

Sandia
National
Laboratories

Exceptional
service
in the
national
interest

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

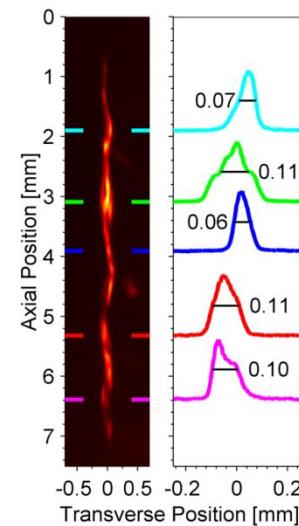
Breakout discussion: Science enabled by tritium on Z

Contact:

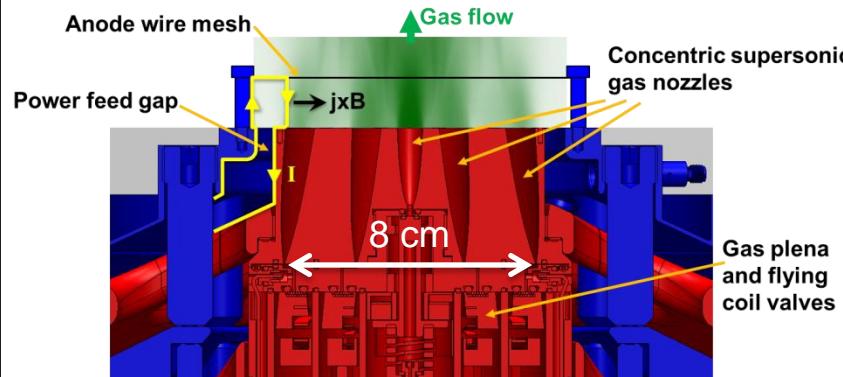
Brent Jones, Manager Org. 1677, Neutron and Particle Diagnostics
Sandia National Laboratories

bmjones@sandia.gov

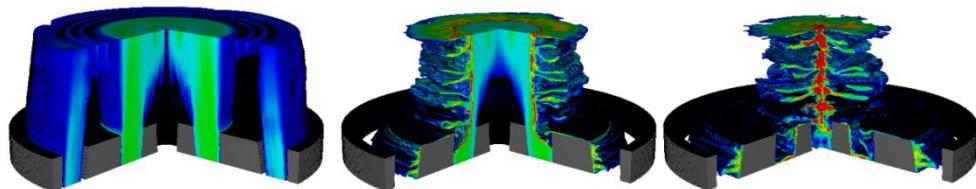
Z Fundamental Science Workshop
Stagnation Breakout Session
July 22, 2015


Fielding tritium on Z will open the door to valuable collaborative MagLIF physics studies, but is nontrivial

- Tritium is not presently fielded on Z
 - Vacuum chamber is open every day, MITL grinding, tanks of oil and water
- Community needs to assess the cost-benefit of using tritium at Z
- Tritium would open the door to nuclear diagnostic techniques and target physics studies not presently possible
- These opportunities would encourage collaboration on Z with the broader HED community



ICF neutron sources at Z can have very different implosion dynamics and plasma conditions


MagLIF

D2 gas puff

MagLIF: M. R. Gomez *et al.*, accepted to PRL (2014).
D₂ gas puff: C. A. Coverdale *et al.*, PoP 14, 022706 (2007).

	Y_n (DD)	Y_n (DT)	T_e (keV)	T_i (keV)	n_i (cm^{-3})	Δt (ns)	Diameter
MagLIF	2×10^{12}	5×10^{10}	~ 3	2.5	$\sim 10^{23}$	< 2	$\sim 50 \mu\text{m}$
D₂ gas puff	4×10^{13}	$< 4 \times 10^9$	2.2	~ 10	2×10^{20}	~ 30	6 mm

