CPU with graphics, GPUs were historically a hard-
ware pipeline composed of many different single-function units. As technology devel-
oped, the varied components increased programmability and parallelism. Unlike CPUs,
which are designed for orchestrating a wide variety of quickly changing serial tasks,
modern compute GPUs excel in performance and power efficiency when given highly
repetitive tasks. Put simply, CPUs are optimized for programmability while compute

1Performance reported on the LINPACK benchmark. Details can be found here http://www.top500.org/
project/linpack/.
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GPUs are fashioned for high throughput; unsurprisingly, the physical architectures
differ greatly. Instead of a few CPU cores, modern GPUs contain from dozens to a
few thousand small processors, called streaming processors (SPs); for example, both
the NVIDIA K40 GPU and the AMD FirePro S9710 GPUs sport nearly 2,900 cores.
Depending on the GPU specific architecture, from 8 to 64 SPs are organized into a
streaming multiprocessor (SM) along with a few special function units (SFUs), which
handle the more complex math operations, such as square roots, but SMs do not have
a branch unit, as is necessary in CPUs. With respect to memory hardware, each SM
includes a multi-thread instruction fetch and issue unit, a read-only (texture) cache,
and read/write shared (L1) memory. GPUs also contain an L2 memory, which is ac-
cessible by all SMs. For more detailed history and GPU architecture information, see
Hong et al. [2009], Luebke and Humphreys [2007], McClanahan [2010], Robson [2008],
or Singer [2013].

The GPU’s complex internal memory hierarchy and thousands of processors lead to
natural challenges for power modeling. For example, “How to attain accurate power pre-
diction in the presence of asymmetric loads (where there is a disparity in the portions
of the cores per SM used)?” and “How does compute-bound (memory access happens
during and waits on computation) versus memory-bound applications (computation
happens during and waits on memory access) affect the GPUs power requirements?”
are a few questions beginning to surface in the research. Additional research is probing
how to apply the power modeling research for an optimal balance of power and perfor-
mance (e.g., see Jia et al. [2015]) and pioneering flexible profiling tools for monitoring
GPU processes, (e.g., see Stephenson et al. [2015]). Only in the most recent architec-
tures are a large number of the GPU hardware events observable, and how to harness
these for accurate understanding of power is thinly addressed. This problem arises in
the modeling research discussed in Section 4. Furthermore, the position GPUs have
established in high-performance and scientific computing communities has increased
the urgency of understanding the power cost of GPU usage.

This survey presents an overview of research involving methods to monitor, model,
and simulate GPU power consumption. As most of the academic literature involving
GPU developments focus at least experimentally on discrete (in particular, NVIDIA)
GPUs, a similar focus is reflected in our discussions, although, when possible, more gen-
eral GPU architectures, such as Intel’s integrated GPUs, are discussed. Little mobile
device GPU research is included in this survey. In order to facilitate an understanding
of important products and methods, selected works are discussed in significant depth
and organized into a narrative. We reference interested readers to a related work by
Mittal and Vetter [2014], which presents a survey on GPU energy efficiency. To the best
of our knowledge, this is the first survey on the various methods for obtaining and pre-
dicting GPU power profiles. Following efforts to understand GPU power consumption,
our survey is divided into two main categories, (1) direct methods, which involve hard-
ware products and research for monitoring system and component power (Section 3),
and (2) indirect methods, which covers modeling (Section 4) and simulation (Section 5).
This is a natural dichotomy into two subjects with necessary overlap—for all models
rely on ground-truth power data, and understanding power when it is immeasurable
requires accurate models. We also provide a brief discussion of GPU programming soft-
ware and available benchmarks and software development kits (SDKs) (Section 2) with
a goal of pointing interested readers to resources rather than providing comprehensive
descriptions. Finally, we conclude with a few directions for future research.

2. PREREQUISITES: GPU SOFTWARE

This section gives an overview of the software used in the GPU power modeling lit-
erature. As software is not our focus, we do not give a comprehensive review of these
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Table I. GPU Scientific Application Benchmark Suites

Suite Source Reference
Rodinia http://lava.cs.virginia.edu/Rodinia Che et al. [2009]
SHOC https://github.com/vetter/shoc Danalis et al. [2010]
Parboil http://impact.crhc.illinois.edu/parboil/parboil.aspx Strtton et al. [2012]
Modern GPU https://nvlabs.github.io/moderngpu/ N/A
ISPASS https://github.com/gpgpu-sim/ispass2009-benchmarks Bakhoda et al. [2009]
Lonestar http://iss.ices.utexas.edu/?p=projects/galois/lonestar Kulkarni et al. [2009]
NUPAR https://code.google.com/p/nupar-bench/ Ukidave et al. [2015]
MAGMA http://icl.cs.utk.edu/projectsfiles/magma/doxygen/index.html Dongarra, Tomov [2014]
CompuBench https://cmopubench.com/benchmark.jsp N/A

areas but rather strive to familiarize the reader with what is used in the literature and
provide examples for those interested in taking up GPU research.

Popular software for programming for general purpose GPUs include CUDA,
OpenCL, and OpenACC. NVIDIA’s Compute Unified Device Architecture, known as
CUDA, is the platform plus programming model built to harness parallel computing
opportunities both internal to NVIDIA GPUs and in a distributed computing envi-
ronment containing NVIDIA GPUs [NVIDIA 2014a]. We note that CUDA terminology
includes an important concept of a warp used often in the literature. A warp is the
execution of 32 parallel threads with single instruction multiple data (SIMD). CUDA
programmers allocate threads to blocks, and blocks to grids, but the GPU allocates
each block’s threads into warps and assigns them to the SMs. Maintained by Khronos,
OpenCL is an open-source, multi-platform programming model for parallel computing
supporting GPUs by a variety of vendors including AMD and NVIDIA. In particular,
Intel’s GPUs and the Xeon Phi coprocessors now support OpenCL to expose paral-
lel compute abilities [Cray 2014].2 Additionally, there is OpenACC, a Cray developed
programming model allowing specification of areas of C, C++, or Fortran code to be
directed from CPUs to GPUs, co-processors, or for use with Accelerated Processing
Units or APUs [Khronos 2014].

In order to acquire data for training and evaluating models, almost all works in
the literature employ GPU benchmarks, programs that are designed to repeatedly
execute a few kernels that either stress the GPU in a particular isolated manner or are
representative activities of the GPU. Table I enumerates the GPU benchmarks suites
used or developed in the literature. All of which are freely downloadable, and links
are provided. In addition to the benchmark suites, NVIDIA provides a CUDA software
development kit (SDK),3 an OpenGL SDK,4 and CUDA accelerated high-performance
Linpack code.5 Also referenced in the literature are Merge benchmarks discussed by
Linderman et al. [2008], although to our knowledge, these are not publicly available.

3. POWER MEASUREMENT

Directly measuring power via internal or external hardware sensors is generally
considered the most accurate source of power consumption information. Furthermore,
such measurements are necessary for initially learning parameters for indirect meth-
ods as well as for quantifiable evaluation of a given power model’s accuracy. To obtain
energy estimates, direct methods use periodic meter readings to estimate power used
during a time interval. An estimate of total energy over a time span is calculated via
an integral of the power-versus-time graph over the appropriate intervals. Below we

2https://software.intel.com/en-us/articles/opencl-drivers.
3https://developer.nvidia.com/cuda-code-samples.
4https://www.opengl.org/sdk/.
5https://developer.nvidia.com/rdp/cuda-registered-developer-program.
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Table II. Direct Power Monitoring Hardware

Type AC External DC External Internal
Configuration Between Wall and Device Rails between PSU

and Component
N/A

Granularity Whole Device (Cluster, Node) Component Component
Sampling Rate 10–100 Hz 100–5000 Hz ∼50 Hz
Example Products Kill A Watt, Wattsup,

Schneider Electric PM800
Analog Devices
ADM1191, National
Instruments 9205

NVIDIA Fermi &
Tesla GPUs

give an overview of external power sensors used either in practice or referenced in the
literature for power observations, with particular attention to solutions for distributed
computing systems. Additionally, for convenient and inexpensive monitoring of GPU
power, the internal sensor provided in the NVIDIA Fermi and Tesla architecture GPUs
is discussed. Details of power monitoring hardware is organized in Table II.

