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Fano resonances of dielectric resonator 
metasurfaces 

Fano resonances: 
 Interference of bright and dark excitations 
 Sharp spectral features 

Technologically important: 
 Sensors, detectors, lasers, nonlinear optics, modulators 

Yang, et al. 
Nature Comm. 5, 5753, 2014 

Q ~ 500 at 1.37 um 

Wu, et al. 
Nature Comm. 5, 3892, 2014 

Q ~ 130 at 4 um 

Wang, et al. 
OMEX 5, 668, 2015 

Q ~ 110 at 1.1 um 

DR Fano designs to-date rely on multiple resonators in the 
unit cell 

Near field coupling extremely sensitive to fabrication 
errors 

Can we find a one-resonator design?? 
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Outline 

• Hi-Q monolithic design 

• Theoretical underpinnings 

• Experimental demonstrations: 
 SOI: measured Q-factor of  350 at 990 nm 

 GaAs: Q-factor of  600 at 975 nm  

A new, monolithic, Fano resonator design  
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Ge Fano design 

orthogonal 
dipole 
modes 

weakly coupled 
dipole 
modes 

broad dipole 
resonances 

sharp Fano 
resonances 

incident 
wave 

can’t radiate in-plane 
due to local field interactions 

Fano resonator design: operating principles 
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Q-factor = 1300! 

Ge-based Fano design 

FDTD Simulation 

Design is scalable from NIR through RF! 
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Multipole decomposition of resonator response 
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• Electric field excitation for full array 
• Far-field scattering for single cube 
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Externally driven px couples 
to mz (can’t radiate – high Q) 

Understanding the nature of the Fano mode 

Dr. Salvatore Campione 
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Resonant Mode Field Profiles 
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Experimental verification: 
SOI Fano Resonators 
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Dry Etching 

GaAs 

Substrate 

AlGaAs 

Etch Mask 

GaAs 

9 

Oxidation 

Al2O3 

n~3.5 GaAs 

n~1.6 

1 μm 

Low refractive index 

cladding is needed! 

Sandia VCSEL: IEEE JSTQE, 3, 916 (1997) 

Epitaxially grown: 

MBE, MOCVD 

DRs are now possible in III-V semiconductors 
New process for (Al)GaAs resonators 

Sheng Liu 
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GaAs Fano Resonators: Q  600! 
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Q600 

• GaAs has a non-zero c(2)  nonlinear devices (SHG, down-conversion, etc.) 
• Can incorporate InGaAs quantum wells for gain and photon detection 

Highest DR Q-
factor reported 
to date 

SEM of GaAs Fano resonators 



mbsincl@sandia.gov 11 

Conclusions 

• A new, simpler design for dielectric Fano resonators 

 One resonator per unit cell 

• Inter-resonator coupling between bright and dark modes 

 Bright electric dipole and dark magnetic dipole 

• Approach is scalable from NIR  RF 

• High Q-factors for SOI (350) and GaAs (600) 

• Extension to (Al)GaAs will allow for active devices 
 Spectrally selective detectors 
 Optical modulators 
 Nonlinear devices 
 Lasers?? 
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END 
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Backup Slides 
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Multipolar expansion 

The total far field can be decomposed to multipolar components as 
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Expansion up to quadrupolar terms will be enough… 
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Top-L-cube – Electric field maps at Fano 
resonance 10.77 um x-y plane 
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Top-L-shape – Polarization at Fano resonance 
– E field at T monitor at 27.8314THz 
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Extracting Resonator Polarizabilities: 
Isolated Particle Simulation and Moments (IPSaM) 

 fast, efficient, compatible with optimization 
 general shapes: SRRs, dipoles, metals, DRs 

e ,  

p 

m 

L. I. Basilio, et al., IEEE Antennas and Wireless Propagation Letters, 10, 1567, 2011 
Rockstuhl, et al., PRB 83, 245119 (2011) 

Claussius Mossotti 

Simulate isolated 
particle scattering 

Transform to far-
field patterns 

Extract equivalent 
dipoles & 

polarizabilities 

Estimate effective 
parameters 


