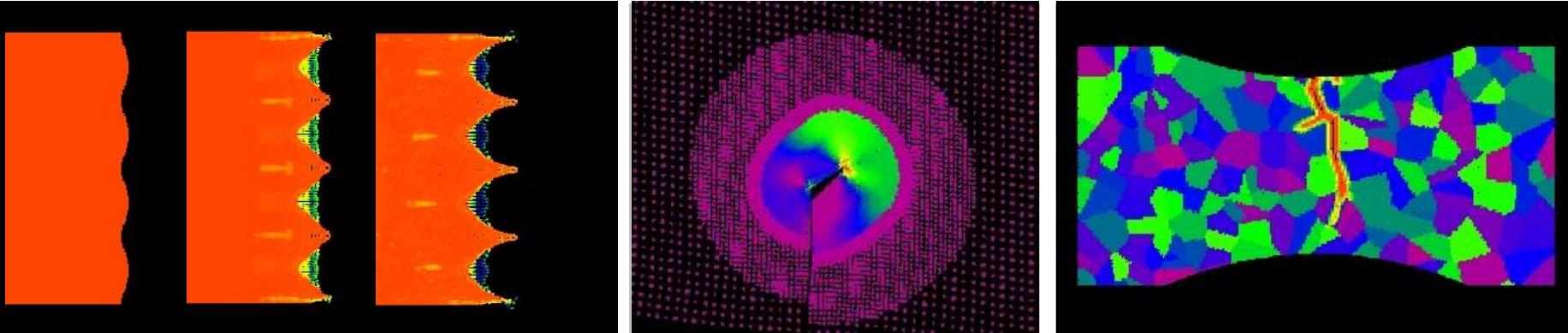


Exceptional service in the national interest



Peridynamics: What it is, what it does

Stewart Silling

UNM Civil Engineering guest lecture, September 17, 2015

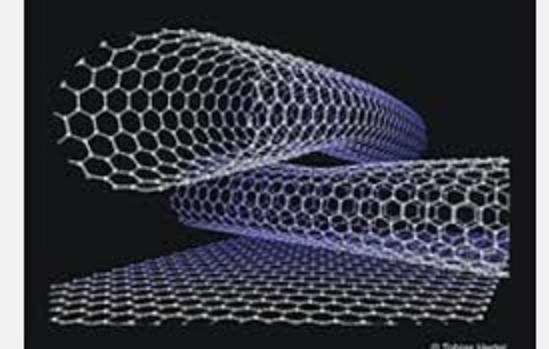
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

Outline

- Purpose of peridynamics
- Personal history of peridynamics
- Capabilities, current research, and opportunities
- Strengths and weaknesses

What should be modeled as a classical continuum?

- Commercial finite element codes approximate the equations of classical continuum mechanics.
 - Assumes a continuous body under smooth deformation.
 - When is this the right approximation?



Carbon nanotubes (image: nsf.gov)

$$\nabla \cdot \sigma + b = 0$$

Augustin-Louis Cauchy, 1840
(image: Library of Congress)

Fragmented glass (image: Washington Glass School)

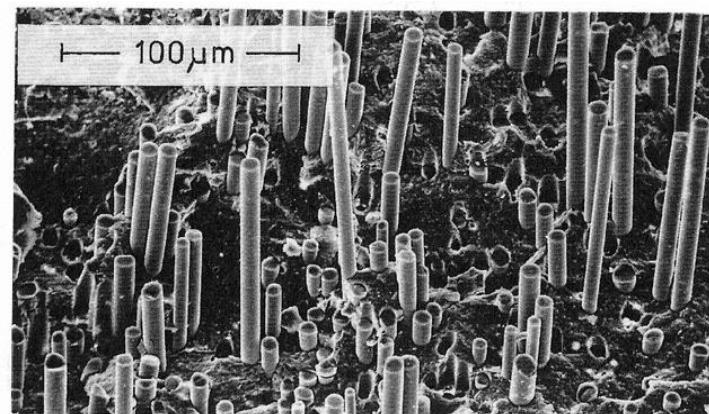
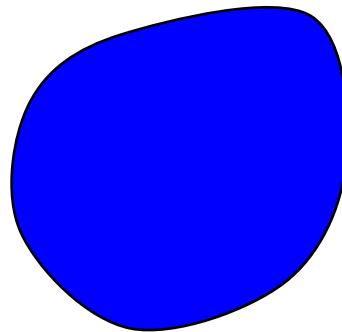


Figure 11.20 Pull-out: (a) schematic diagram; (b) fracture surface of 'Silceram' glass-ceramic reinforced with SiC fibres. (Courtesy H. S. Kim, P. S. Rogers and R. D. Rawlings.)

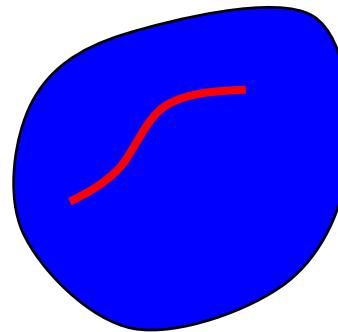
Complex failure progression in a composite

Purpose of peridynamics

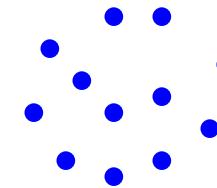
- To unify the mechanics of continuous and discontinuous media within a single, consistent set of equations.



Continuous body



Continuous body
with a defect

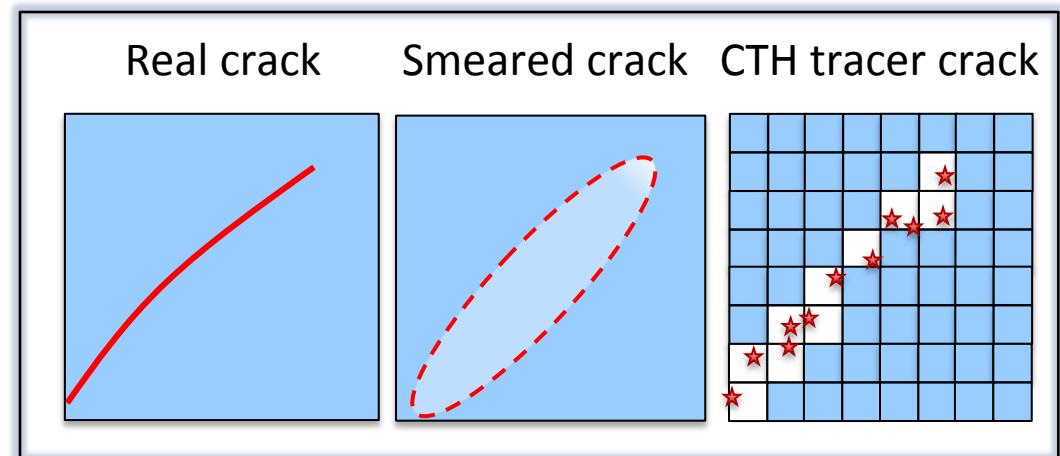


Discrete particles

- Why do this?
 - Avoid coupling dissimilar mathematical systems (A to C).
 - Model complex fracture patterns.
 - Communicate across length scales.

Personal view of PD history

- 1980's
 - Mathematical theory of singularities in elastic solids
- 1990's:
 - Johnson-Cook, similar models in CTH
 - Tracer crack & shear band model in CTH
 - 1998: "The realization"
- 2000's:
 - Bond-based peridynamics
 - Rush to applications
 - State-based peridynamics
 - Micropolar (Gerstle-Sau)
 - Math, physics foundations
- 2010's:
 - Increasing interest worldwide
 - Sierra, Peridigm
 - Plasticity
 - Address practical issues
 - Wake-up calls
 - Thermodynamics
 - Shock waves
 - Multiscale
 - Multiphysics
 - LS-DYNA

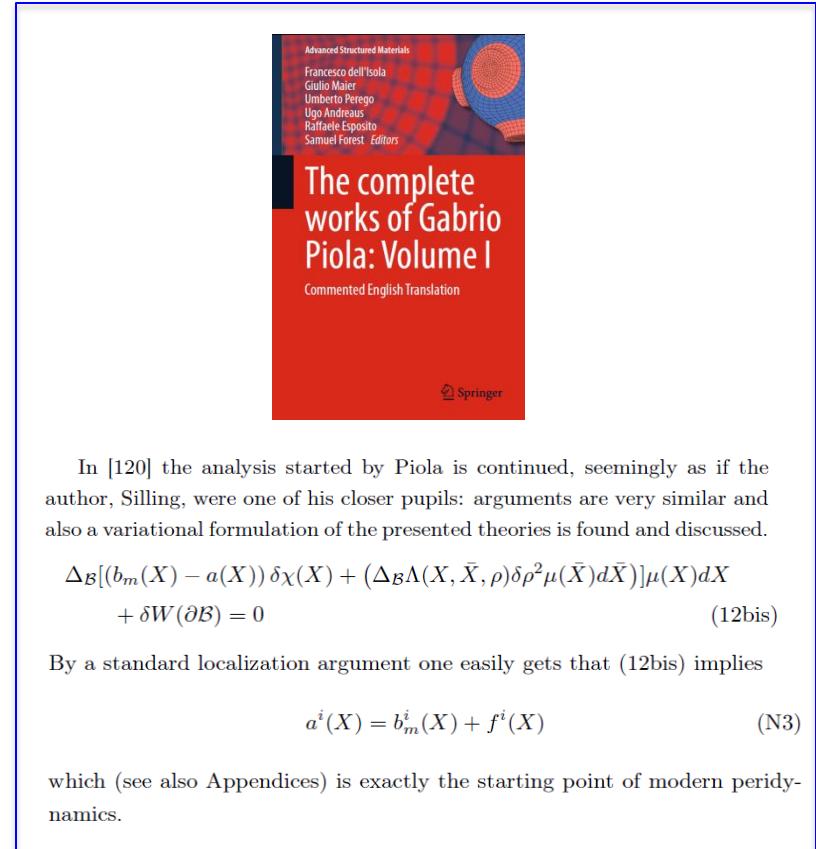


Recognizing the fundamental difficulties in modeling fracture with conventional methods puts us in opposition to conventional views...

Personal view of PD history: On dealing with criticism

Some things I've learned

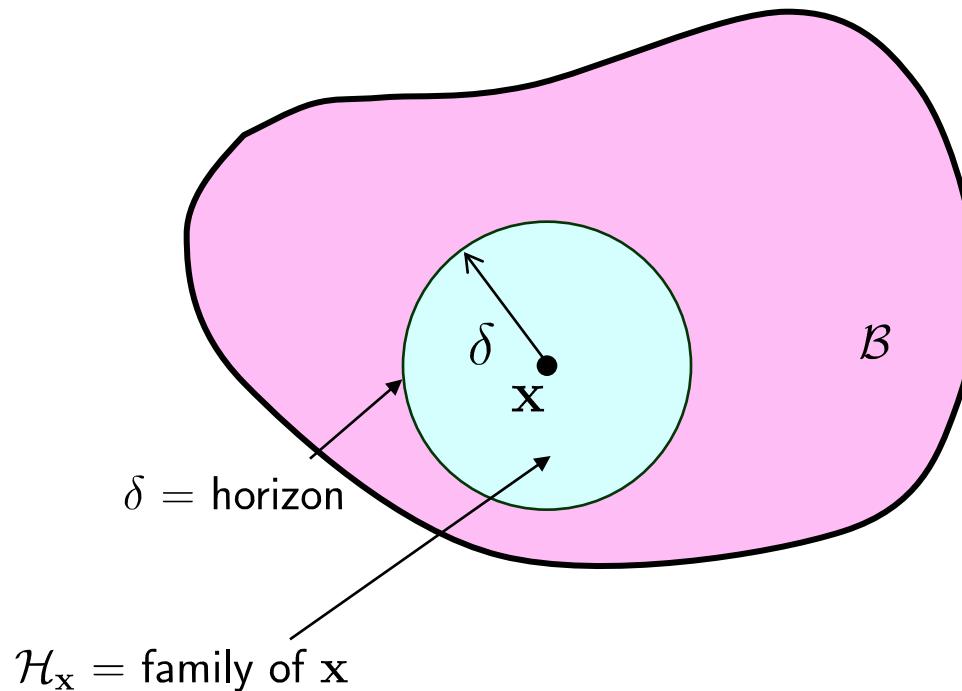
- People criticize you because they think it is right to do so.
–Epictetus (Roman philosopher)
- The people we admire the most are often those who are criticized the most.
- Criticism often contains some truth.
- Don't let critics set your agenda.