3.1. External Power Meters

External power meters include (1) inline universal meters for measuring AC (alternat-
ing current) power of a device and (2) DC (direct current) meters often connected be-
tween the power supply unit (PSU) and a component under investigation. While useful
for general applications and in the computational power profiling literature, inline AC
devices give too-coarse readings for component-level (e.g., GPU-, CPU-, DRAM-level)
profiling. More fine-grained information (in both sampling rate and component-level
readings) is obtainable via DC meters. In addition, hardware and software, designed
specifically for profiling power consumption of distributed computing systems, have
emerged in the research and commercially available products.

Universal external power meters such as Kill A Watt , WattsUp , and ITWatchDogs’
inline power meter , connect between a device and its wall power source and give mea-
surements such as voltage (volts), power (watts), current (amps), and energy (kilowatt
hours) with sampling rates of 10 to 100 Hz.6 While relatively cheap and simple to use,
these devices are generally not suitable for comprehensive power profiling, especially
in HPC settings. As in Ge et al. [2010], inline AC devices have been used to obtain
node-level power profiles for small clusters but are generally not designed for large
distributed environments. We also note that Exatech7 offers many power meters that
can easily clamp onto wires and offer readings for both AC and DC power. In general,
internal sensors are needed for accurate component-level power profiling.

To obtain finer-scaled power measurements, a variety of Analog-to-Digital Converters
(ADCs) such as Analog Devices ADM1191 or National Instruments 9205 are available.8
These devices provide power and current data acquisition hardware that give multiple
input channels with sampling rates on the order of 100 to 5000 Hz. This increase in
frequency is necessary for accurate measurements of component-level power [Burtscher
et al. 2014]; for example, it is calculated that at this sampling rate, GPUs can issue
billions of instructions per sample [Bedard et al. 2010]. As used in works of Bedard
et al. [2010] and Ge et al. [2010], such units can be connected to rails leaving the PSU
to profile components serviced by that rail. Hence, understanding the power profile of
each component is possible. We note that the Zalman VPM1 VGA Power Consumption
Meter9 is an external DC meter designed for monitoring GPU power.

6http://www.prodigit.com, http://www.wattsupmeters.com, http://www.itwatchdogs.com/in-linepowermeter-
p30.html.
7www.exatech.com.
8http://www.analog.com/en/power-management/power-monitors/adm1191/products/product.html, http://
sine.ni.com/nips/cds/view/p/lang/en/nid/208800.
9http://www.zalman.com/.
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Table III. Multilevel Power Measurement Solutions for Distributed Systems

Name Collection Maturity References
PowerPack Out of Band Research [Feng et al. 2005; Ge

et al. 2010]
PowerInsight In & Out of Band Commercial

Product
[Laros et al. 2013, 2014;
DeBonis et al. 2014, 2013]

PowerMon (1,2) In Band Commercial
Product

[Bedard et al. 2010;
DeBonis et al. 2013]

If only node-level or coarser power is desired, then in-line devices designed for dis-
tributed computing environments are available, for example, by APC and allow pro-
grammatic collection of power data for each node in a cluster.10 Titan, the 17.6-petaflop
supercomputer at Oak Ridge National Laboratory, uses Schneider Electric pm-800 me-
ters11 for monitoring and collection of power data at the cabinet (multiple nodes) level.
When component-level power observation is necessary, the ADCs discussed above are
ideal for rigging individual nodes, but the physical configuration is cumbersome and
generally impractical for use in a working distributed HPC environment. Below we
discuss PowerPack, an initial research effort for multilevel power observation of a clus-
ter, and the commercially available solutions PowerInsight and PowerMon. Table III
outlines the available multilevel power monitoring solutions for computing clusters.

3.1.1. PowerPack. Research to obtain comprehensive power profiling of distributed sys-
tems has been undertaken by Feng et al. [2005] and extended by Ge et al. [2010].
Comprised of a variety of hardware sensors and a software package, the profiling sys-
tem, called PowerPack, simultaneously monitors component, node, and system level
power meters at runtime. Inline methods for AC power measurement of each node are
acquired using WattsUp, PSU power readings are given by Advanced Configuration
and Power Interface (ACPI) [acp 2014] (which access internal sensors), and readings
on each rail leaving the PSU are also attained using a National Instruments ADC (see
Section 3). By using the external and internal meters simultaneously, power loss due to
the AC/DC conversion is attained, and redundancy in power data collection allows for
validation. In the case of multiple components sharing power supply lines, component-
level power is ascertained by using micro-benchmarks and adding/removing compo-
nents to discover specific pins servicing power to each component. In addition to the
hardware monitors, PowerPack includes software that not only programmatically col-
lects the comprehensive power data but also correlates power readings to specific lines
in the application code. A prototype implementation on an eight-node cluster is the
topic of Ge et al. [2010]. PowerPack, the ninth node, collects power and performance
profiles and is used to evaluate energy efficiency and performance results (1) between
single-core processing versus multi-core processing and (2) of dynamic voltage and fre-
quency scaling (DVFS), an energy optimization technique. A full-scale implementation
of PowerPack has been planned for System G [2008], a 22.8-teraflop computer, dubbed
“the largest power aware cluster” [Burtscher et al. 2014; Grove 2011].

3.1.2. PowerInsight. PowerInsight, as introduced by Laros et al. [2013], is a customized
power profiling and measurement device designed for distributed HPC systems. Com-
mercially available from Penguin Computing [pen 2014], PowerInsight uses a sampling
rate on the order of 1KHz and offers both in-band (data are collected and analyzed on
the same computer) and out-of-band (data are collected and analyzed on a different
computer) monitoring. Power data are collected at the system, node, and sub-node lev-
els by sampling rails between the PSU and motherboard, and accurate measurements

10http://www.apc.com/products/category.cfm?id=6.
11http://www.schneider-electric.com/.
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at the system and node level are reported. Specifically, evaluation of PowerInsight read-
ings against voltmeters and ammeters shows less than 0.3% error and the coefficient
of variation among repeated experiments is under 3%.

The HPC Power API defines a set of interfaces to support each layer of the HPC
software stack [Laros et al. 2014; DeBonis et al. 2014]. These interfaces allow uniform
interactions between two actors in the software stack, where an actor can be a system
layer, person, or entity. In the HPC Power API, systems are described as a hierarchy
of objects that may be heterogeneous. The objects have a set of attributes that en-
able power measurement and management within the system. Power measurements
and statistics can be obtained in real time or retrieved from a data store. We have a
prototype of the HPC Power API implemented and tested on a Penguin PowerInsight
System. On the PowerInsight system, the PowerInsight API (PIAPI) acted as a plugin
to the more generic HPC Power API, with PIAPI managing communication and sam-
pling rates from the sensors. An additional feature of PIAPI is an internal framework
for emulating hardware features on the embedded device.

3.1.3. PowerMon and PowerMon2. Similarly to PowerInsight, PowerMon/PowerMon2
[2010] are external performance and power data collection devices designed for com-
modity systems by the Renaissance Computing Institute. Both devices are installed
by inserting ADC monitors on rails between the motherboard and PSU. PowerMon2
extends PowerMon’s capabilities from six collection channels to eight and from a maxi-
mum sampling rate of 50Hz to 3KHz, and both are limited to in-band collection. Debonis
et al. [2013] conduct an accuracy comparison, testing PowerMon2 and PowerInsight
side by side using a digital oscilloscope to produce ground-truth power readings. As
expected, both are inaccurate during low current draws but are within 6% accuracy
under reasonable loads. Ultimately, PowerMon2 exhibited slightly higher accuracy and
less variance than PowerInsight.

