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Wide direct bandgap range 
– Deep UV to visible to IR

Strain relaxation
– Reduce defects
– Larger compositional range

Compact size
– Low power requirement
– Low threshold
– Nano-scale on-chip application
– High speed communication

Why III-nitride nanowire lasers?

Top-down two-step etch process

• Fabricated nonpolar InGaN/Gan MQW core-shell nanowire using a combination of top-down two-step etch process and regrowth process

• First experimental demonstration of lasing from nonpolar GaN/InGaN MQW core-shell nanowire by optical pumping

• Simulated transverse confinement factors with different nanowire geometries.

Conclusion
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• Higher internal quantum efficiency
• No blue-shifting with increasing current

Optical characterization setup

Pump laser:

Nd:YAG laser @266nm
Pulse duration: 400 ps
Rep rate: 10 kHz
Duty cycle: 0.0004%
Tunable spot size:    >1µm

10nm
GaN barrier

InGaN quantum well

E-beam lithography 
patterning

ICP dry etch AZ400K wet etch

(a) SEM image of as fabricated p-i-n InGaN/GaN MQW core-shell nanowires. The 
diameters of the nanowires are 400-600 nm. Slightly tapered sidewalls are observed 
due to different regrowth rates along the nanowire axis. (b) High resolution cross-
sectional STEM images of a core-shell nanowire.
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Shell layers regrowth 
by MOCVD

Lasing from core-shell nanowire lasers

(a) (b)

(a) When the nanowire was optically pumped 
below lasing threshold, a uniform intensity 
across the nanowire was observed.(b) When 
the nanowire was excited above threshold, 
the intensities at both ends of the nanowire 
were much stronger than in the middle. Clear 
interference fringes also indicate a spatially 
coherent emission.
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(a) L-L curve and (b) µ-PL spectra at 3 different excitation levels, and (c) spectral 
lindwidth of an InGaN/GaN core-shell nanowire laser. When the nanowire laser is 
excited below threshold, the peak intensity increases linearly with a smaller slope 
as the pump power density increases, indicating spontaneous emission 
dominates. A broad-band spectrum centered at 397.5nm is observed with a full 
width half maximum (FWHM) of 15nm. When the nanowire laser is pumped above 
threshold, the peak intensity increases dramatically, due to stimulated emission. 
Narrow-band lasing peaks with a FWHM of 0.17nm were also observed.

Pth=75kW/cm2

Simulation of transverse confinement factor
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• TE01 Mode

Example:
T_cap=23nm
D_core=140nm 
Γ�� = 0.12199

Simulation of transverse confinement factor (Γ��) of TE01 mode as a function of core 

diameter and shell thickness. Γ�� varies from 12% to 2% with different structure 

design. This variation results in different lasing thresholds of the core-shell nanowire 
lasers.
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Assume:
– R = 0.16
– L = 6µm
– �� = 30����
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(a) Required threshold gain as a function of the confinement factor. The required 
threshold gain can be reduced by 5-10 times with a slightly higher confinement factor. 
(b) Number of lasing nanowires (out of 20) with different pump powers for 3 samples 
with different growth conditions. Significant variation of lasing threshold was 
observed.
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