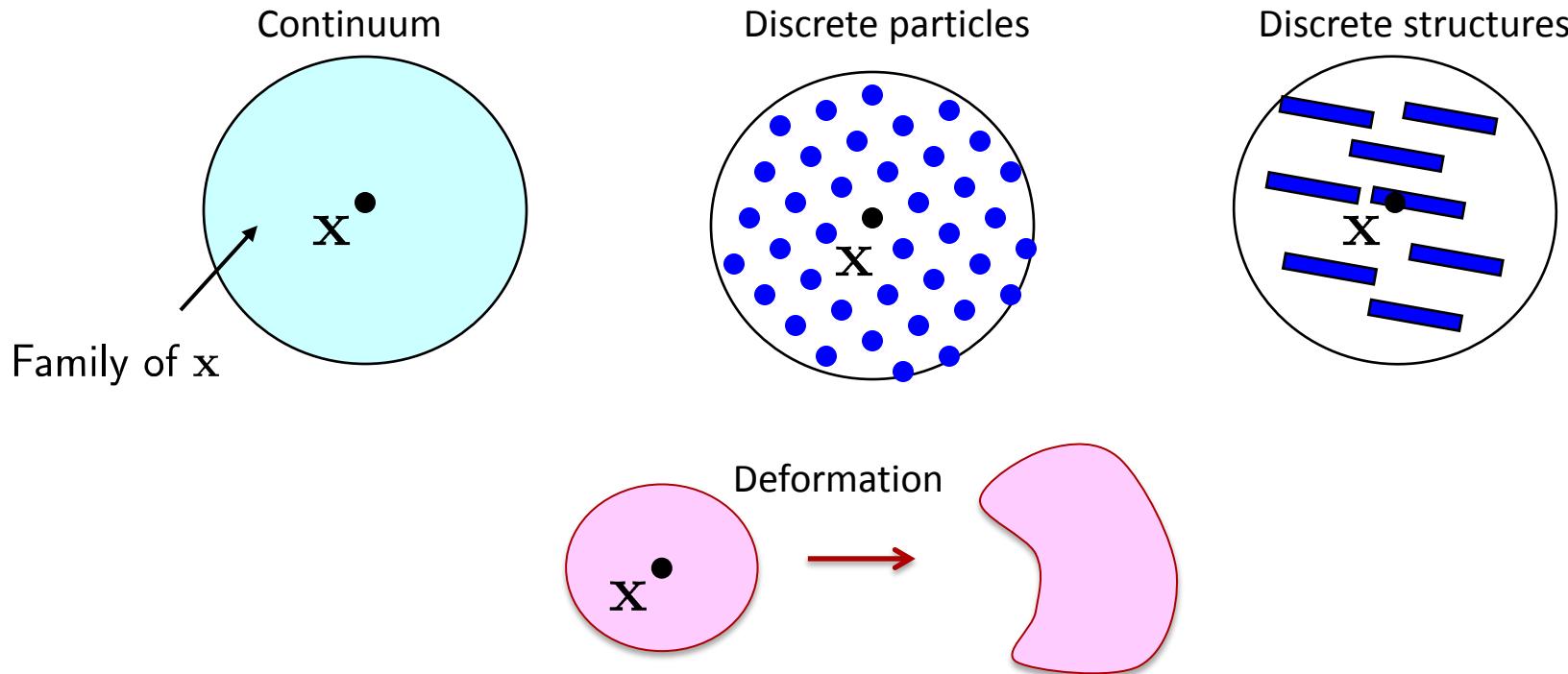
These authors claim that Piola (~1860) should be credited with peridynamics.
What is the right response?

Peridynamics basics: Horizon and family

- Any point x interacts directly with other points within a distance δ called the “horizon.”
- The material within a distance δ of x is called the “family” of x , \mathcal{H}_x .



Point of departure: Strain energy at a point

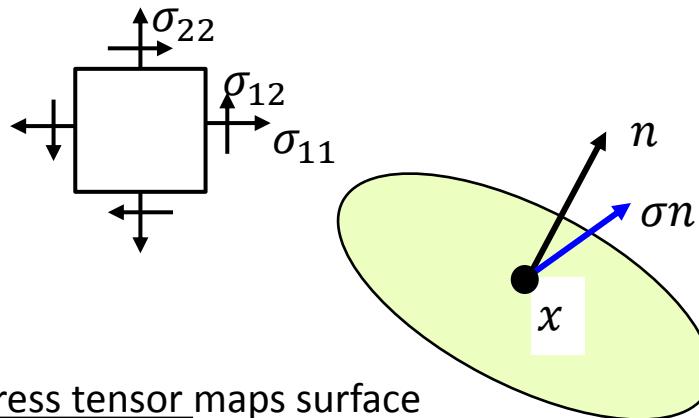


- Key assumption: the strain energy density at x is determined by the deformation of its family.

The nature of internal forces

Standard theory

Stress tensor field
(assumes continuity of forces)



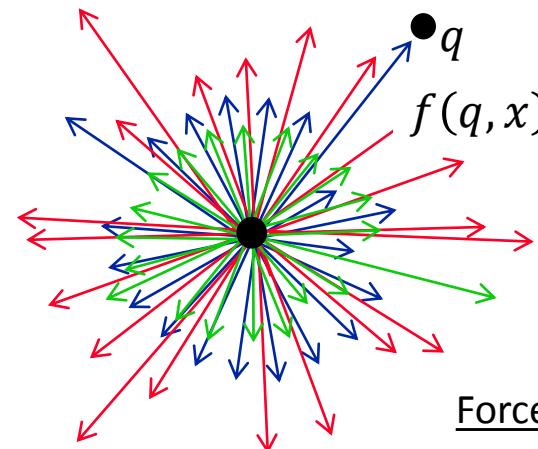
Stress tensor maps surface
normal vectors onto
surface forces

$$\rho \ddot{u}(x, t) = \nabla \cdot \sigma(x, t) + b(x, t)$$

Differentiation of surface forces

Peridynamics

Bond forces between neighboring points
(allowing discontinuity)



Force state maps bonds
onto bond forces

$$\rho \ddot{u}(x, t) = \int_{H_x} f(q, x) dV_q + b(x, t)$$

Summation over bond forces

States: Objects that keep track of families

- A *state* is a mapping whose domain is a family.

$$\underline{A}(\xi) = \text{something}$$

where ξ is a bond in a family \mathcal{H} .

- Famous states: Deformation state...

$$\underline{Y}[x]\langle q - x \rangle = y(q) - y(x) = \text{deformed image of the bond}$$

Force state...

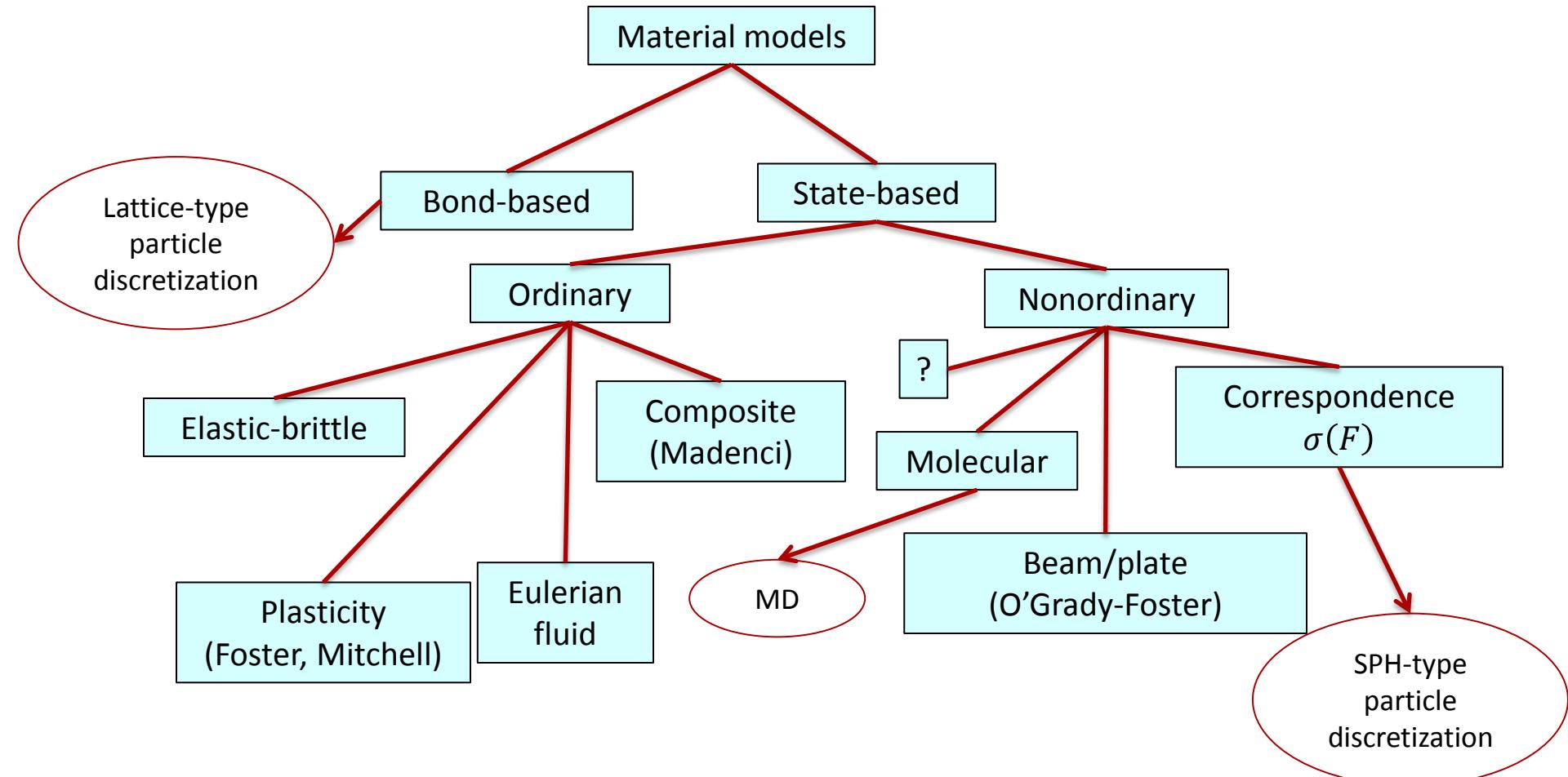
$$\underline{T}[x]\langle q - x \rangle = t(q, x) = \text{force density within a bond}$$

- Dot product of states \underline{A} and \underline{B} :

$$\underline{A} \bullet \underline{B} = \int_{\mathcal{H}} \underline{A}(\xi) \underline{B}(\xi) d\xi.$$

Types of material models

- A material model determines the bond forces in the family according to the deformation of the family.