3.2. Internal Power Sensors

In addition to using extra hardware for obtaining component-level power monitoring,
built-in sensors are incorporated into many components, allowing users to directly
query and monitor power data in situ. For example, the Advanced Configuration and
Power Interface (ACPI) is an open-source interface for hardware monitoring and con-
figuration [acp 2014]. In particular, as used in PowerPack (Section 3.1.1), ACPI can
allow access to internal power sensors. Internal power sensors are emerging in com-
modity GPUs; in particular, NVIDIA Fermi and Tesla architecture GPUs are equipped
with internal sensors allowing convenient access to power data via profiling software,
with sampling rates around 50Hz. Accuracy of NVIDIA’s internal sensors is a current
area of research, for example, see Section 3.2.1 below, and NVIDIA documentation cites
readings within a 5% window [NVIDIA 2014c]. Little documentation exists for these
sensors, and exactly how they obtain power for the GPU board is unclear. Drawbacks of
using built-in sensors are that they lack ubiquity, have relatively low sampling rates,
and, as discussed below, exhibit idiosyncrasies possibly causing inaccurate readings.
On the other hand, when available, built-in sensors give three distinct advantages as
follows (1) they are simple to use, (2) they do not require any added expense or rigging of
additional hardware, and (3) they allow component level profiling regardless of shared
rails. Uses of internal sensors in the literature include PowerPack (Section 3.1.1), Song
et al. [2013] (Section 4.2.3), and Burtscher et al. [2014], discussed next.

3.2.1. NVIDIA K20 GPU Power Profiling Using Internal Sensors. To the authors’ knowledge,
Burtscher et al. [2014] is the only work to examine power profiles of computational
GPUs as given by the integrated sensor. Power data from the built-in sensor are ac-
quired while running two benchmarking programs on three GPUs, namely, the NVIDIA
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Tesla K20c, K20m, and K20x. The benchmarks chosen are both n-body simulations from
the Lonestar GPU Suite (see Table I) [Kulkarni et al. 2009]. The first, NB, is a highly
parallelizable program for calculating pairwise forces in the n-body problem, while the
second, called BH, uses the Barnes-Hut algorithm to compute the forces and is much
less parallelizable. The main discovery is that on the K20c and K20m, power readings
“lag behind” the expected profile, similarly to the expected profile in the presence of a
capacitor. Consequently, energy calculations obtained by integrating the power curve
can vary wildly from what is believed to be the correct energy used. By correcting the
raw data using a capacitor model, the power gives an expected, believable power profile.
Ironically, the K20x power data experiments did not exhibit this capacitance-like be-
havior, and the observed profile and modeled profile were nearly identical (capacitance
constant is approximately zero in this instance). In this work, no external power meter
is used; rather, validation is inferred as the capacitance model gives expected, consis-
tent results among all three processors. These findings suggest that an evaluation of
this capacitance model on internal sensor data validated against a proven external
power monitoring device is necessary. More generally, as the internal power sensors
are increasingly prevalent and certainly the most convenient profiling tool, proper val-
idation and understanding of their output is a necessity for trusting their readings. In
all, this work shows that transforming the raw output of NVIDIA’s internal sensors is
necessary for accurate analysis.

4. COUNTER-BASED POWER MODELS

Obtaining and configuring external power acquisition hardware can be a costly option
for profiling, especially on large-scale, distributed systems. Furthermore, as internal
sensors are neither a standard feature nor consistent in accuracy across hardware,
there is a need, especially in the HPC industry, for indirect power acquisition meth-
ods. This section discusses research efforts that propose and evaluate modeling and
simulation techniques for GPU power and performance estimates.

4.1. Hardware Performance Counters

Modeling techniques estimate power and performance by correlating each with hard-
ware events accessible through performance counters. Performance counters are tallies
of hardware actions, (e.g., number of instructions, average time per operation, number
of memory accesses) that give users access to low-level hardware activities. Metrics,
which are statistics built from counters to explain hardware events, exhibit strong
correlations to power consumption and performance. Thus, the quantification of these
correlations can yield accurate power models.

On the other hand, some limitations inherent to counter-based models persist,
namely, (1) the number and type of counters available are not uniform across hardware;
hence, models dependent on architecture-specific counters do not admit immediate gen-
eralization. Necessary counters for accurate power profiling may not be available in
some settings, for example, see the work of Nagasaka et al. [2010] where texture cache
counters were unavailable and adversely affected their power model. (2) An upper
bound on the number of counters simultaneously accessible is a limitation imposed
by the number of hardware registers. Consequently, multiple runs of an application
may be necessary to collect the performance counter data in which case live, runtime
estimates are inhibited. (3) Last, a GPU-specific limitation is that some architectures
only allow counters for a whole streaming multiprocessor (SM), usually consisting of
8, 16, or 32 cores. Hence, an application using an imbalanced number of cores per SM
can result in inaccurate predictions. However, despite their limitations, performance
counters are a primary source for gaining insight into hardware activities and, as
such, yield strong correlations to power consumption, performance, and temperature.
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For more information on hardware monitoring and performance counters, see Groeger
[2005] and Sprunt [2002].

4.1.1. Accessing Performance Counters. There are a variety of interfaces for accessing
and visualizing hardware counter data, and many are hardware dependent. Such soft-
ware often gives counter data (1) on command, (2) in a streaming visualization for near
real-time monitoring, and/or (3) allows recording of data at preset intervals (e.g., by a
separate thread while running an application). For example, Performance Monitor, also
known as System Monitor, is Windows hardware monitoring software that allows real-
time programmatic collection of counter data and has a graphical user interface (GUI)
for displaying graphs of performance counter data [Willhalm 2012]. Other options in-
clude IBM’s Content Collector,12 Intel’s Performance Counter Monitor,13 PerfMon2 (for
Linux) [Jarp et al. 2008], and AMD’s CodeAnalyst [Drongowski and Center 2008].

Perhaps the most comprehensive hardware monitoring software, the Performance
API (PAPI), provides a platform- and OS-agnostic tool suite for monitoring performance
counters and other hardware sensors14 [Weaver et al. 2013]. Originally configured for
investigating hardware counters in the diversity of CPUs on the market, PAPI has
been extended to Component PAPI (PAPI-C). PAPI-C now offers access to thermal
sensors, GPU counters, memory interface chips, network interface cards, and network
switches to give comprehensive transparency of hardware activity. PAPI 5 also boasts
extended support for energy monitoring in high-performance environments. A GPU
specific PAPI component is in consideration for future development according to
Terpstra et al. [2010]. Additionally, PAPI CUDA component [NVIDIA 2014] is a
hardware measurement and observation technology for the NVIDIA GPUs.

Software for accessing GPUs’ internal counters is also available, for instance, AMD’s
PerfApi, which supports their consumer-grade Radeon GPUs, and Mali GPU Shader
Development Studio for ARM’s Mali GPUs [AMD 2015; ARM 2011]. NVIDIA offers a
suite of profiling tools providing a mélange of capabilities for accessing, visualizing,
optimizing, monitoring, and profiling applications and GPU hardware, including their
commodity GPUs. Compatible tools include NVIDIA Nsight, NVIDIA Visual Profiler,
TAU Performance System, Vampir Trace, PAPI CUDA Component, NVIDIA CUDA
Profiling Tools Interface (CUPTI)15 and the NVIDIA Management Library [NVIDIA
2011, 2012]. Furthermore, programmatic collection of hardware counters, metrics, and
profiling information is available with NVIDIA’s nvprof and nvvp commands [NVIDIA
2015].

The rest of this section gives modeling and simulation efforts found in the literature
that are informed by hardware counters and metrics.

4.2. Counter-Based GPU Power Models

Ample research on power modeling of traditional computing systems exists, with em-
phasis on CPU and memory power (e.g., see Bellosa [2000], Joseph and Martonosi
[2001], Li and John [2003], and Singh et al. [2009]), but much less literature is fo-
cused on GPUs, which have much more computational parallelism and hierarchical
memory. Below we present a progression of GPU power modeling research found in the
literature. These works are summarized in Table IV.

