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Outline of Presentation

 Performance assessment (PA) model/code 
development philosophy and architecture

 Example application of enhanced PA model

• Generic salt repository reference case

• Demonstration simulations 

 Summary and future work
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PA Model/Code Development Philosophy

 Objective:  More accurate solution to the coupled continuum field 
equations (mass, momentum, energy) over a large heterogeneous domain, 
including

• Quantification and propagation of uncertainties, both aleatory and epistemic

• Direct representation in PA model of significant coupled multi-physics processes in three 
dimensions (3-D)

• Realistic spatial resolution of features and processes

‒ Explicit representation of all waste packages
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 Key points:  
• Less reliance on assumptions, simplifications, 

and process abstractions

• Adopt a numerical solution and code 
architecture that can evolve throughout the 
repository lifecycle (decades!) and is able from 
the outset to use the most advanced hardware 
and numerical solvers available



Goals/Uses of the Enhanced PA Capability
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Current U.S. Repository Development Timeline
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 Goals:  

• Enhance confidence and transparency in disposal system safety case

• Enable better decisions (technical, political, fiscal)

 Uses:

• Evaluate potential disposal concepts and sites in various host rock media

• Help prioritize RD&D activities (initially generic; later site-specific)

• Support safety case development during all phases of lifecycle



Enhanced PA Computational Model Architecture
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DAKOTA Modeling Capabilities

 Interface between input parameters and domain simulation (PFLOTRAN)

 Manages uncertainty quantification (UQ), sensitivity analyses (SA), 
optimization, and calibration 

• Object-oriented code; open source

• Supports scalable parallel computations on clusters

• Mixed deterministic / probabilistic analysis; aleatory and epistemic uncertainty

• Generic interface to simulations
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PFLOTRAN Capabilities
• Petascale, 3-D, reactive multiphase flow and 

transport code, with ability to couple with 
other process models, which can run at 
identical or dissimilar time scales

• High-performance computing (HPC)
‒ Massively parallel; built on PETSc 3-D solvers

‒ Structured and unstructured grids

‒ Scalable from laptop to supercomputer 
(petascale)

• Open source development and distribution
‒ Transparency

‒ Shareable among experts and stakeholders 

• Flexible and extensible
‒ Modular implementation of simple and/or 

advanced PA component models and FEPs
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• Domain scientist “friendly”, e.g., Fortran 
2003/2008

• Leverage existing computational capabilities
‒ Meshing, visualization, HPC solvers, etc.  

• Amenable to future advances in computational 
methods and hardware



Application of Generic PA Model:

Salt Reference Case & TH Simulations
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Salt Reference Case – Natural Barrier System (NBS)

 Salt host rock:
• Use parameters representative of five 

major bedded salt basins in the U.S.

 Disturbed rock zone (DRZ), interbeds, 
representative aquifer:
• Typical properties from international 

studies and from WIPP
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 Reference Case is a surrogate for site- and design-specific information
• Documents information and assumptions needed for generic disposal system models

• Helps ensure consistency across analyses (e.g., PA, process modeling, UA/SA)
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Salt Reference Case – EBS and Concept of Operations

• Waste inventory
‒ ~70,000 MTHM SNF
‒ ~13,400 WPs
‒ Burn-up = 60 GWd/MT
‒ Instant release fraction = 11.25%
‒ Relatively fast SNF fractional degradation 

rate, based on bromide-containing brines 
(Kienzler et al. 2012)

• Drift spacing and WP loading based 
on 200C thermal limit for salt

‒ 12 PWR assemblies per WP; 7.5 kW/WP

• Repository layout
‒ 84 pairs of 809-m drifts

 Drift spacing = 20 m
 80 WPs (5-m-long) per drift with 

10-m spacing

‒ Crushed salt backfill in drifts
‒ Sealed shafts (similar to WIPP)
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Model Region
Permeability

(m2)
Porosity Tortuosity

Effective 
Diffusion 

Coefficienta

(m2/s)

Longitudinal 
Dispersivity

(m)

Saturated
Thermal 

Conductivity
(W/m·°K)

Specific 
Heat 

Capacity
(J/kg·°K)