Peridynamic vs. local equations

- Peridynamic theory is similar in structure to the local theory but uses nonlocal operators.

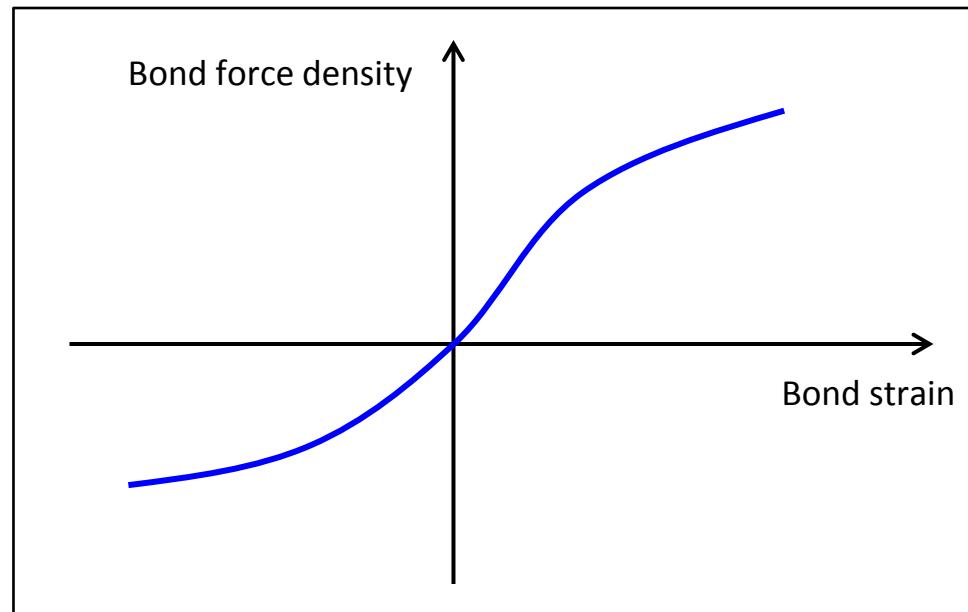
State notation: State \langle bond \rangle = vector

<i>Relation</i>	<i>Peridynamic theory</i>	<i>Standard theory</i>
Kinematics	$\underline{\mathbf{Y}}\langle \mathbf{q} - \mathbf{x} \rangle = \mathbf{y}(\mathbf{q}) - \mathbf{y}(\mathbf{x})$	$\mathbf{F}(\mathbf{x}) = \frac{\partial \mathbf{y}}{\partial \mathbf{x}}(\mathbf{x})$
Linear momentum balance	$\rho \ddot{\mathbf{y}}(\mathbf{x}) = \int_{\mathcal{H}} \left(\mathbf{t}(\mathbf{q}, \mathbf{x}) - \mathbf{t}(\mathbf{x}, \mathbf{q}) \right) dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x})$	$\rho \ddot{\mathbf{y}}(\mathbf{x}) = \nabla \cdot \boldsymbol{\sigma}(\mathbf{x}) + \mathbf{b}(\mathbf{x})$
Constitutive model	$\mathbf{t}(\mathbf{q}, \mathbf{x}) = \underline{\mathbf{T}}\langle \mathbf{q} - \mathbf{x} \rangle, \quad \underline{\mathbf{T}} = \hat{\underline{\mathbf{T}}}(\underline{\mathbf{Y}})$	$\boldsymbol{\sigma} = \hat{\boldsymbol{\sigma}}(\mathbf{F})$
Angular momentum balance	$\int_{\mathcal{H}} \underline{\mathbf{Y}}\langle \mathbf{q} - \mathbf{x} \rangle \times \underline{\mathbf{T}}\langle \mathbf{q} - \mathbf{x} \rangle dV_{\mathbf{q}} = \mathbf{0}$	$\boldsymbol{\sigma} = \boldsymbol{\sigma}^T$
Elasticity	$\underline{\mathbf{T}} = W_{\underline{\mathbf{Y}}}$ (Fréchet derivative)	$\boldsymbol{\sigma} = W_{\mathbf{F}}$ (tensor gradient)
First law	$\dot{\varepsilon} = \underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} + q + r$	$\dot{\varepsilon} = \boldsymbol{\sigma} \cdot \dot{\mathbf{F}} + q + r$

$$\underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} := \int_{\mathcal{H}} \underline{\mathbf{T}}\langle \xi \rangle \cdot \dot{\underline{\mathbf{Y}}}\langle \xi \rangle dV_{\xi}$$

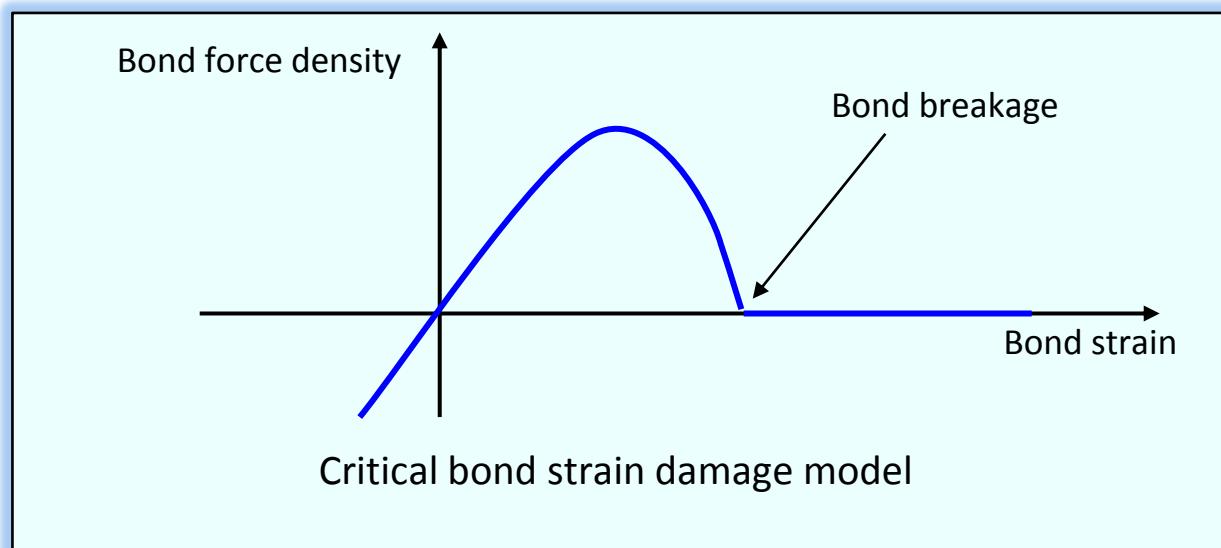
Bond based materials

- If each bond response is independent of the others, the resulting material model is called bond-based.
- The material model is then simply a graph of bond force density vs. bond strain.
- Main advantage: simplicity.
- Main disadvantage: restricts the material response.
 - Poisson ratio always = 1/4.

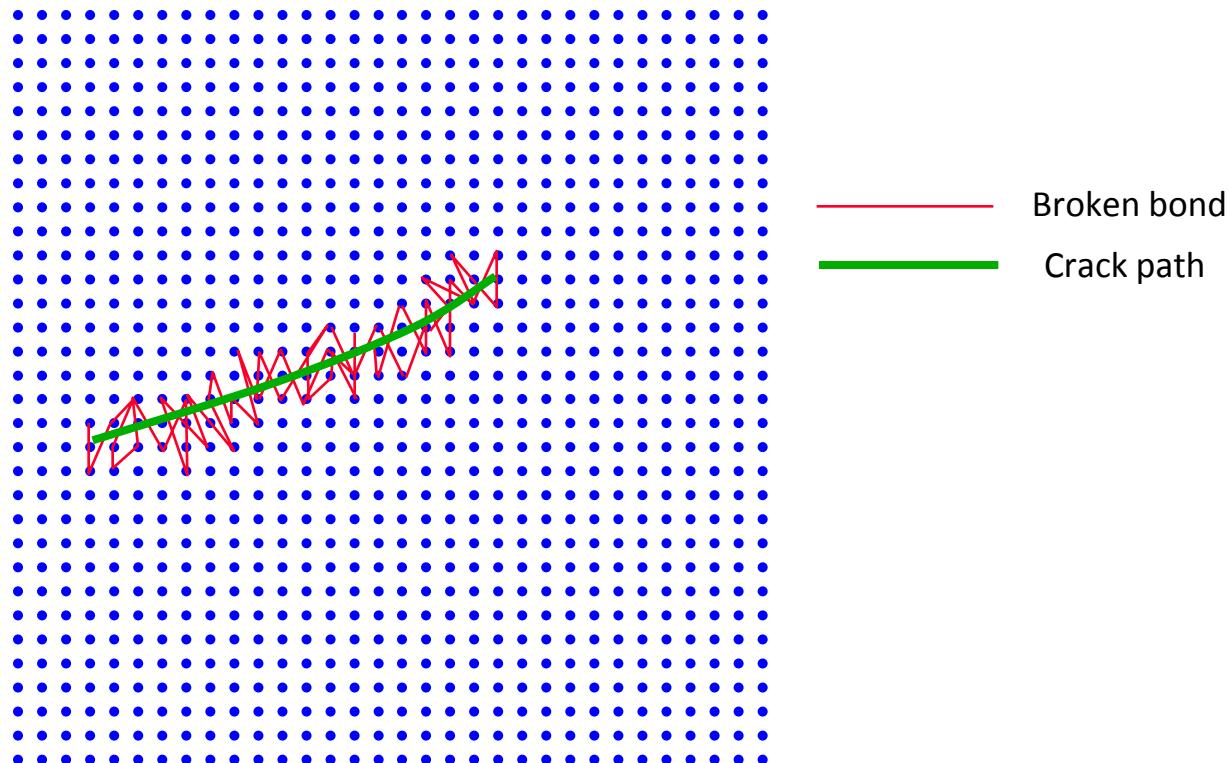


Damage due to bond breakage

- Recall: each bond carries a force.
- Damage is implemented at the bond level.
 - Bonds break irreversibly according to some criterion.
 - Broken bonds carry no force.
- Examples of criteria:
 - Critical bond strain (brittle).
 - Hashin failure criterion (composites).
 - Gurson (ductile metals).



Bond breakage leads to autonomous crack growth



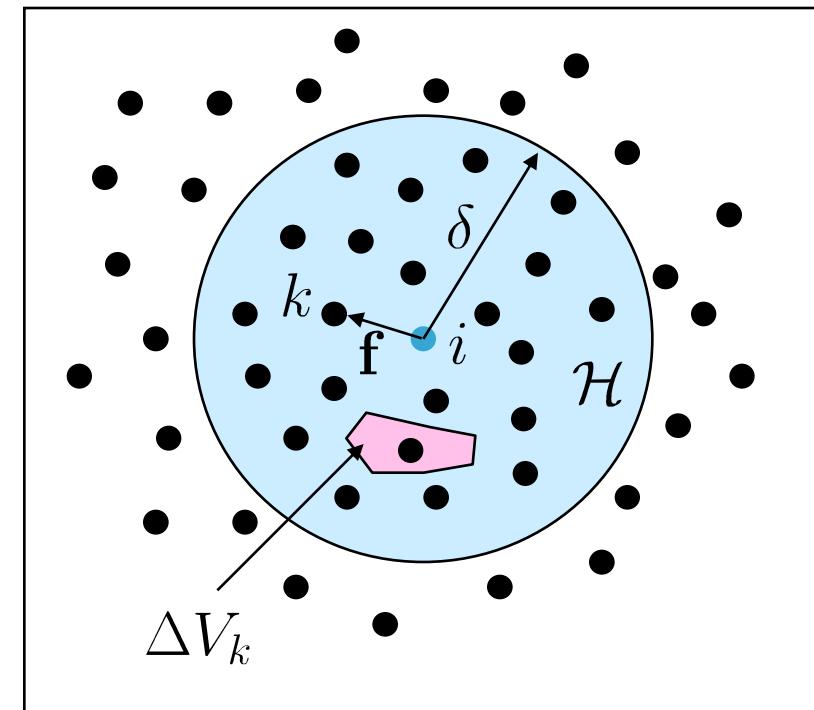
- When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.