4.2.1. Ma et al. [2009]—A GPU Power Profile Model. Pioneering work in GPU power model-
ing [Ma et al. 2009] compares the accuracy of GPU power predictions by two regression

12http://www-01.ibm.com/support/docview.wss?uid=swg27024515.
13http://technet.microsoft.com/en-us/library/cc749154.aspx.
14http://icl.cs.utk.edu/papi/index.html.
15https://developer.nvidia.com/performance-analysis-tools.
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Table IV. Counter- and Event-Based GPU Power Models

Reference Section Input Output Model(s)
[Ma et al. 2009] 4.2.1 GPU Counters Power Profile Linear, Support Vector
[Nagasaka et al.
2010]

4.2.2 GPU Counters,
Metrics

Kernel Ave. Power Linear (various input sets
tested)

[Song et al. 2013] 4.2.3 GPU Counters,
Metrics

Kernel Ave. Power Linear, Neural Network

[Chen et al. 2011] 4.2.5 GPGPU Sim
Events

Kernel Energy Linear, Linear Regression
Tree, Random Forest

Note: Model(s) column gives regression techniques tested with most accurate model in bold font.

learning machines, Support Vector Regression (SVR) and Support Linear Regression
(SLR). This model estimates the power used by the GPU over a small time window,
hence the output is a step function giving the predicted power profile curve. To illustrate
the models explicitly, power, p, is modeled as

p =
n∑

i=1

wiai + w0, (1)

where ai are counts of a given event and wi weights to be learned during training. If
a( j) = (a( j)

1 , . . . , a( j)
n ) denotes the counter observations for the jth test with corresponding

observed power p( j), then linear regression seeks the weight vector w = (w0, . . . , wn) so∑
j(w ·(1, a( j))− p( j))2 is minimal, whereas vector regression seeks the minimal length w

given the constraint
∑

j(w · (1, a( j)) − p( j))2 < ε. Mathematical details of the regression
techniques are widely available, for example, see Smola and Schölkopf [2004].

To create training data, benchmarks that stress different GPU sub-units (e.g., texture
units, vertex shaders, pixel shaders) are executed while a separate node collects GPU
power and performance counter data. An external DC power meter (see Section 3.1)
is used to monitor an NVIDIA GeForce 8800gt GPU’s power, and NVIDIA PerfKit16

gives access to five performance counters that quantify the percentage of use of GPU
sub-units. Evaluation of the power models is performed on a held-out test set as well
as on eight separate applications that used the GPU for graphics and general pur-
poses. Specifically, for graphics benchmarks Nexuiz, an open-source game, and three
of NVIDIA’s OpenGL SDK applications are used, and for GPGPU benchmarks three
NVIDIA CUDA SDK applications and GNN, a GPGPU neural network implementa-
tion, are used. Overall, the SVR model outperformed the linear model on all but one
test, and both models struggled to predict spikes in power. Large variances in accuracy
are observed. As mentioned in both Ma et al. [2009] and Nagasaka et al. [2010], acqui-
sition of global memory access counts are necessary for accurate GPU power modeling
but were not available with this architecture.

4.2.2. Nagasaka et al. [2010]—Linear Regression Model for GPU Kernel Average Power. Build-
ing on the Ma et al. contribution, Nagasaka et al. [2010] continue exploration of linear
regression power models. Although, like most succeeding works, their model’s output
is the average power for a single kernel (not a power profile curve for a whole bench-
mark). By using the CUDA Profiler [2011], 13 counters are observed while benchmarks
are run on an NVIDIA GeForce 285 GTX GPU, and an external DC power acquisition
system gives GPU power data. Power and counter profiles for 49 kernel applications
taken from the NVIDIA CUDA SDK suite and the Rodinia benchmark suite [2009]
are created as training data. Seven different linear regression models, varying only
by their input metrics, are tested and compared. Experimentation with using metrics

16https://developer.nvidia.com/nvidia-perfkit.
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from the counters is performed; for example, six different memory instruction coun-
ters are summed to create a memory metric and used as input to a linear regression
model along with other counters or metrics. As this architecture did not support tex-
ture cache counters, tests with and without kernels that use texture cache provide
empirical evidence that this counter event is important for accurate power prediction
of some kernels. To summarize results, the model using all available counters was most
accurate; additionally, global memory access is identified as the single largest corre-
lated metric to GPU power consumption. We note that because only 13 counters were
available, using all of them is feasible, yet modern architectures provide much larger
number of counters presenting modeling efforts with a feature selection problem.

Limitations of this implementation include the following: (1) As only 4 counters
can be collected in a given run, each program must be run at least four times to
obtain data from the 13 counters. (2) Another limitation is that counters are read
per streaming multiprocessor. In the presence of an asymmetric kernel (e.g., all 32
streaming processors on the first multiprocessor are used, but only 17 of the second
are used), the counters will have unknown correlations to actual power consumed.
(3) Last, no counters to monitor texture reads are accessible from this GPU.

4.2.3. Neural Network Power Model of Song et al. [2013]. In order to omit the linear as-
sumptions inherent in the previously discussed power models, Song et al. [2013] use
a neural network to predict the average power of a kernel from performance metrics.
The power model is then used in conjunction with a counter-based performance model
to estimate energy consumption. In this section, we examine only the power model,
with the performance and energy work following.

Following previous works, Song et al. select kernels that stress the GPU in differ-
ent ways. Specifically, kernels are chosen from the NVIDIA CUDA SDK suite, the
SHOC suite [2010], and from GEM, a free scientific application introduced by Gordon
et al. [2008]. The NVIDIA Fermi C2075 GPU is used in this work, and this more modern
architecture provides two main advantages over previous efforts. First, during runtime
of the kernels, a separate thread collects power data using the NVIDIA internal power
sensor via the NVIDIA Management Library [2012]; hence, power data are accessible
programmatically with no extra hardware or configuration. Second, the Fermi archi-
tecture provides greater insight into the GPU than previous models. As greater than 60
counters are accessible, feature selection is necessary before application of a regression
algorithm to prevent a biased model (or underdetermined set of equations in the linear
case). Hence, correlation with power is computed for each counter collected, and the top
14 counters are selected. Similar counters are then summed to create 10 performance
events used as inputs to a neural network; for example, three counters related to global
memory store actions are summed to create a single input. In all, the neural network
uses an input layer of size 10 and two hidden layers of size 4. Mathematical details
of artificial neural networks and back-propagation training are available; for example,
see Russell et al. [1995].

For evaluation, a direct comparison to the linear model of Nagasaka et al. [2010] is
conducted; specifically, two linear regression models—the previous model and a natural
extension of the previous model that also includes texture events as input—are trained
and tested alongside the new neural network model. Perhaps unsurprisingly, the neu-
ral network model excels in accuracy on 19 of 20 kernels in the test set, exhibiting
often a third of the error of the linear models. We note that neural network accuracy
is highly dependent on many configuration settings, such as size of each layer, acti-
vation functions, and optimization options, which can be costly to test and configure.
Nonetheless, this work clearly shows that nonlinear models when properly configured
are much more accurate across the board.
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Limitations of this approach are similar to previous efforts; namely, the counters
are for a full streaming multiprocessor, so asymmetric kernels cannot be accurately
profiled. Additionally, multiple runs of each kernel are necessary to acquire counter
data as only four counters can be accessed simultaneously. To the authors’ knowledge,
Song et al. [2013] is the first work to use neural nets and, more generally, any nonlinear
GPU power models; although similar ideas, namely, exploring more robust machine-
learning techniques for power models, exist in the non-GPU power modeling literature.
Specifically, Singh et al. [2009] apply nonlinear functions (log(·), exp (·)) to performance
metrics that are in turn input to piecewise linear functions.

4.2.4. Performance and Energy Model of Song et al. [2013]. While the models discussed
above focused only on power prediction, Song et al. additionally propose a performance
model to predict estimated runtime of the kernel. Used together, a model of energy (i.e.,
power integrated over time) for distributed systems is given [Song et al. 2013].

To estimate runtime of a kernel, Song et al. also propose a counter-based performance
model. As the counter values correspond to hardware processes, a series of equations,
similar to simulation models (such as in Hong and Kim [2009, 2010] discussed in
Section 5), are used to calculate the number of cycles for executing the kernel. To
validate the method, predicted times are compared against runtimes of kernels. An
immediate advantage of this performance model is that time used by GPU sub-units
are calculated to estimate the total time; consequently, architectural units involved in
bottlenecks can be pinpointed.