Waste Package 1.00 × 1013 0.500 1.00 6.90 × 1010 0.5 16.7 466

Backfill 1.00 × 10
18 0.113 0.48 1.24 × 1010 0.2 2.5 927

Shaft seals 1.58 × 1020 0.113 0.48 1.24 × 1010 20.0 2.5 927

DRZ 1.12 × 1016 0.0129 0.23 6.82 × 1012 1.0 4.9 927

Halite 3.16 × 1023 0.0182 0.01 4.19 × 1013 50.0 4.9 927

Interbed 
(anhydrite)

1.26 × 1019 0.011 0.22 5.57 × 1012 50.0 4.9 927

Aquifer 1.00 × 10
13 0.150 0.53 1.83 × 1010 50.0 1.5 959

Sediments 1.00 × 1015 0.20 0.58 2.67 × 1010 50.0 1.5 927

a Effective diffusion coefficient = (free water diffusion coefficient) × (tortuosity) × (porosity)
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Simulations
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– 1 “drift pair” (80 WPs upstream and 80 
WPs downstream of access shaft) 

– 20-m wide pillar to pillar

– “3-D vertical slice”

– Reflection BCs at y = 0 and y = 20 m

not to scale

“Quasi 2-D”, 
Single-Drift Simulation 

Domain

September 24, 2015

Direction of flow



• Diffusion-dominated 
when NPe <10

Salt Repository, Single-Drift 
 Deterministic Isothermal* Simulation

14

uD

uL
N

Leff

sys
Pe




Region
Darcy 

velocity, u
(m/s)

1

Effective 
Diffusion 

Coefficent, 

Deff = Dw

(m
2
/s)

Longitudinal 
Dispersivity

(m)

Longitudinal 
dispersion 
coefficient, 

DL Lu
(m

2
/s)

Peclet 
Number, 

NPe

Halite 3.17 × 1019
4.19 × 10

13
50.0 1.585 × 10

17
0.0038

Interbed 
(anhydrite)

1.90 × 1015
5.57 × 10

12
50.0 9.5 × 10

14
1.7

Aquifer 1.58 × 10
9

1.83 × 10
10

50.0 7.9 × 10
8

98

Sediments 1.58 × 1011
2.67 × 10

10
50.0 7.9 × 10

10
75

*non-heat generating waste

– NBS: 3-D flow and transport

• Primarily diffusion through DRZ and bedded salt

• Primarily advection through aquifer and sediments

• Peclet Number, NPe, in various layers:
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– EBS: source term for 
each waste package

• 5 radionuclides:  129I, 
241Am, 237Np, 233U, 229Th



1000 yrs 10,000 yrs

50,000 yrs 200,000 yrs

 129I dissolved concentration at various simulation times: 
• reaches the aquifer and overburden sediments via upward diffusion through the shaft seals

• advects downgradient through aquifer and overburden; diffuses upward from aquifer to 
overburden, as well as downward through salt host rock 
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Salt Repository, Single-Drift
 Deterministic Isothermal* Simulation
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Salt Repository, Single-Drift
 Probabilistic Isothermal* Simulation

Model Parameter
Deterministic 

Value
Probability Range Distribution Type

Waste form degradation rate constant 
(mol/m

2
/s)

4.8×108 1.00×1010 – 1.00×10 Log uniform

129
I Kd

P
(ml/g) 0.0 9.28×10 – 7.84×10 Log uniform

237
Np Kd

P
(ml/g) 5.5 1.0 – 10.0 Log uniform

Waste Package Porosity 0.30 0.05 – 0.50 Uniform

Backfill Porosity 0.113 0.010 – 0.200 Uniform

Shaft Porosity 0.113 0.010 – 0.200 Uniform

DRZ Porosity 0.0129 0.0010 – 0.1000 Uniform

Halite Porosity 0.0182 0.0010 – 0.0519 Uniforma

Anhydrite Interbed Permeability (m
2
) 1.26×1019

1.00×10
21 

– 1.00×1017
Log uniform

b

Aquifer Permeability (m
2
) 1.00×1013

1.00×10
14 

– 1.00×1012
Log uniform

 10 sampled parameters

 50 realizations

 Ten observation points:
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 Sensitivity analyses with 
DAKOTA:
• Partial Rank Correlation 

Coefficient (PRCC), i.e., 
local sensitivity analyses, 
for max 129I concentration 
over 1,000,000 years vs. 
input parameter(s)



17

Probabilistic Isothermal* Simulation, Single-Drift 
– Results at “Sediment-Midx” Observation Pt.