EMU numerical method

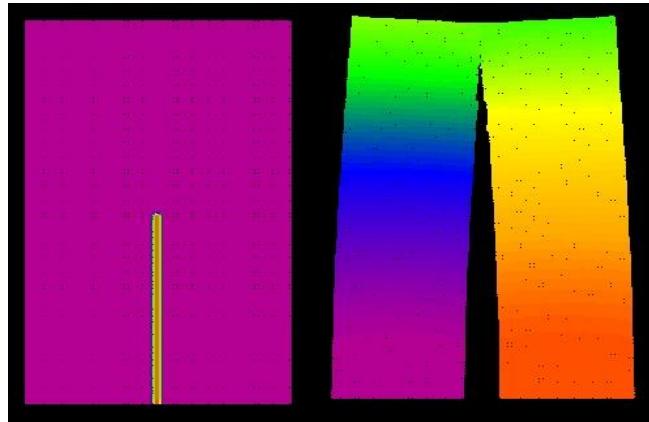
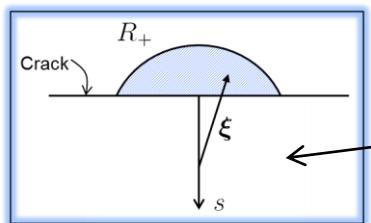
- Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

$$\rho \ddot{\mathbf{y}}(\mathbf{x}, t) = \int_{\mathcal{H}} \mathbf{f}(\mathbf{x}', \mathbf{x}, t) \, dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x}, t)$$

$$\rho \ddot{\mathbf{y}}_i^n = \sum_{k \in \mathcal{H}} \mathbf{f}(\mathbf{x}_k, \mathbf{x}_i, t) \, \Delta V_k + \mathbf{b}_i^n$$

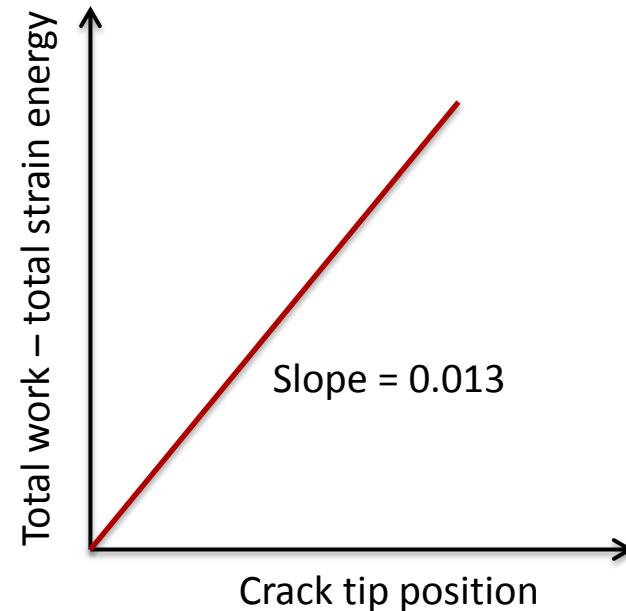


Constant bond failure strain reproduces the Griffith crack growth criterion



From bond properties, energy release rate should be

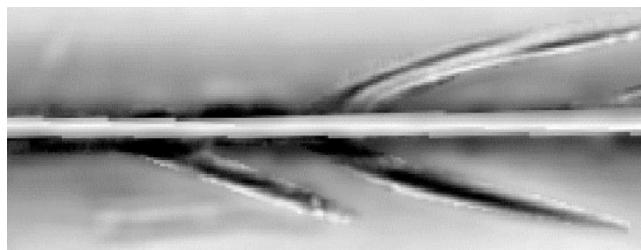
$$G = 0.013$$



- This confirms that the energy consumed per unit crack growth area equals the expected value from bond breakage properties.

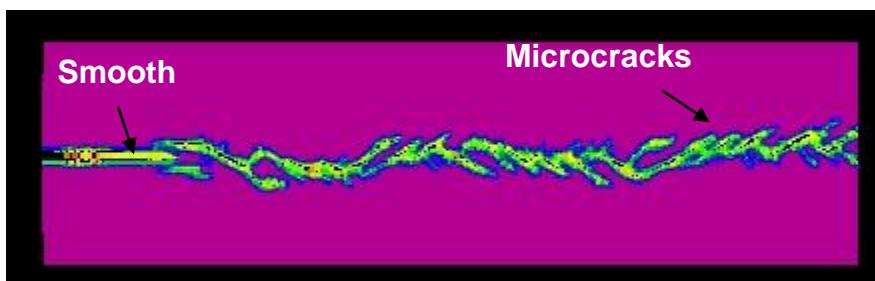
Dynamic fracture in PMMA

- Peridynamic simulation shows crack surface features related to fracture instability.
- These are difficult to reproduce with standard methods.

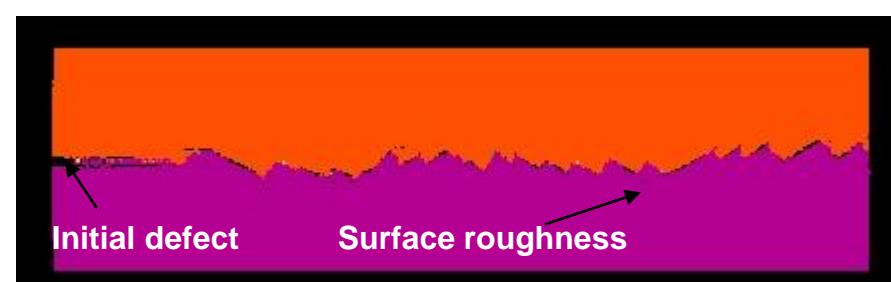


Microbranching

Mirror-mist-hackle transition*



EMU damage



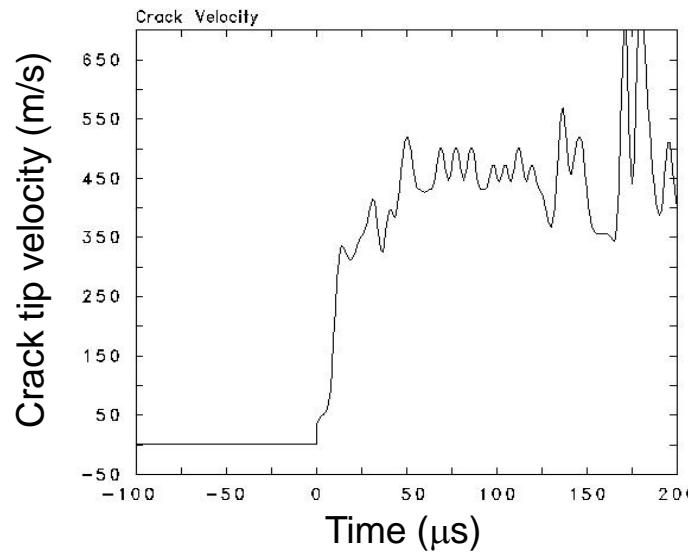
EMU crack surfaces

* J. Fineberg & M. Marder, *Physics Reports* 313 (1999) 1-108

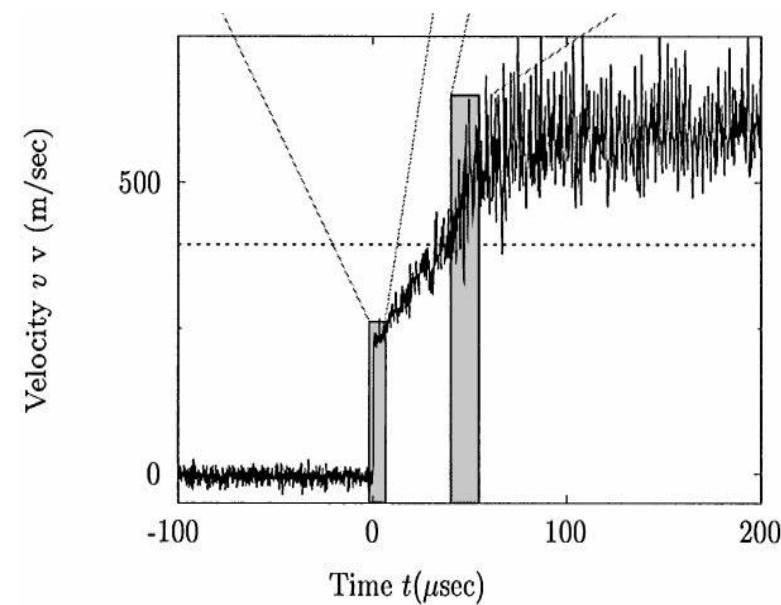
Dynamic fracture in PMMA, ctd:

Crack tip velocity

- Simulation reproduces the main features of dynamic crack velocity history.



EMU



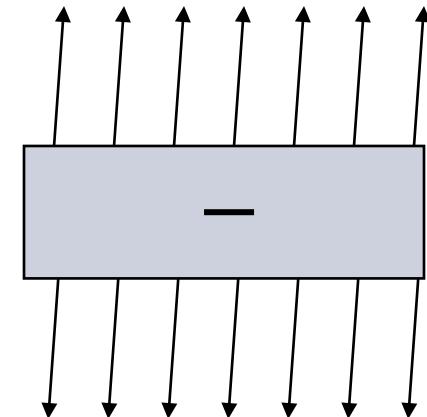
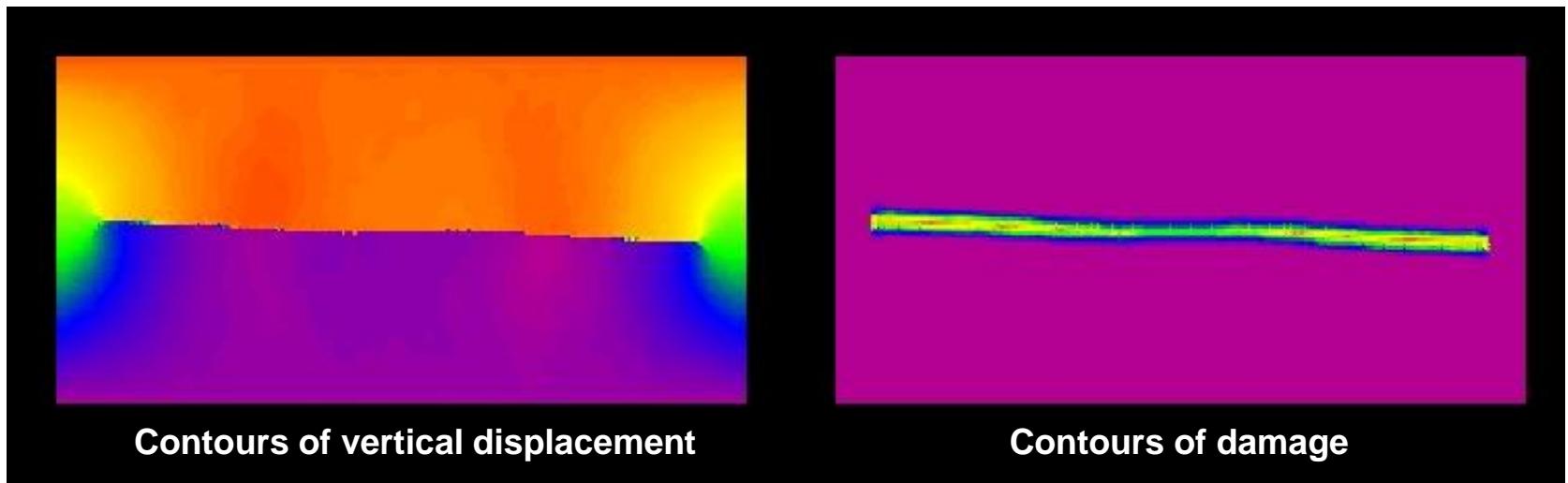
Experiment*

* J. Fineberg & M. Marder, *Physics Reports* 313 (1999) 1-108

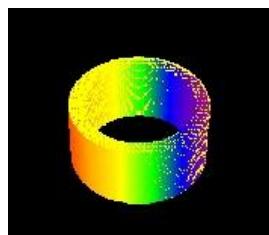
Benefits of autonomous fracture: Mesh effects are small

- Plate with a pre-existing defect is subjected to prescribed boundary velocities.
- These BC correspond to mostly Mode-I loading with a little Mode-II.