An energy estimate for a GPU executing a kernel is given by the product of the aver-
age power, as predicted by the neural network power model discussed in Section 4.2.3,
with the runtime predicted by the performance model. To obtain total energy used by a
distributed system, the sum of the energy on each GPU executing the kernel is summed
with the remaining systems idle energy (as estimated from direct measurements) and
overhead energy, such as network energy. This systemwide energy estimate is tested on
the truly parallel SHOC [2010] benchmarks. Further research for how such an energy
model will scale to full programs will be an interesting and integral next step.

4.2.5. Tree-Based Energy Model of Chen et al. [2011]. Chen et al. [2011] provide a GPU
energy model similar to the counter-based models discussed above. Unlike previous
works, Chen et al. do not use counters observed during runtime on a GPU as model
inputs but instead use instruction types as well as GPU counters and metrics observed
when running the kernel in GPGPU-Sim (see Table V; GPGPU-Sim is an open-source
and well-developed GPU simulator). Their method uses linear regression tree and
random forest methods to predict energy of GPU kernels. Linear regression trees
provide a decision tree by iteratively dividing the feature space, and random forests
use an ensemble of trees to give the predicted output. Algorithmic details can be
found in Breiman et al. [1984, 2001], among other sources. Power measurements are
obtained using Yokogawa WT210 Digital Power Meter [Yokogawa Electric Corporation
2015] on an NVIDIA GeForce GTX 280 GPU with a total of 52 kernels from the
NVIDIA CUDA SDK, Rodinia [2009], and Parboil [2012] benchmark suites and using
graphics applications from their previous work [Chen et al. 2010]. For comparative
evaluation, linear regression, regression tree, and random forest models are trained
and results are obtained using leave-one-out cross validation, where each algorithm
is iteratively tested on each benchmark after training on the remaining benchmarks.
Results show superiority of random forests with average error of 7.77%, followed
by regression trees, and finally linear regression with errors of 11.68% and 11.70%,
respectively. This provides further evidence that the relationship between GPU power
and GPU sub-processes is nonlinear, as did the neural network power model of Song

ACM Computing Surveys, Vol. 49, No. 3, Article 41, Publication date: September 2016.



Understanding GPU Power: A Survey of Profiling, Modeling, and Simulation Methods 41:13

Table V. GPU Simulation Works

Name Description Reference
1 Qsilver Functional GPU Power and

Temperature Simulator
Sheaffer et al. [2004, 2005a, 2005b],
Section 5.1.1

2 Attila GPU Functional Simulator Del Barrio et al. [2006]
3 PowerRed GPU Architecture-Level Simulator Ramani et al. [2007], Section 5.1.2
4 UNISIM Simulation Environment August et al. [2007]
5 Barra UNISIM-Based GPU Functional Collange et al. [2009, 2010]
6 McPAT General Simulation Environment Li et al. [2009], Section 5.2
7 N/A McPat-Based GPU Functional

Simulator
Lim et al. [2013], Section 5.2.1

8 GPU-Wattch McPat-Based GPU Power Simulator,
Mature Open-Source Product that
Integrates with GPGPU-Sim

Leng et al. [2013], Section 5.2.2

9 GPGPU-Sim McPat-Based GPU Functional and
Performance Simulator, Mature
Open-Sourced Product

Bakhoda et al. [2009]; Fung
et al. [2007], Section 5.2.2

10 N/A GPU Power Model built on
GPGPU-Sim Simulated Events

Chen et al. [2011], Section 4.2.5

11 MWP-CWP
Performance
Model

GPU Performance Model Hong and Kim [2009], Section 5.3.1

12 Integrated
Power &
Performance
Model

GPU Power & Performance Model Hong and Kim [2010], Section 5.3.2

13 N/A CPU Vs. GPU Performance Simulation
using MWP-CWP Performance Model

Meng et al. [2011]

14 GPUPerf GPU Performance Simulation and
Optimization Framework Using
MWP-CWP Performance Model

Sim et al. [2012]

15 N/A PTX-Based GPU Power Model for
Optimal User Settings

Wang and Ranganathan [2011],
Section 5.4.1

16 POIGEM PTX-Based GPU Energy Model Using
MWP-CWP Performance Model

Zhao et al. [2013], Section 5.4.2

17 Multi2Sim Heterogeneous System Simulator,
Mature Open-Source Product

Ubal et al. [2012]

18 MacSim Heterogeneous Architecture
Cycle-Level Simulator, Mature Open
Source Product

Kim et al. [2012]

Note: Table itemizes GPU simulation research works. Those with power predictions are discussed in detail,
and the reference to their section number is provided.

et al. [2013]. Furthermore, the possible overfitting of the model induced by a large
ratio of model inputs to data points is cited as a potential problem.

Although Chen et al.’s work is indeed a power model, their work is built on GPU
simulation; hence, the power predictions can inform implementation decisions without
use of the GPU, for example, for a priori optimization. This is an advantage and
motivation of GPU power simulation, the topic of Section 5.

5. GPU POWER SIMULATORS

Counter-based modeling research gives promising techniques for estimation of power
and performance, but the reliance on data collected during runtime inhibits their
predictive capability. By using software to model GPU components, GPU simulations
seek to give actual output and/or behavioral predictions of running a GPU application
without the actual GPU. Functional simulators produce output of a given workload
and are often supplemented with profiling information, while power/performance
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simulators focus solely on predicting the power/performance profile of the application
without the actual functional output. Such tools are useful for exploring hardware
options and software configuration in the absence of the actual GPU, especially
when optimizing for performance and energy efficiency. While simulations can give
valuable predictions, the modeling involved is often very complicated, requiring a deep
understanding of architecture and processes. This is most evident in the influential
but complicated models of Hong and Kim [2010]. In these cases implementation across
systems is inhibited, and configuration can be costly. As is the case with modeling
efforts, simulations of power, temperature, and other computing characteristics were
initially developed for CPUs (e.g., see Brooks et al. [2000], Skadron et al. [2003], and
Zhang et al. [2003]), yet the complicated and evolving GPU architecture requires
tailored simulation research. For example, see the power simulation work of Lim
et al. [2013] where GPU and CPU architectural differences are itemized. GPU power
simulators are often built on performance and power models using hardware data that
is predicted rather than observed, for example, from code analysis.

A very general framework for power modeling introduced by Isci and Martonosi
[2003] (originally designed for CPU research) is a basis for many GPU simulation
works and reconfigurations for the new setting vary. Isci and Martonosi’s framework
defines total power as idle power + leakage power + dynamic power. Dynamic power,
pd, is modeled linearly as

pd =
∑

i

wiαi pmaxi , (2)

where i ranges through the sub-components, αi denotes the access rate of sub-
component i (i.e., the number of accesses of that component per application runtime),
pmaxi is that sub-component’s max power, and wi are weights to be learned. Generally,
micro-benchmarks are used with a power meter to acquire training data for learning
the weights. Very complicated variants of this basic framework exist, for example, see
Hong and Kim’s model in Section 5.3.1.

Below we discuss in detail the works in which GPU power is directly simulated or is
modeled from a GPU hardware simulation; furthermore, these are itemized in Table V.
As GPU simulation is a large and growing field, we also include in Table V those GPU
simulation efforts not directly addressing power prediction.

5.1. Early GPU Power Simulation Research

Early work in GPU power simulation occurs in works by Sheaffer et al. [2004, 2005a]
and Ramani et al. [2007]. As the development of GPU architectures necessitated sig-
nificant increases in power consumption, these works address the need for simulation
research targeting GPUs with an end goal of optimizing power consumption via archi-
tectural design decisions.