 Strong positive PRCC for shaft seal porosity 
– higher shaft increases effective diffusion 
coefficient for transport to the aquifer:  

 Strong negative PRCC for aquifer 
permeability – higher kaquifer increases 
dilution and lowers concentration gradient 
into overburden sediments

 Positive PRCC for WF degradation rate –
higher rate increases source cell conc.

 Negative PRCC for DRZ porosity – higher 
porosity decreases source concentration

wshaftshafteff DD )()( 

PRCCs for 129I conc. at “Sediment-midx” point

129I conc. time histories 
– 50 realizations

“Sediment-midx” obs. point
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 Decay heat flux for 60 
GWd/MT PWR SNF (Carter 
et al. 2012)

 Geothermal gradient of 
8C/km – similar to WIPP
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Salt Repository, Single-Drift 
 Deterministic Thermal Simulation

• Darcy velocity vectors at 10 yrs – close-up
• Temperature field at 10 yrs – color scale from 

20C (blue) to 230C (red)

 Outward fluid 
velocity from 
repository region at 
10 years — due to 
thermal expansion of 
fluid
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 Thermally-driven (buoyancy) fluid convection cells for more than 10,000 yrs: 
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Salt Repository, Single-Drift 
 Deterministic Thermal Simulation

100 yrs

• Darcy velocity vectors at various times

• Temperature field at various times – color scale from 20C (blue) to 230C (red)

1000 yrs

10,000 yrs 50,000 yrs
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 129I Concentration at 10,000 years and 50,000 years (thermal vs. isothermal)
• Only small effect from heat pulse (at early times due to thermal expansion of fluid)
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Salt Repository, Single-Drift 
 Deterministic Thermal vs. Isothermal

50,000 yrs – thermal

10,000 yrs – thermal

50,000 yrs – isothermal

10,000 yrs – isothermal
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• Convection cells gone before 50,000 years, which is the transport time up the shaft seal



Single-Drift Simulation “Caveats”

 Main purpose is to demonstrate the capabilities of the enhanced 
multi-physics HPC performance assessment framework 

 Transport behavior of 129I is a result of the assumed material 
properties in the various regions – may or may not occur at a 
potential repository site

 129I concentrations are conservatively high because the lateral 
boundary conditions in the y-direction (i.e., at the sides of the 
20-m-wide, 3-D slice) are zero-gradient, no-flow:

• Would only be true of a repository with an “infinite” number of parallel 
drifts and, thus, does not account for dilution from lateral mass loss

• Also implies one access shaft per drift (results in greater diffusive transport 
to aquifer)

 Additional “conservative” factor:
• No meteoric infiltration flux at the surface
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– 5 “drift pairs” 

– 3-D half-domain in y-direction 
(100 m of drifts and 5000 m of 
undisturbed host rock

– Reflection BC at y = 0 (implies 
10 drift pairs by symmetry)

not to scale
3-D, Multi-Drift 

Simulation Domain

NX =          387
NY =            39
NZ =             71
Cells =  1,071,603  

X = 12,642 m
Y =    5100 m
Z =      945 m

Direction of flow shown opposite 
of single-drift diagram

5 drift pairs and 800 
individual WPs simulated
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 Thermally-driven, buoyant 
flow for more than 10,000 
years 

 Convection cells not 
obvious compared to 
single-drift simulation –
perhaps dissipated in 
y-direction 
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Salt Repository, Multi-Drift
 Deterministic Thermal Simulation

• Darcy velocity vectors at 
various times, and

• Temperature field at 
various times
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Salt Repository, Multi-Drift
 Deterministic Thermal vs. Isothermal