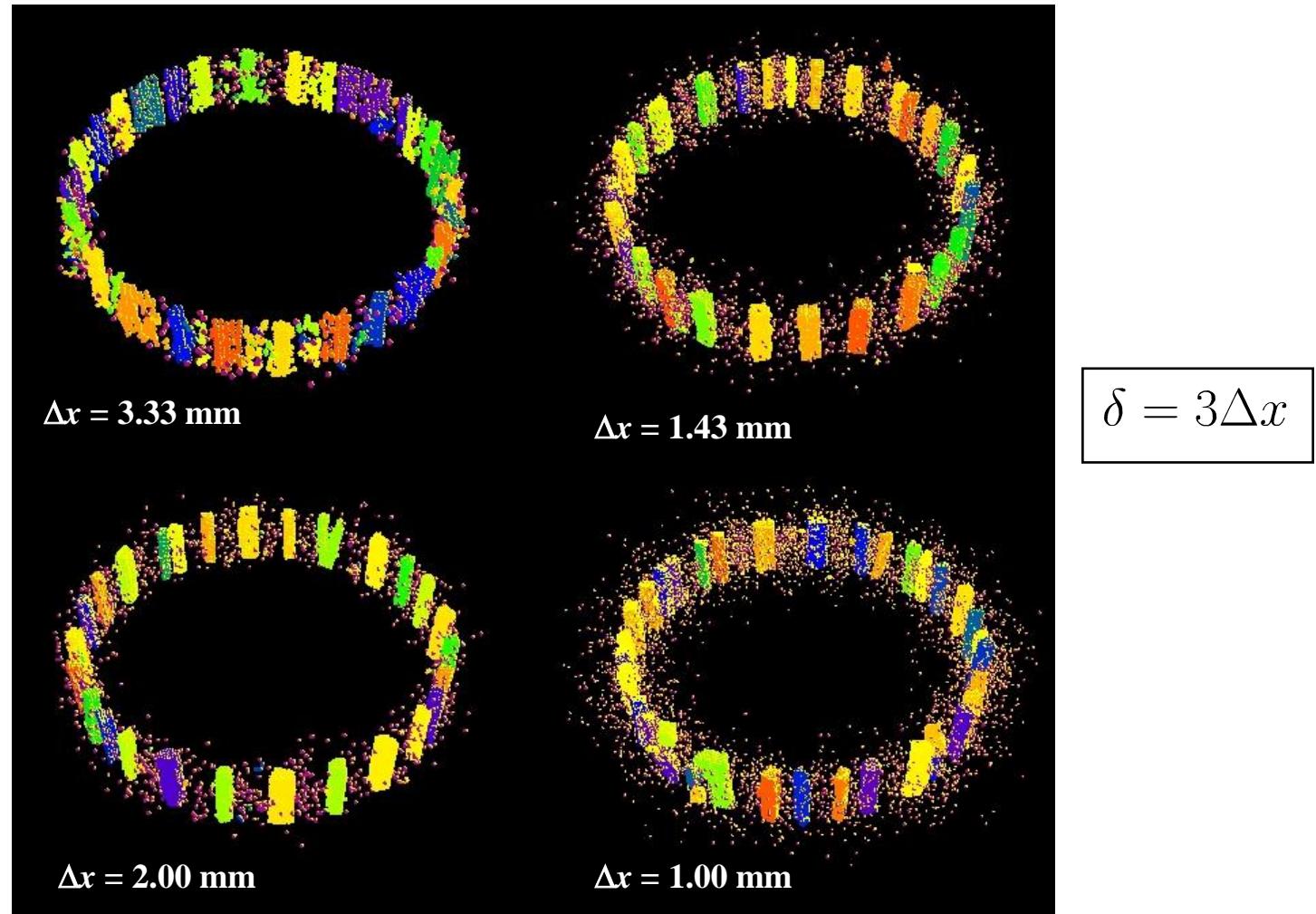
$$\dot{\varepsilon} = (0.25\text{s}^{-1}) \begin{bmatrix} 0 & 0.1 \\ 0 & 1 \end{bmatrix}$$



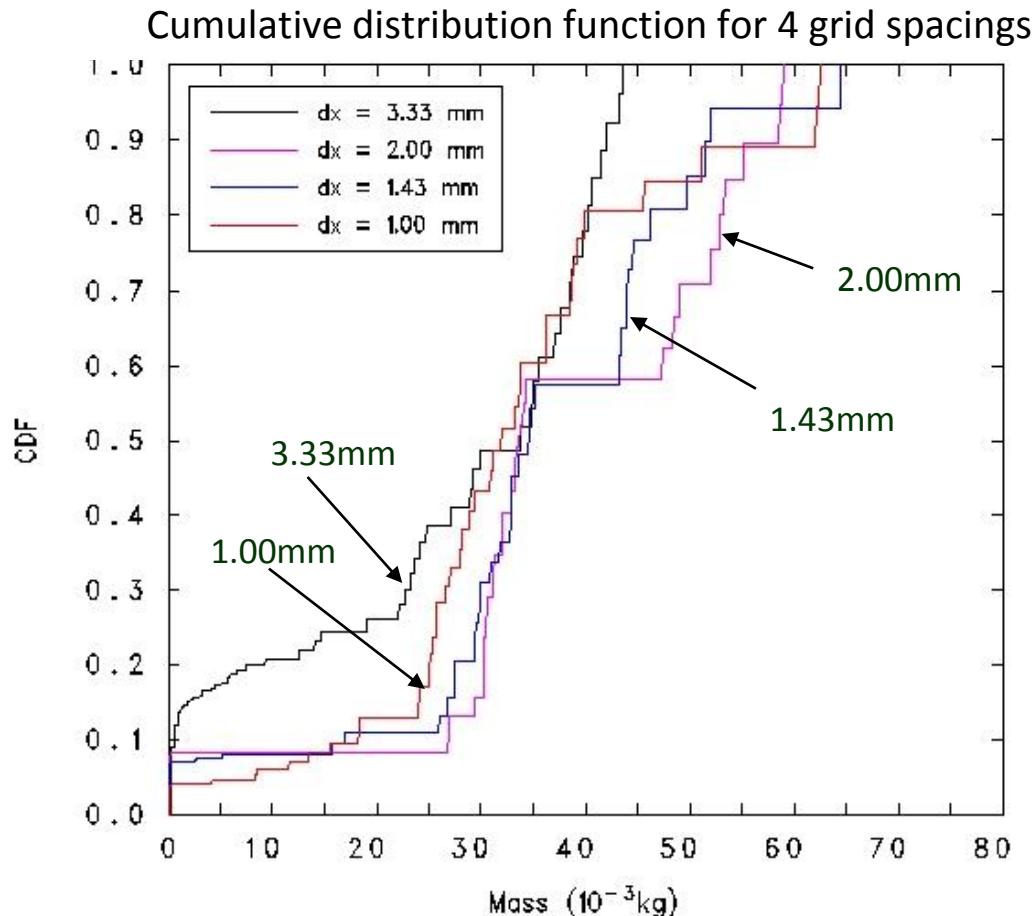
Fragmentation is not strongly dependent on mesh spacing



Brittle ring with
initial radial velocity



Fragment distribution converges

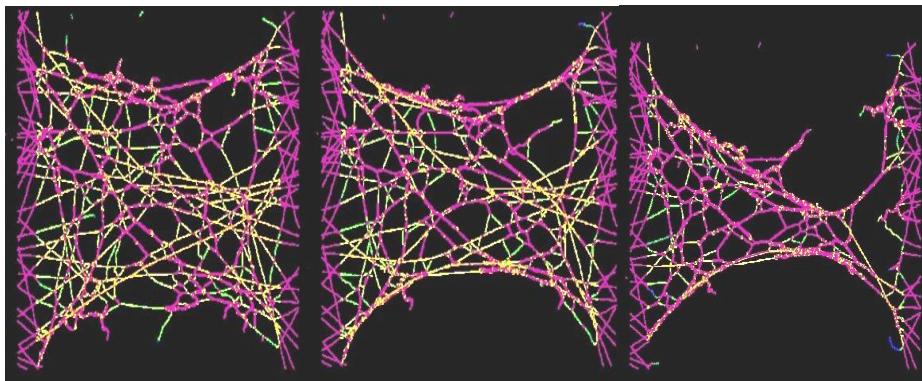


$\Delta x \text{ (mm)}$	Mean fragment mass (g)
3.33	27.1
2.00	37.8
1.43	35.9
1.00	33.5

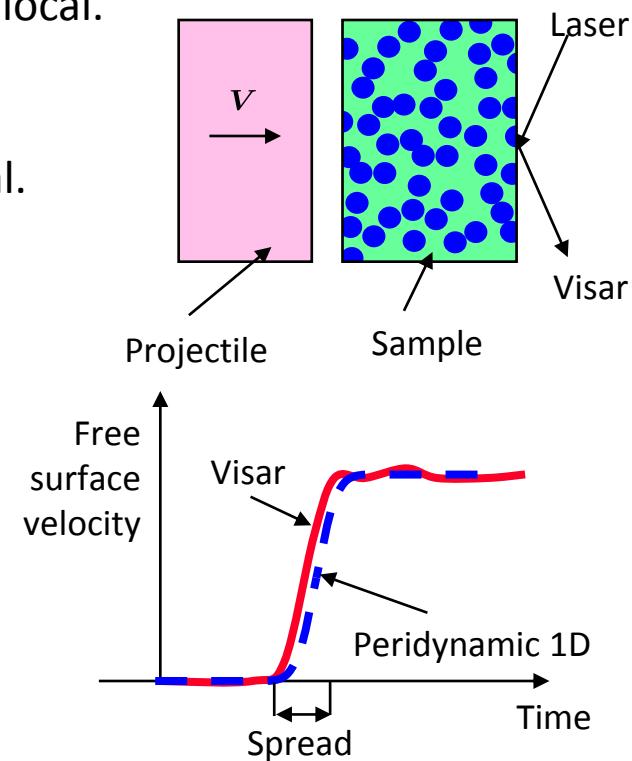
Solution appears
essentially converged

Importance of nonlocality

- Peridynamics is consistent with all laws of classical physics.
- It uses nonlocal interactions between material points.
 - The Cauchy theory is local.
 - Locality is often mistakenly assumed to be a law of physics.
- Molecular scale, nanoscale interactions are always nonlocal.
- Complex fluids are nonlocal.
- Any heterogeneous medium is nonlocal.
- Any discretized model of the local equations is nonlocal.