5.1.1. Qsilver. Sheaffer et al. [2004, 2005a] introduce a GPU simulation framework
called Qsilver and exhibited its use for optimizing energy efficiency. This research
work illustrates the power and performance analysis that is possible via such a GPU
simulation framework but uses a prototypical GPU pipeline to show the possibilities
afforded by such a simulation. To obtain conclusive results for a specific GPU architec-
ture, more detailed knowledge of the given GPU hardware is required. The framework,
Qsilver, takes as input commands for the GPU along with statistics about the activity
of the GPU necessary to complete the command. For example, the number of writes
to a buffer may be a statistic accompanying a command. Next, a cycle-timer model
simulates the workflow of the GPU and outputs operational counts for each GPU sub-
unit. The counts are then used as input to a power model. To exhibit the predictive
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capabilities of the simulator, predicted power, energy, and performance of a given task
are plotted as GPU configuration details are changed. Hence, the optimal settings are
identified, which result in predicted energy efficiency gains. Sheaffer et al. [2005b] build
on this work to investigate temperature profiles. Although not immediately applicable
to modern general purpose GPUs, Qsilver’s overall idea of first predicting hardware
events (from a model of the GPU architecture and the application code) and, second,
using these as input to a power and/or performance model, is present in much of the
simulation literature.

5.1.2. PowerRed. Ramani et al. [2007] develop PowerRed, a GPU architecture-level
power simulation framework. Power models for GPU sub-components, such as buses
and caches, are developed based on previous low level simulation research and explicit
details of the models are not discussed. As the goal of this framework is to inform
power-optimal GPU hardware designs, simulated power is used to explore the impact
of changing the architecture; for example, the impact of the global bus’s wire length on
power consumption is simulated to inform how architectural changes can save energy.
As in Sheaffer et al. [2004, 2005a], the goal is not a definitive model that is ready for
use but to introduce a framework that, when equipped with specific GPU architectural
details, can inform future design decisions for power savings.

5.2. McPAT-Based GPU Power Simulations

McPat is an architecture-level power profiling simulator introduced by Li et al. [2009]
that allows users to configure abstractions of hardware sub-components to flexibly
simulate a variety of CPU (and now GPU) designs. McPAT’s library of sub-component
abstractions, such as instruction decoders or data caches, can be hierarchically com-
bined to represent diverse hardware [Li et al. 2009]; hence, recent strides in GPU
simulation have occurred by configuring the McPat (abstractions of) sub-components
in a way that will accurately model a GPU.

5.2.1. GPU Simulator and Power Model of Lim et al. [2013]. In order to build a GPU power
simulator, Lim et al. [2013] configure McPAT to model each sub-component of an
NVIDIA GTX580 GPU. More specifically, sub-components of the GPU are represented
by combinations of McPAT sub-component models using a simulation interface from
Song et al. [2011]. MacSim,17 a publicly available heterogeneous architecture simu-
lator (see Table V and Kim et al. [2012]), and DRAMSim2, a memory simulator, are
also used [Rosenfeld et al. 2011]. Lim et al. use an NVIDIA GTX 580 GPU and an in-
line power meter to acquire power data. More specifically, running benchmarks while
turning on and off sub-components is necessary to estimate CPU and GPU power in
their configuration. In order to discover unknown McPat parameters (e.g., number
of ports in L1 cached) necessary to accurately model sub-components, iterative ex-
perimentation and comparison to reference data are performed and discussed. Finally,
each sub-component’s power is modeled, and a linear combination is used for total GPU
power. Evaluation of the simulation’s power prediction yields 7.7% and 12.8% geomet-
ric averaged error over 10 micro-benchmarks and six Merge benchmarks (discussed by
Linderman et al. [2008]), respectively.

5.2.2. GPUWattch. GPUWattch, developed by Leng et al. [2013], is (to our knowl-
edge the only) open-source GPU power simulator and is built on and available with
GPGPU-Sim (see Table V). (GPGPU-Sim is a thoroughly developed, open source GPU

17https://code.google.com/p/macsim/.
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performance simulator [Bakhoda et al. 2009; Fung et al. 2007]).18 Specifically, GPU
micro-architectural components are modeled by corresponding McPAT simulators, and
new micro-architectural simulated components are incorporated to account for GPU
components lacking a McPAT analogue. Power is modeled as in the paragraph dis-
cussing Equation (2), and an NI Data Acquisition system (DC power meter) is used
with micro-benchmarks to gather power data. Least-squares estimation is used for
learning weights of the dynamic power, and idle power is determined by using micro-
benchmarks with an imbalanced load—a known number of SMs compute while another
known number sit idle. Evaluation of the power simulator against ground-truth power
is performed on NVIDIA GTX 480 and Quadro FX5600 GPUs. Very comprehensive
initial evaluation is performed, using 80 micro-benchmarks that stress different com-
ponents, and a 15% and 16.2% average error is reported, respectively, for the two GPUs.
Next, evaluation on 18 kernels from the RODINA Benchmarks (see Che et al. [2009]),
three from the ISPASS suite (See Bakhoda et al. [2009]), and four others produce
average error in power prediction of 9.9% and 13.4%, among the two GPUs tested,
respectively.

As GPUWattch is created to integrate with GPGPU-Sim, a well-developed GPU
performance simulator, these simulation tools facilitate optimization and testing op-
portunities for developing code. Perhaps the greatest operational boon of these works,
as illustrated by this evaluation, is that these power simulators claim to be portable
across architectures, unlike the MWP-CWP models discussed next.

5.3. Hong and Kim’s Power and Performance Models

Hong and Kim developed a GPU performance model [2009] and, later, an integrated
power model [2010]. These two influential works use a detailed understanding of intra-
GPU parallelism to illuminate not only predictive capabilities but also a priori opti-
mization techniques for performance, power, and energy efficiency. Further, their works
have contributed to a flurry of GPU simulation research. The remainder of this sub-
section gives detailed descriptions of Hong and Kim’s GPU power and performance
simulation works.

5.3.1. Hong and Kim’s MWP-CWP Performance Model. Hong and Kim’s memory warp
parallelism–computational warp parallelism (MWP-CWP) performance simulator il-
luminates intra-GPU parallelism from static code analysis and has lead to power sim-
ulation; hence, we give a description including the main ideas [Hong and Kim 2009].
The model is based on the intra-GPU process, where, first, a warp computational pe-
riod is completed, and then the SM executes a memory instruction from the warp, and
that warp waits until the memory request is completed. We note that the use of warps,
defined as 32 SIMD (single instruction parallel data) threads to be simultaneously ex-
ecuted, is dependent on the CUDA programming architecture and hence the NVIDIA
hardware. Estimating the number of computational periods, number of memory wait-
ing periods, and the parallelism (overlap) possible yields an accurate prediction of the
time necessary for the kernel to complete.

Inputs to the model, obtained from code at compile time, are as follows: number of
instructions, number of memory requests, memory access patterns, GPU architecture
parameters (such as, bandwidth, DRAM latency, etc.), and warp information. A warp
is a batch of 32 threads and is executed as a unit on an SM. There are two metrics
that drive the simulator: (1) Memory Warp Parallelism (MWP) defined as the number

18GPUWattch, and its counterpart GPGPU-Sim provide websites with evaluation results, support docu-
mentation, compilation information and further descriptions. http://gpgpu-sim.org/ http://gpgpu-sim.org/
gpuwattch/.
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Fig. 1. MWP-CWP Model illustration. MWP < CWP on the left and CWP < MWP on the right. Taken from
both [Hong and Kim 2009; Sim et al. 2012].

of warps per SM that can access memory simultaneously, and (2) Computational Warp
Parallelism (CWP), defined as the number of warps that an SM can execute during one
memory warp waiting period plus one (plus one to account for the warp that is waiting
on memory). See Figure 1.

The model of GPU activity involves three cases and illustrates how power and per-
formance costs accrue in GPUs.

(1) Case 1 MWP < CWP. In this case, multiple computational periods are executed
while waiting on memory requests from a previous computational period, hence
total time is determined mainly by memory waiting time.

(2) Case 2 MWP ≥ CWP. In this case, memory requests occur directly following each
computational period with no backup, and so total time is determined mainly by
the computation.

(3) Case 3 Insufficient Warps. The third case is when a lack of parallelism results
in computational and memory periods acting in succession.