Several key physics issues could be addressed with DT experiments

Physics	Measurement	Tritium fuel content		
		<0.1%	0.1%	1%
Behavior of tritium in the Z pulsed power environment	Sampling of tritium contamination, migration			
Scaling of yield to DT—thermonuclear?	DT yield			
Ion temperature and non-thermal population	Precision nTOF and DT/DD yield ratio			
Liner/fuel mix	DT yield with tritiated gas fill and deuterated liner			
Fuel morphology	Neutron imaging			
Thermonuclear reaction history	Gamma Ray History/GCD, Thompson parabola			
Liner/fuel density, non-thermal effects (peak shifts)	Compact/Magnetic Recoil Spectrometer (CRS/MRS), precision nTOF			

Diagnostic Capabilities enabled by tritium use will open new physics understanding for MagLIF

- Better SNR, higher dynamic range n-spectral measurements
 - More precise ion temperature
 - High precision Be down scatter measurements for liner pR
 - MRS or CRS measurements both axially and radially
- Neutron imaging enabled by higher yields
 - Is the neutron producing volume the same as the x-ray producing volume?
 - Down-scatter image for liner pR uniformity measurements
- γ reaction history enabled by higher yields and preferable γ -branching ratio
 - Is the x-ray history the same as the γ -history?
 - Does the reaction history have structure indicating multiple isolated burn regions?
- Novel mix studies are enabled by separated reactant experiments using tritium or tritiated hydrogen gas
 - Deuterated window to study window mix
 - Deuterated coating on liner interior to study liner mix
 - Deuterated top/bottom caps to study mix from laser interactions
 - Combine w/ neutron imaging to study transport of mix material

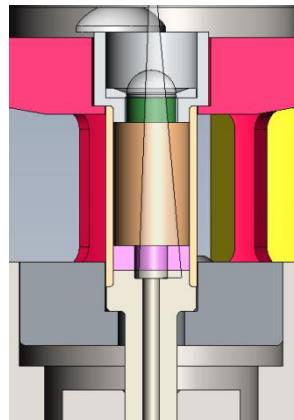
Gradual increase in MagLIF tritium fuel content will provide increasing scientific opportunities

Proposed Z Timeline

FY15	FY16	FY17	FY18	FY19	
Tritium Surrogates D_2 , 3He	Trace Tritium ES&H $<0.1\%$	Trace Tritium 10x DT Yield $\sim0.1\%$	Minority Tritium $>10^{13}$ DT Yield $\sim1\%$		Tritium Operations 10-50%
			DT yield scaling, ion temperature and non-thermal population Nuclear tracers for liner/fuel mix Neutron imaging, high sensitivity for DD MagLIF, mixed DD/DT imaging (CR-39?)		
	Brems background measurements for GCD, shielding studies Wedge range filter, CRS design		GRH/GCD, Thompson parab., CVD dia. MRS neutron spectroscopy		

Our ability to minimize the impact on the facility depends on the ability to purge the tritium from the Z target chamber