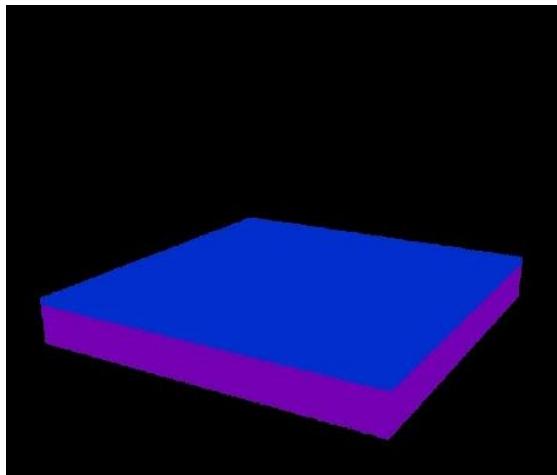
Peridynamic model of a nanofiber membrane
(F. Bobaru, Univ. of Nebraska)



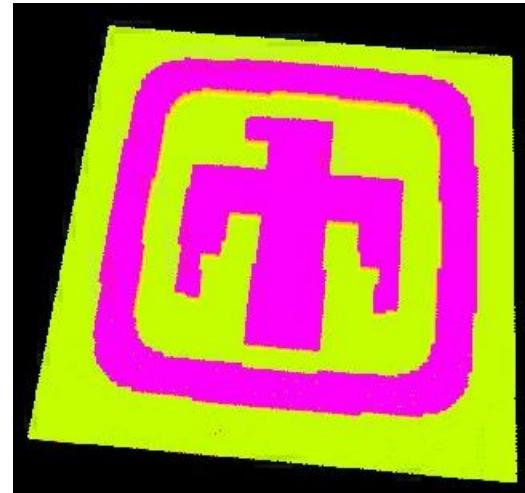
Local model would predict zero spread.

Method reveals subtleties in the mechanics of thin structures

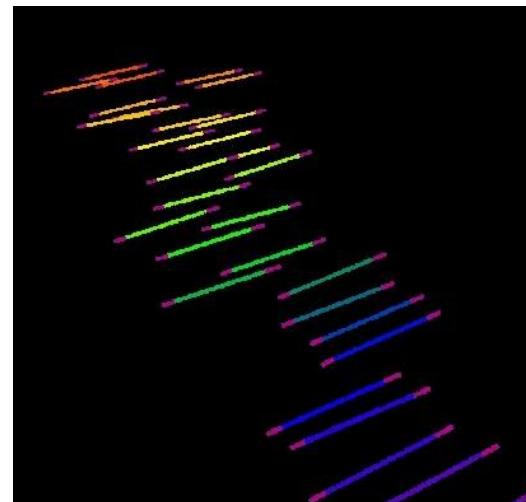
- Autonomous crack growth and long-range forces are crucial.



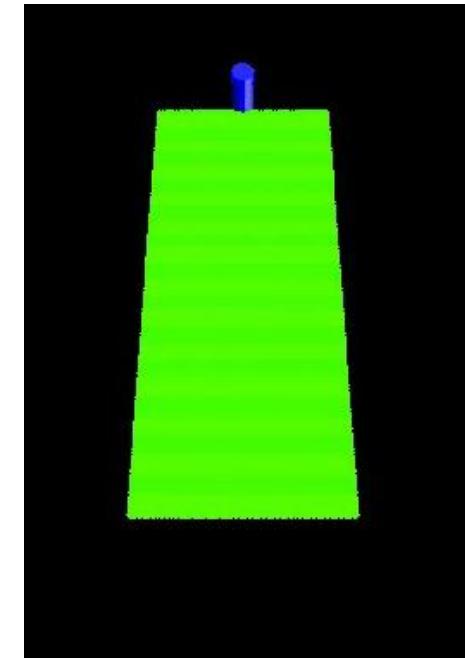
Membrane decohesion



Aging



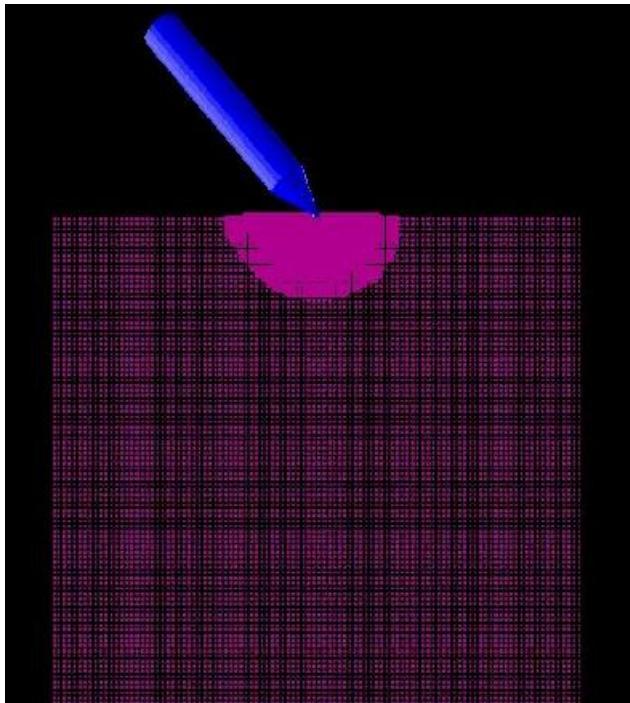
Self assembly



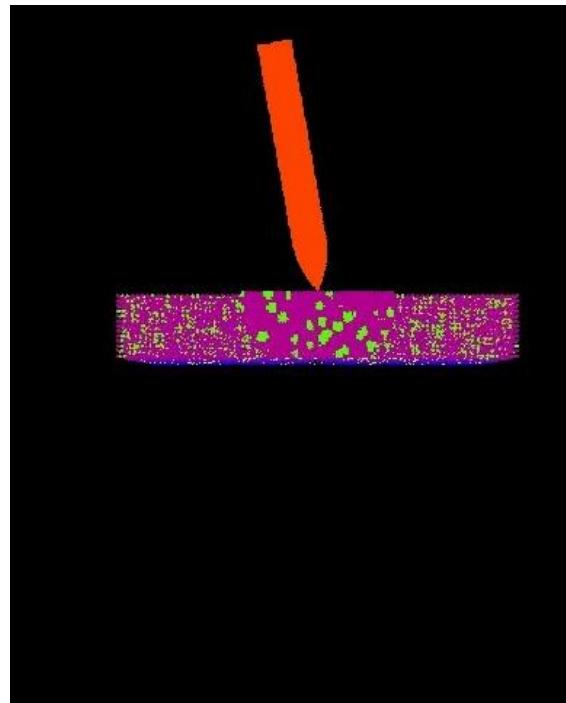
Oscillatory crack path

Examples: Impact and penetration (JMP)