Derivation of MWP and CWP involves dozens of formulas constructed from an even
greater number of parameters inferred from input code (e.g., counts of a variety of
instructions, overhead parameters, waiting times, and various types of parallelism);
hence, the model involves expert understanding of the architecture and kernels in-
volved. Tests of the simulated performance against actual runtimes yields geometric
mean of absolute error as 5.4% on micro-benchmarks and 13.3% on GPU applica-
tions. An immediate boon of this simulation is an understanding of the intra-GPU
parallelism at compile time, allowing performance bottlenecks to be identified as ei-
ther computational or memory expense. Performance optimization is also informed
by this model and is the topic of Sim et. al [2012]. The intuition behind increasing
performance via the model follows the cases outlined in Section 5.3.1. For example,
if MWP < CWP (runtime is determined almost exclusively by memory), optimizing
computational performance will have almost no effect, but optimizing memory perfor-
mance yields worthwhile performance gains. Additionally, Meng et al. [2011] use the
MWP-CWP performance simulator to predict from CPU code the potential benefits of
implementation with general purpose GPUs [Meng et al. 2011]. In the 2010 work, Hong
and Kim couple this performance simulator with a power simulator and predict the
optimal number of SPs for energy efficiency a priori. This is the topic of their integrated
power and performance model, discussed next.
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5.3.2. Hong and Kim’s Integrated Power and Performance Model. Hong and Kim’s Integrated
Power and Performance (IPP) model [Hong and Kim 2010] builds a power simulator on
their MWP-CWP performance predictor (Section 5.3.1). Together, the Integrated Power
and Performance model is used to decide the number of cores, that is, multiprocessors
of the GPU needed for optimal energy efficiency (operations/watt). The intuition be-
hind the study is that energy efficiency will increase with the number of cores until
the memory bandwidth is maximized. After this point, adding additional cores will
decrease energy efficiency, as additional cores will be consuming energy while waiting
for memory bandwidth. As with the performance model discussed above, the power
simulation is based on instructions garnered from static analysis of input code. Thus,
in practice, such a simulator would inform powergating, in which the software engineer
or compiler imposes limits on the number of cores allowed to execute the kernel.

Given a kernel, the MWP-CWP model (as discussed in detail in Section 5.3.1) predicts
runtimes and is subsequently used to estimate power by a model, which at a high level
is identical to that discussed with Equation (2), although estimates of runtime power
for sub-components are complicated. As with the MWP-CWP model, the technicalities
involved in the power estimate involve detailed, architecture-dependent models with
over 70 parameters; hence, a precise description of the model is outside the scope
of this survey. A high-level description is as follows. GPU power is defined as idle
power plus runtime power. To estimate runtime power, instructions from input code
are sorted by the architectural sub-unit(s) (e.g., SFU, global memory, etc.) they call,
and component power is estimated by a combination of logarithmic and linear functions
from the instructions rather than performance counters. It is worth noting that a latent
temperature model is also estimated and used as input to the runtime power model
to account for their high correlation. Micro-benchmarks, which stress particular sub-
units and are mostly from the Merge benchmark suite (Linderman et al. [2008]), are
used to fit model parameters to measured power. Evaluation of the power simulator on
11 benchmark kernels gives 9% geometric average error against measured power.

In order to maximize energy efficiency (operations/watt), the MWP-CWP cases give
insight into the optimal number of cores to use. Intuitively, in the case where MWP <
CWP (computational periods are intermittently waiting on memory), dialing back the
number of cores can conserve power without affecting performance. Applying the model
to five benchmarks that stress memory bandwidth shows a predicted average energy
savings of 11%. The interested reader is encouraged to consult the original documents
for details of both models and the optimization equations.

The drawbacks of the IPP model lie in the high degree of technicality of the model
and the dependence of the model on the hardware setup. As a research contribution, the
work has important implication for GPU power conservation. First, it exhibits strong
evidence that managing of the number of cores is both worthwhile and necessary
for power conservation. Second, it gives results suggesting exactly how to optimize the
number of cores. Third, it exhibits optimization results at compile time, so configuration
details can be set a priori. Last, the MWP-CWP models intra-GPU parallelism into,
evidently, useful cases with respect to performance and efficiency optimization.

5.4. PTX-Based Power Models

As an intermediate step in the NVIDIA CUDA compilation between human-written
CUDA code (written in C) and the compiled binary, “parallel thread execution” (PTX),
a pseudo-assembly code, gives the list of instructions to be executed by the GPU. For
example, add, xor, bra (branch) are a few of the ∼100 PTX instructions. To access PTX
code, one can simply run nvcc -ptx file-name , which produces the PTX code during
compilation [NVIDIA 2014b]. In order to predict power a priori, PTX instructions have
been leveraged to simulate the power of a CUDA program. Such an approach gives
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powerful optimization capabilities to programmers before running a program, but this
relies on the sometimes untenable hypothesis that the program has a transparent set of
instructions. More specifically, the disadvantage of any predictive model that depends
on static code analysis is in the inability to know a priori how many instructions
will be executed, and theoretical results have proven this to be insurmountable—see
Turing’s work on the halting problem, where it is proven that it is undecidable to know
whether a given program and input will run forever [Turing 1936]. As an illustrative
example, consider a program that counts the number of independent and identically
distributed coin flips before observing a tail. In a simple implementation, any given
run of this program will have an indeterminable number of instructions; hence, an
accurate energy prediction of a sample run is inhibited. In short, when optimizing
CUDA code for many tasks, such as matrix multiplication, PTX-based power models
can yield valuable and informative predictions, but users should be wary of conditional
statements that can inadvertently cloak the instruction-set that will be run by the
GPU.

5.4.1. Wang and Ranganathan’s Instruction Level Energy Optimization. As CUDA program-
ming necessitates the programmer to specify the number of threads per block and
number of blocks per grid, Wang and Ranganathan [2011] addresses the problem of
finding the optimal user settings for energy optimization. To develop an energy model,
a subset of the most common PTX instructions along with their frequency are taken as
input to a linear model. Explicitly, the energy used by a thread is

Et :=
∑

i

eini + o1,

where i ranges over the PTX instructions modeled, ei is the energy used to execute
instruction i, ni is the frequency of instruction i, and o1 is thread overhead. Altogether,
total energy of a program is modeled as

E := [MEt + o2(M)]x + o3(M, x), (3)

where M is number of threads per block and x is the number of blocks. The function
o2(M) denotes the overhead energy on the block level, and o3(M, x) is the overhead
energy for the creation of all the blocks. Both o2 and o3 are assumed to be linear. In
order to learn the model parameters, test programs stressing the instructions in the
model are run on an NVIDIA GTX 460 GPU using Zalman VPM1 VGA Power Con-
sumption Meter19 (for monitoring the GPU power only). Evaluation is performed on
four benchmarks created from the NVIDIA CUDA SDK and one Advanced Encryption
Standard (AES) program [Manavski et al. 2007]. Results show energy consumption
savings between 7.31% to 11.76% with worst-case performance loss of 4.92%. While
the authors remark that this energy model is likely less accurate in predicting energy
than counter-based models (which require repeated running of a program to observe
hardware events), their approach gives users the ability to optimize energy efficiency
before running the program and specifically answers the question of how to set neces-
sary user design parameters.

Although outside the scope of this survey, we point the interested reader to a related
work of Jia et al. [2015], where tree-based methods are used to explore the design space
(number of blocks, number of threads per block) for energy- and performance-optimal
CUDA programming.

5.4.2. POIGEM. Influenced by Hong and Kim’s MWP-CWP performance model, Zhao
et al. [2013] also develop an energy model for the NVIDIA GE Force GTX 470 GPU.

19http://www.zalman.com/.

ACM Computing Surveys, Vol. 49, No. 3, Article 41, Publication date: September 2016.

http://www.zalman.com/


41:20 R. A. Bridges et al.