 129I dissolved concentration at 10,000 years and 100,000 years
• Little effect from heat pulse at early times, prior to releases reaching the aquifer, via 

diffusion up the access shaft 

• Downwelling fluid flow in overburden sediments from heat pulse effects, downgradient of 
repository, seems to reduce the upward diffusive spread of 129I into the sediments

Thermal

Thermal

Isothermal

Isothermal
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 The single-drift (20-m wide) reflection BC case (with effectively one shaft per drift-pair) 
and the five-drift half-domain (5100-m wide) represent two “bounds” for the effect of 
lateral dispersion/diffusion on peak concentration:
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Multi-Drift vs. Single-Drift Comparison
 Probabilistic Thermal

Multi-driftSingle-drift

129I conc. time histories –
50 realizations at 
“Well” obs. point

September 24, 2015



 Incorporation of additional processes, models, and domain resolution, e.g., 

• Grid refinement studies (begun already)

• Inclusion of all drifts/WPs in a half repository

• Nested architecture

Future Work
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 Application to other media and concepts:

• 3-D simulations of a clay/shale reference case (recently completed)

• 3-D simulations of DOE-managed HLW in bedded salt (recently completed)

• Application to deep borehole disposal in crystalline basement rock

• Application to WIPP performance assessment

• Simulations in fractured crystalline rock (to be started next fiscal year)
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Generic Salt Repository PA Demonstration 
– Multi-Realization Simulations 

 Dakota / PFLOTRAN simulations:

– Deterministic simulation with mean or 
representative values

– 50-realization probabilistic simulation with 
10 sampled parameters 

– Run on SNL Red Sky HPC cluster

• Nested parallelism

• Many concurrent realizations

• Each realization distributed across many 
processors

• Total nodes: 2,816 nodes / 22,528 cores

• 505 TeraFlops peak
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PFLOTRAN Process Modeling
 Flow

• Multiphase gas-liquid

• Constitutive models and equations of state

 Reactive Transport
• Advection, dispersion, diffusion

• Multiple interacting continua

 Energy
• Thermal Conduction and Convection

 Geochemical Reaction
• Aqueous speciation (with activity models)

• Mineral precipitation-dissolution

• Surface complexation, ion exchange, isotherm-
based sorption

• Radioactive decay with daughter products
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Hammond and Lichtner, WRR, 2010
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Hammond and Lichtner, WRR, 2010

Major Projects Leveraging PFLOTRAN

 Nuclear Waste Disposal

• Waste Isolation Pilot Plant (WIPP) 

• SKB Forsmark Spent Fuel Nuclear Waste Repository

 Climate (CLM-PFLOTRAN)

• Next Generation Ecosystem Experiments (NGEE) Arctic

• DOE Earth System Modeling (ESM) Program

 Fate and Transport of Contaminants

• PNNL SBR Science Focus Area (Hanford 300 Area)

• ASCEM (i.e. PFLOTRAN geochemistry)

 CO2 Sequestration

• DOE Fossil Energy: Optimal Model Complexity in 
Geological Carbon Sequestration (U. Wyoming)

• DOE Geothermal Technologies: Interactions between 
Supercritical CO2, Fluid and Rock in EGS Reservoirs
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PFLOTRAN Bitbucket Wiki
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PFLOTRAN Support Infrastructure
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 129I concentration time histories:
• Only small effect on 6 out of 50 realizations at a single observation point, at very low 

concentration levels, due to early-time thermal fluid expansion around repository

• Caused by some high values of anhydrite permeability in the sampling

35

129I conc. time 
histories – 50 
realizations

at 
“Anhydrite-midx” 

obs. point

Isothermal caseThermal case

“Anhydrite-midx” obs. point

Probabilistic Thermal Simulation, Single-Drift –
Results at “Anhydrite-Midx” Observation Pt.
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 Downward vertical component of regional flow in thermal case reduces 129I 
concentrations at aquifer withdrawal well – effect needs further investigation
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129I conc. time histories –
50 realizations at 
“Well” obs. point

Thermal case

Salt Repository, Multi-Drift
 Probabilistic Thermal vs. Isothermal

Isothermal case
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