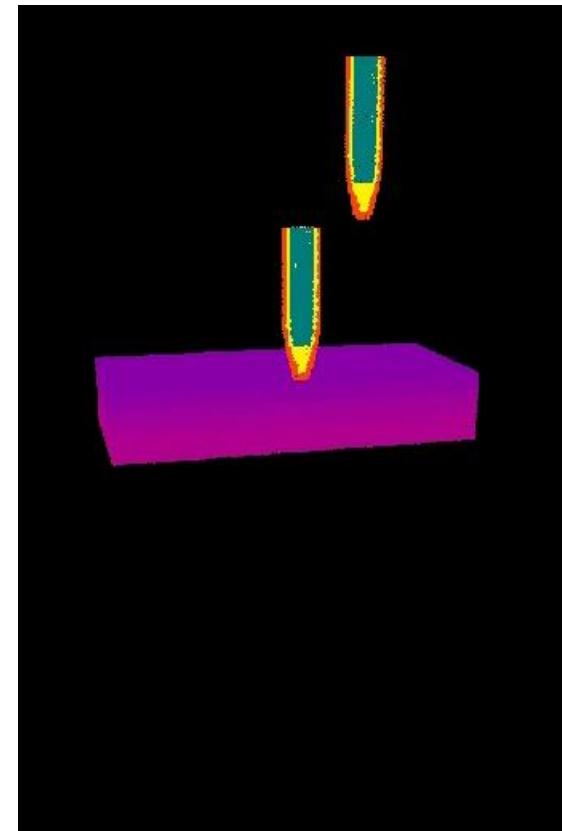
VIDEOS



Ricochet from
heterogeneous target



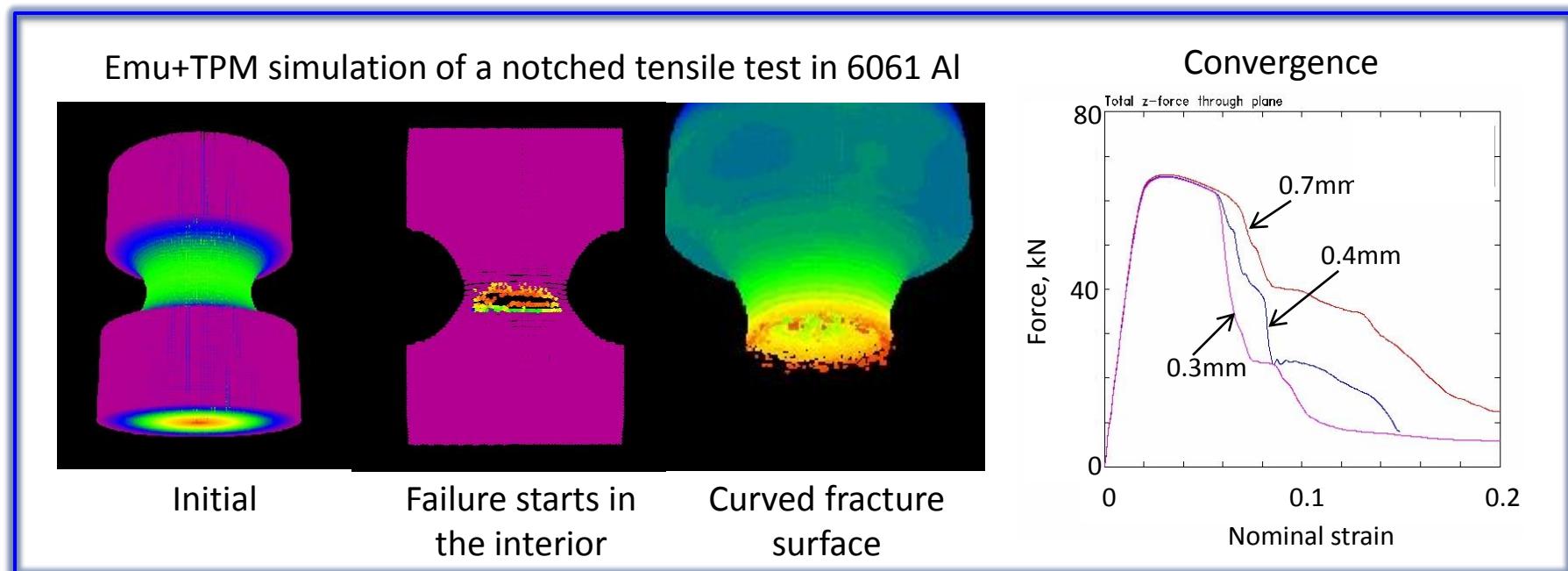
Tail slap in a deformable
penetrator



Small arms multihit

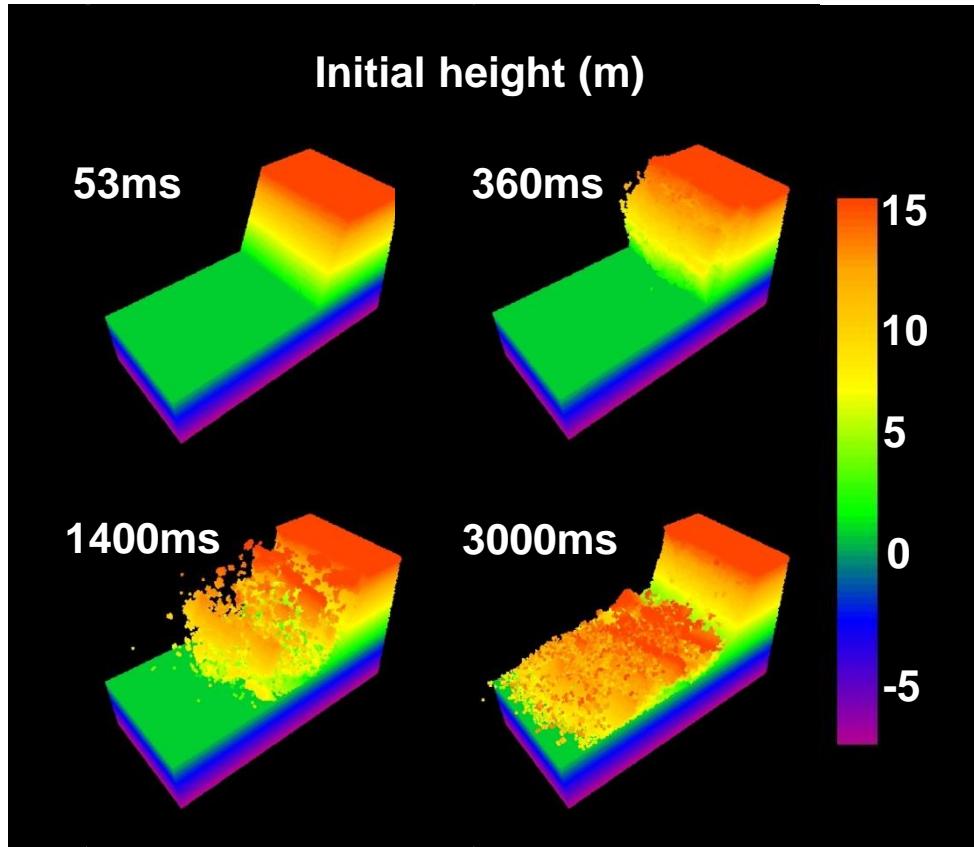
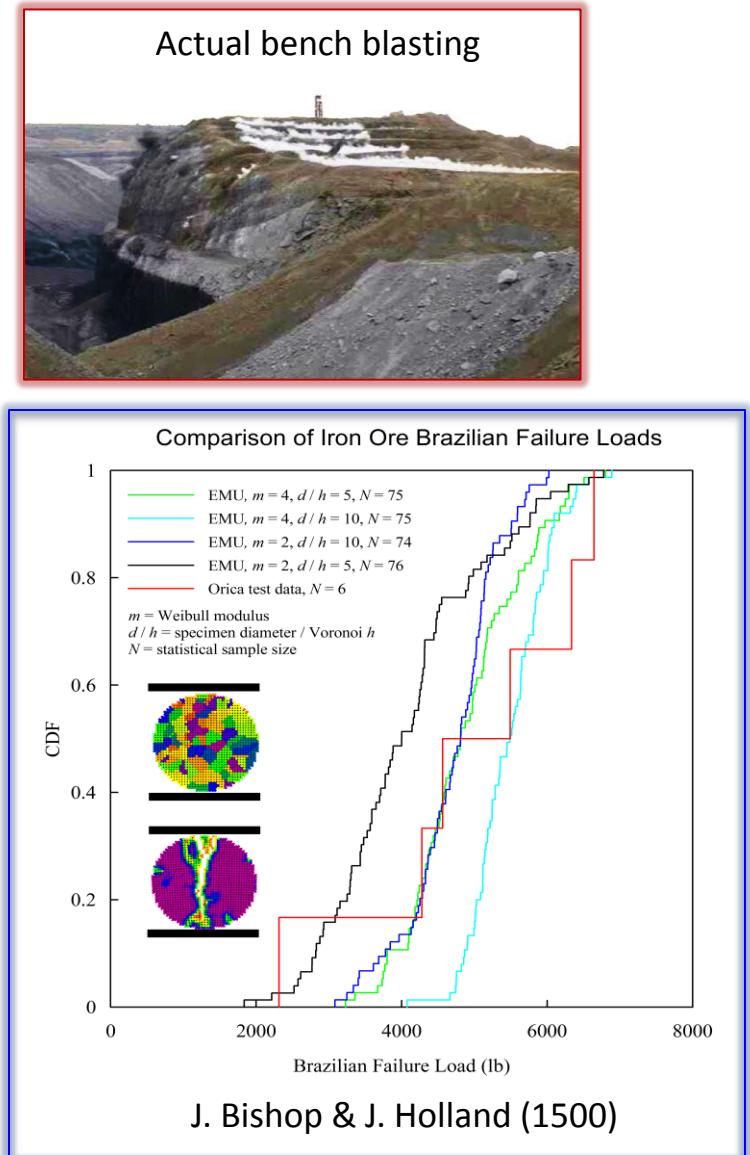
Ductile failure in peridynamics

- Many problems in engineering involve failure of ductile metals.
 - But peridynamics has mostly been applied to brittle fracture.
- Incorporate Wellman's (1500) Tearing Parameter Model (TPM).
 - TPM captures the main effect (tensile pressure) in a simple way.
 - TPM was fairly successful in the X-prize (FEM + element death) .
 - Peridynamics avoids the need for element death.



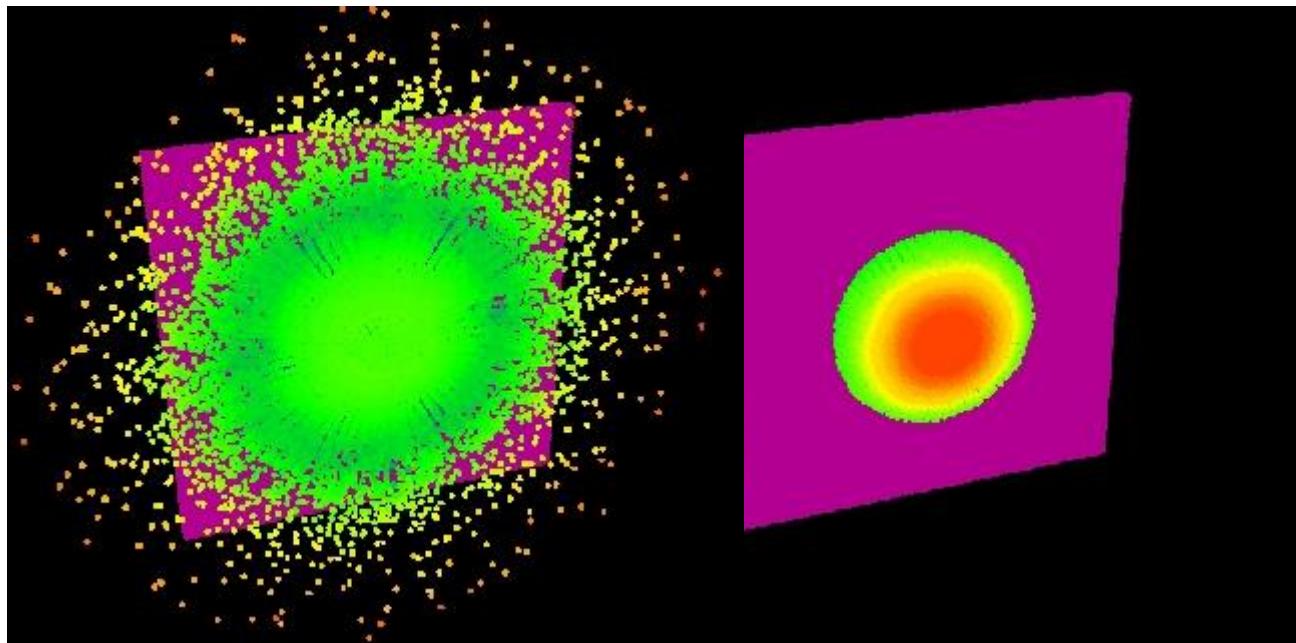
Bench blasting

- Peridynamics correctly reproduces fragment size and velocity distributions in rock blasting (Orica USA Corp).



Fluid-structure interaction: Bird strike

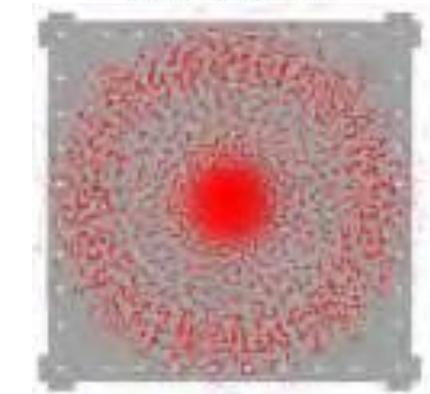
- Bird simulant (gelatin) vs. heavy plate
- A material model that includes Eulerian fluid response and Lagrangian bond forces helps reduce the “spray” that is sometimes seen with SPH.



PD – Fluid only

PD – Fluid + bond forces

Test - LG 997

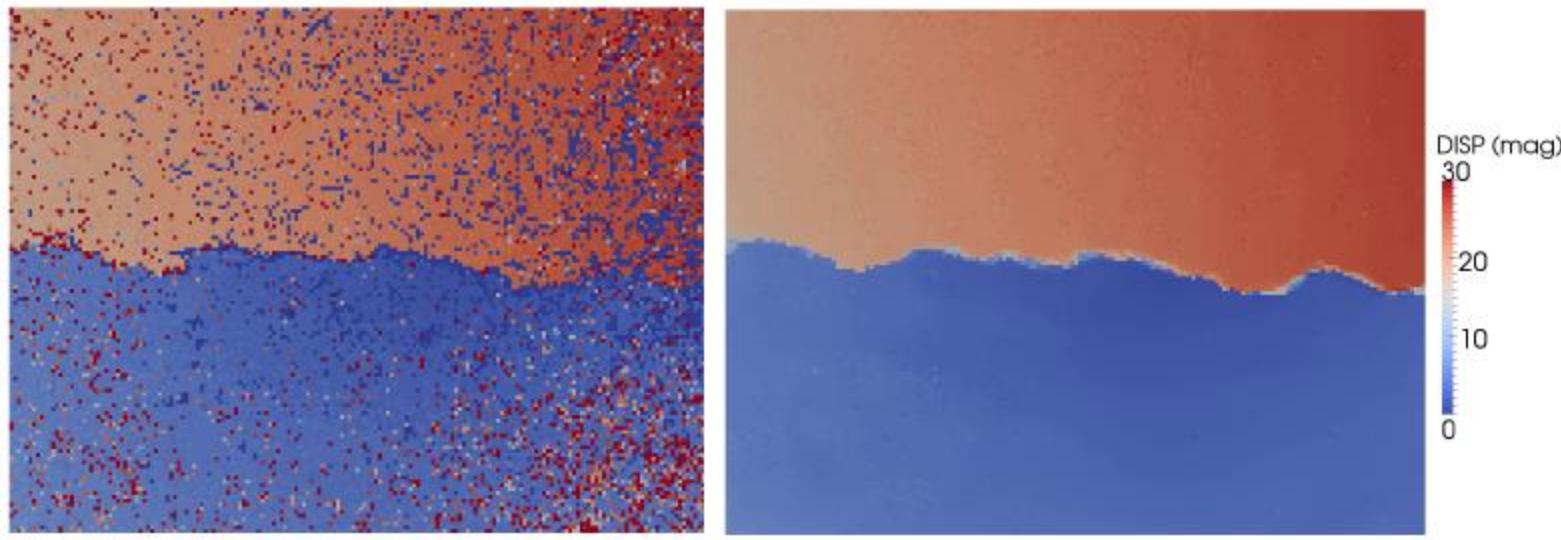


SPH

Olivares, NIS Document 09-039 (2010)