Their model, called A Programming-Oriented Instruction Level GPU Energy Model for
CUDA Program (POIGEM), gives energy prediction for the GPU with the counts of
each PTX instruction as input. Specifically, a subset of PTX instructions are selected
and divided into two categories—memory instructions and arithmetic computation
instructions. Energy, E is modeled as

E = kaT
m∑

i=1

αici + kmT
m+n∑

i=m+1

αici + βt, (4)

where αi denotes the energy consumed to perform instruction i, ci gives the number of
times instruction i occurs, and instructions i = 1, . . . , mare the arithmetic computation
instructions, while instructions i = m + 1, . . . , n + m are the memory instructions.
Parameters ka and km give the contribution of the arithmetic and memory instructions
parts, respectively, and T gives the number of threads. Last, t is the time it takes for
the kernel to run as determined by the MWP-CWP model (see Section 5.3.1), and β is
the overhead energy consumption.

Training of the model is performed on 15 synthetic benchmarks, and αi, ka, km, and β
as learned via linear regression are given in the article. Ground-truth energy data are
obtained using two PSUs, one serving only the GPU and the other serving the remain-
ing components (CPU, motherboard, etc.). An Everfine20 PF9805 external power meter
is used between the GPU’s PSU and the wall outlet. Evaluation is performed using 16
Rodinia benchmarks [Che et al. 2009]. On 13 of the 16 benchmarks, less than 10% error
is achieved, yet on the other three benchmarks, greater than 12% error results with a
maximum error over 25%. While increasing the training size will presumably increase
accuracy on most benchmarks, the cited problem for the three problematic benchmarks
is the inability to know from PTX code how many times each instruction will occur. On
the other hand, given a simple program for which the instruction set is transparent,
such as a matrix multiplication task that does not contain conditional statements, this
work promises an accurate energy prediction on compilation. Moreover, by training the
model on benchmarks with bare-faced instruction sets, POIGEM gives valuable insight
into the energy usage of the GPU, specifically, by estimating the energy cost of each
instruction.

5.4.3. Activity-Based Model for GPUs. By modeling the power costs of basic GPU sub-
processes, such as global memory access and floating point operations, Kasichayanula
et al. [2012] develop a model of GPU sub-component power called the Activity-Based
Model for GPUs (AMG). Their model defines GPU total power as idle power + runtime
power, with runtime power the sum of the active components power. More specifically,
runtime power of component i is defined as

N ∗ Pi ∗ Ui + Bi ∗ Ui,

where N is the number of SMs executing the given sub-process, Pi is the power used
for that sub-component, Ui is the utilization factor, and Bi is the base power of that
sub-component. The Kill A Watt inline power meter is used to obtain ground-truth
power readings via a second PSU that only services the GPU. Micro-benchmarks are
crafted to stress different sub-components, and constants Bi, Ui, and Pi are observed.
PTX code is needed to see what instructions and hence what sub-components will be
called. Evaluation of the AMG power prediction is performed using an NVIDIA C2075
GPU and four MAGMA kernels (see Table I, Dongarra and Tomov [2014]), and error is
near 10%. After training this model, runtime power can be predicted given knowledge
of what sub-components are called, for example, from PTX code.

20http://www.everfine.net/.
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6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Altogether, this survey seeks to give a comprehensive picture of methods to attain power
data of GPUs, with an in-depth view of important pieces of modeling and simulation
research. As all power decisions are ultimately grounded in accurate measurements,
direct methods are extremely important and still exhibit a tradeoff between accuracy
and ease of use. The internal GPU power sensors (in particular, in NVIDIA Fermi and
Tesla architectures) are the most convenient to use as they require no extra hardware
cost or configuration and are supported by vendor profiling software. Although the use
of internal sensors is becoming common in the research literature, the vendor docu-
mentation is scarce. Further, as illustrated by Burtscher et al. [2014], more thorough
understanding is necessary before precise measurements from internal sensors can be
used. Considering the influence internal power sensors are poised to have, a third-party
research effort to compare internal sensor results to a ground-truth external meter is
necessary for researchers and practitioners to rely on the accuracy of their readings.

Our survey also showed a progression of power observation hardware targeting HPC
clusters. Ideally, the multi-level power data made possible by these hardware advances
will inform greater understanding and optimizing of whole system power. This presents
an opportunity for integration of component-level (in particular, GPU) power models
into a larger, more comprehensive framework.

While significant progress has been made in the counter-based power modeling re-
search (Section 4), many research questions for correlating power to GPU hardware
events have arisen. First, modern architectures are giving unprecedented insight into
the GPU’s hardware activity—for example, NVIDIA Tesla architectures can access
over 200 counters and metrics. Furthermore, we expect the trend of increased GPU
hardware transparency to continue; for example, new research to create more flexi-
ble tools for profiling of GPU hardware events is underway (see SASSI of Stephenson
et al. [2015]). Yet most power modeling research seeks to learn model parameters from
power observations of ∼50 benchmarks. From a power modeling point of view, this
increased visibility to hardware events is both a boon and a curse. The result is an
imbalance between the number of model inputs (hardware events) and the number of
data points, and this presents an overfitting problem. New methods or much larger
benchmark-to-power data sets are needed to harness the hardware event information
now available. Second, an advantage of the power modeling research is understand-
ing the power costs of GPU sub-processes. How to leverage this insight for software
or hardware design is a natural follow-on question. Last, accurately modeling power
costs of imbalanced loads (where there are inconsistent portions of the cores per SM
used) is an outstanding issue that was cited by many modeling works.

Modeling efforts are complemented by simulation work, which seeks to predict GPU
events, power, performance, and/or functional output without running code on actual
hardware. Such simulations are necessary for informing novel hardware designs; fur-
thermore, programmers benefit from the power modeling and simulation research as it
sheds light on their code design space decisions. Unfortunately, much of the simulation
work requires a large amount of architecture-specific knowledge, and the dependence
on such details inhibits the simulation’s application to different GPU architectures.
Research to provide a GPU power simulation framework, which is both flexible and
accurate but requires less expertise, is a natural direction for future research. This
survey revealed that GPU power simulation from static code analysis has seen many
exciting advancements, which are extremely valuable for programmers looking to opti-
mize power, energy efficiency, or performance via their design space. Advancing these
ideas to an open source or commercially available and widely accepted tool will assist
programmers in such decisions.
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For general computer power monitoring, software-based power measurement tools,
made possible by the modeling and simulation developments, are emerging. These
technologies provide similar convenience to internal sensors and are also not well
evaluated; for example, see the work of Bekaroo et al. [2014] that examines two software
computer power meters, Microsoft’s Joulemeter and HP’s Power Assistant. Aside from
the Intel Power Gadget [2014], which gives software power measurement for Intel
processors with onboard GPUs, such technologies are not yet available for GPUs. In
addition to convenience, such tools open powerful opportunities not just for in situ
monitoring but also for on-the-fly reconfiguration (e.g., to assist with power constraints)
and for refining models from real-time observations (e.g., from an internal sensor).
To the best of the authors’ knowledge, in situ software tools that use and update
power modeling efforts do not exist for GPUs yet. The advancements in modeling and
simulation discussed above are the prerequisites for such tools, and examples exist in
CPU-focused market. For instance, Intel’s power-clamping tool, called Running Average
Power Limit (RAPL), uses a linear counter-based power model to predict memory
power in situ and updates the model in an online fashion. This allows automated
restrictions on memory bandwidth to prevent spikes in power [David et al. 2010]. How
to harness the GPU modeling and simulation advancement to create automated, in situ
technologies for reigning in GPU power consumption while maximizing performance
is a natural next step to the research discussed in this survey.

Finally, just as system architectures are trending toward heterogeneity (e.g., with
CPUs orchestrating and GPUs or coprocessors computing), intra-processor architec-
tures are integrating different processing units designed to compliment each other for
more optimal performance and power efficiency. We have observed that the CPU mod-
eling and simulation research provide a jumping-off point for GPU-focused research.
Similarly, we expect the current power modeling and simulation research to not just be
tailored to more architectural designs but also to generalize, enveloping a more general
set of architectures and components, perhaps hierarchically (at the processor level and
the system level). For example, is there a generalizable set of processes that can be
used to model any type of processor (e.g., CPU, GPU, APU, FPGA) or system of pro-
cessors and give accurate estimates of performance and power? Such a general model
would ideally be validated on multiple, different heterogeneous architectures. Success
in this endeavor would provide predictive capabilities for how to combine different
architectures intelligently.
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