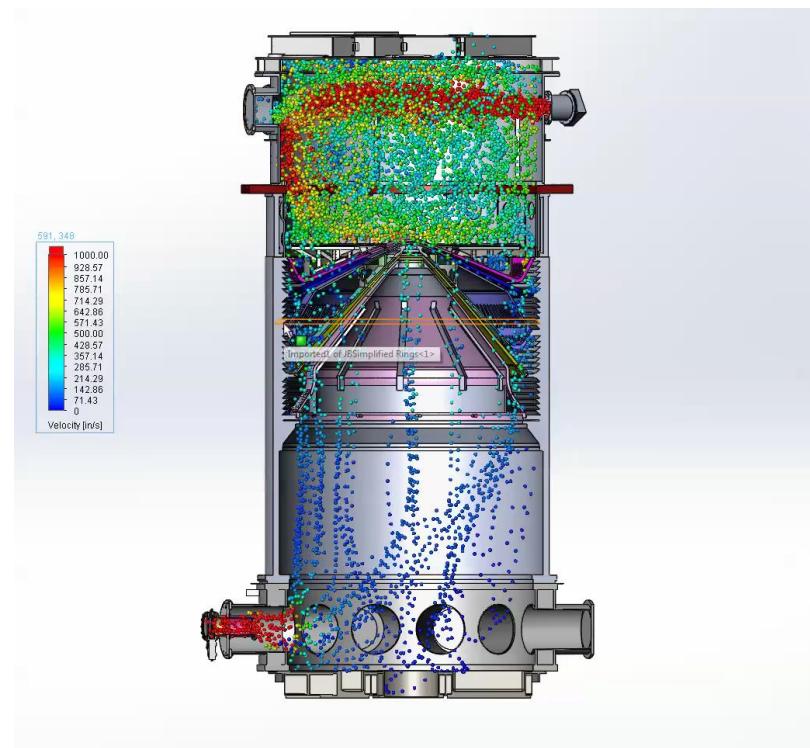
$h = 10 \text{ mm}$


$r_{\text{fuel}} = 2.75 \text{ mm}$

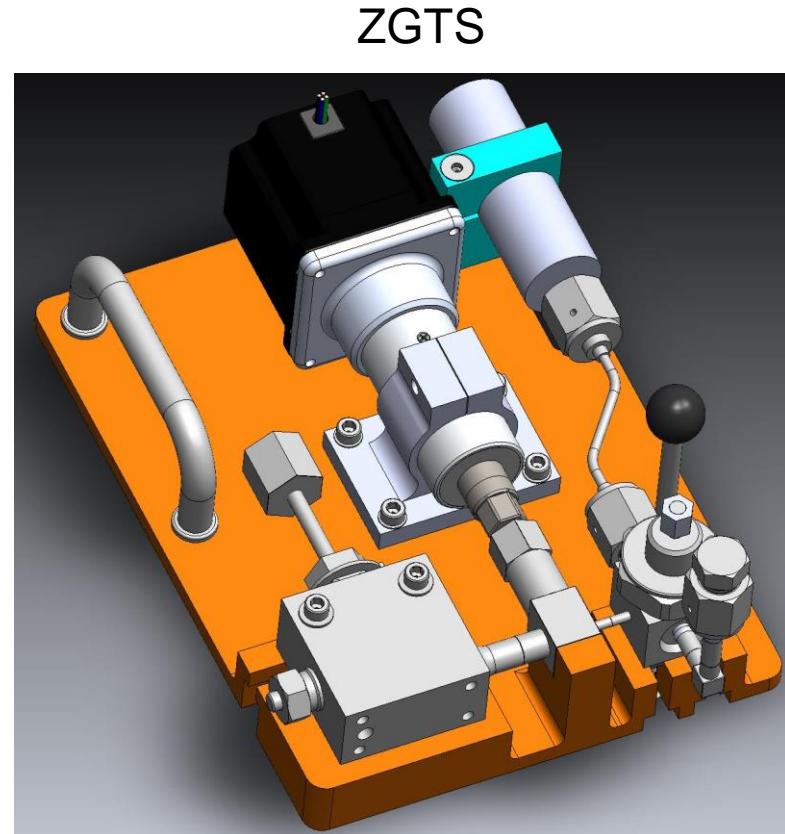
$V = 238 \text{ mm}^3$

$\rho = 1.5 \text{ mg / cc}$

$1 \% \text{ T} = 41.1 \text{ mCi}$


MagLIF target

Flow analysis of the Post Shot Air Exchange System for Z center section


Volume = 66 m^3

Total surface area = 464 m^2

- Purge efficiencies required to keep Z below control limits for tritium
 - Assuming entire surface area
 - 99.5 % for $10,000 \text{ dpm} / 100 \text{ cm}^2$
(Contaminated area)
 - $\sim 50 \%$ for $1 \text{ e}6 \text{ dpm} / 100 \text{ cm}^2$
(Highly contaminated area)

We recently completed development of the Z Gas Transfer System (ZGTS) capable of filling MagLIF targets in-situ on Z

- Robust tritium capable gas transfer system
 - Uses metal diaphragm puncture valve
 - Minimizes tritium inventory
 - Controls when and where tritium is used
 - Fills target in-situ just prior to shot