DIC data processing algorithm based on peridynamics*

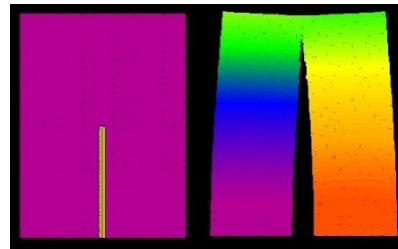
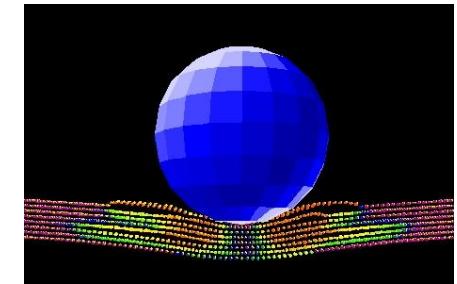
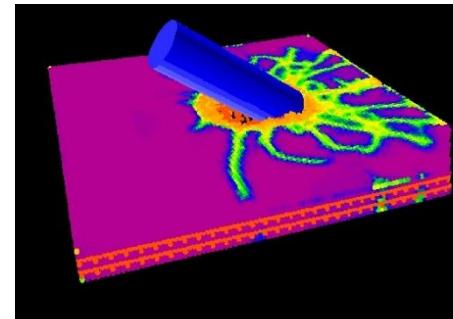
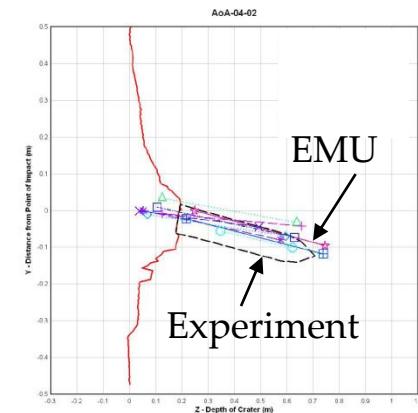
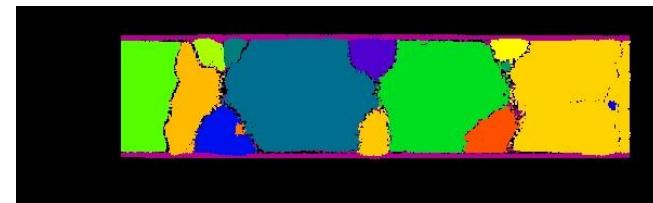
- A new algorithm using peridynamics helps interpret Digital Image Correlation data when discontinuities are present.
- Reference: D. Turner, "Peridynamics-Based Digital Image Correlation Algorithm Suitable for Cracks and Other Discontinuities." J. Eng. Mech. (2014)



*Dan Turner and Rich Lehoucq.

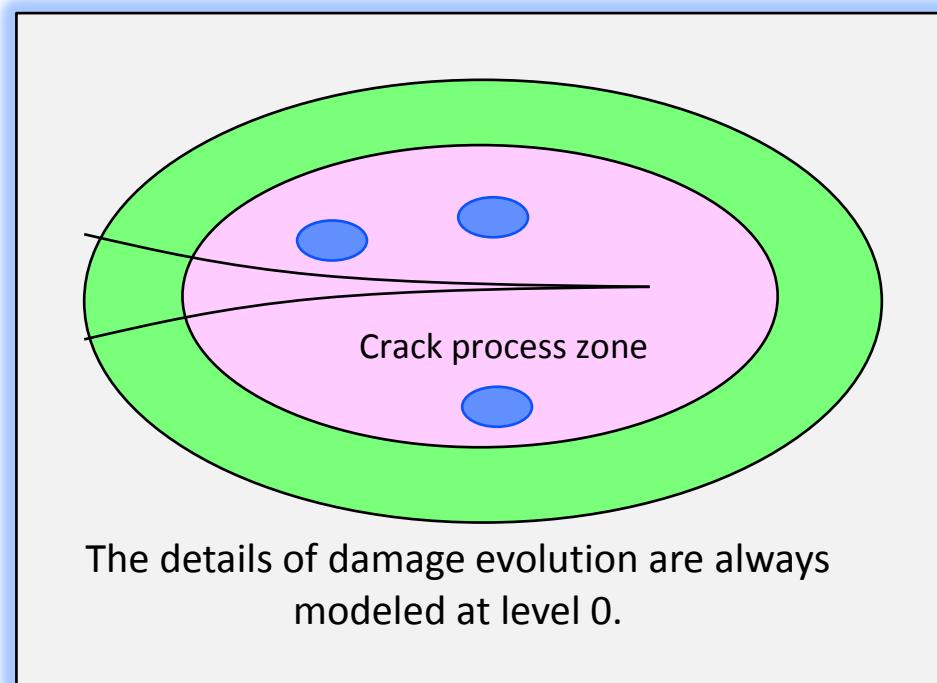
Examples of validation for peridynamics

- Single crack brittle energy balance
- 3-point bend test
- Dynamic fracture
 - Crack growth velocity
 - Trajectory
 - Branching
- Impact into concrete and aluminum
 - Residual velocity
 - Penetration depth
 - Crater size
- Fatigue
 - S-N curves for aluminum and epoxy
 - Paris law curves for aluminum
- Composite impact, damage, and fracture
 - Delaminations (compare NDE)
 - Residual strength in OHC, OHT
 - Stress concentration profile in OHT
 - Bird strike loading
 - Lamina tensile fracture



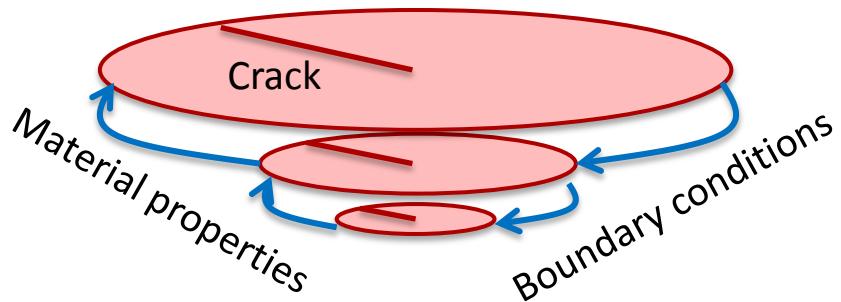
Concurrent multiscale method for defects

- Apply the best practical physics at the smallest length scale (near a crack tip).
- Scale up hierarchically to larger length scales.
- Each level is related to the one below it by the same equations.
 - Any number of levels can be used.
- Adaptively follow the crack tip.

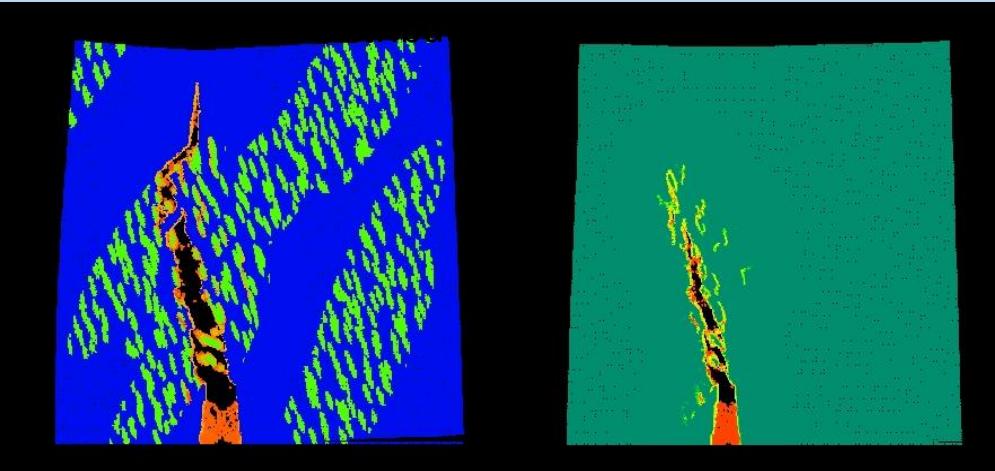


Multiscale peridynamics helps to reveal the structure of brittle cracks

- Material design requires understanding of how morphology at multiple length scales affects strength.
- This is a key to material reliability.



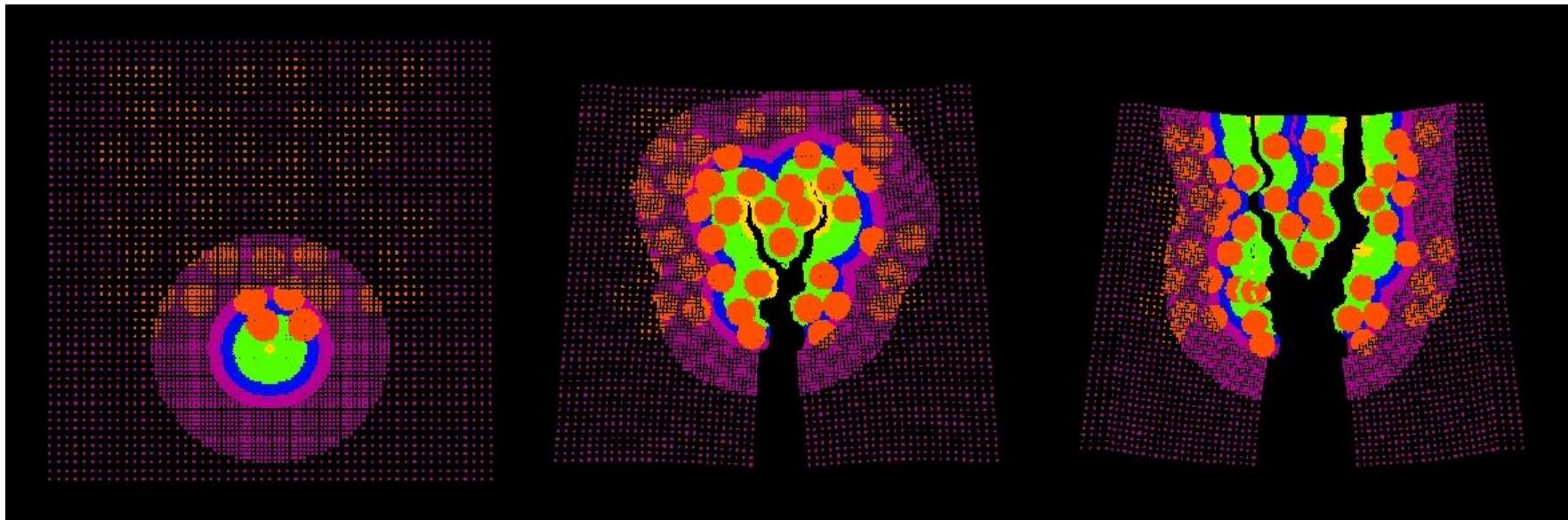
Multiscale model of crack growth through a brittle material with



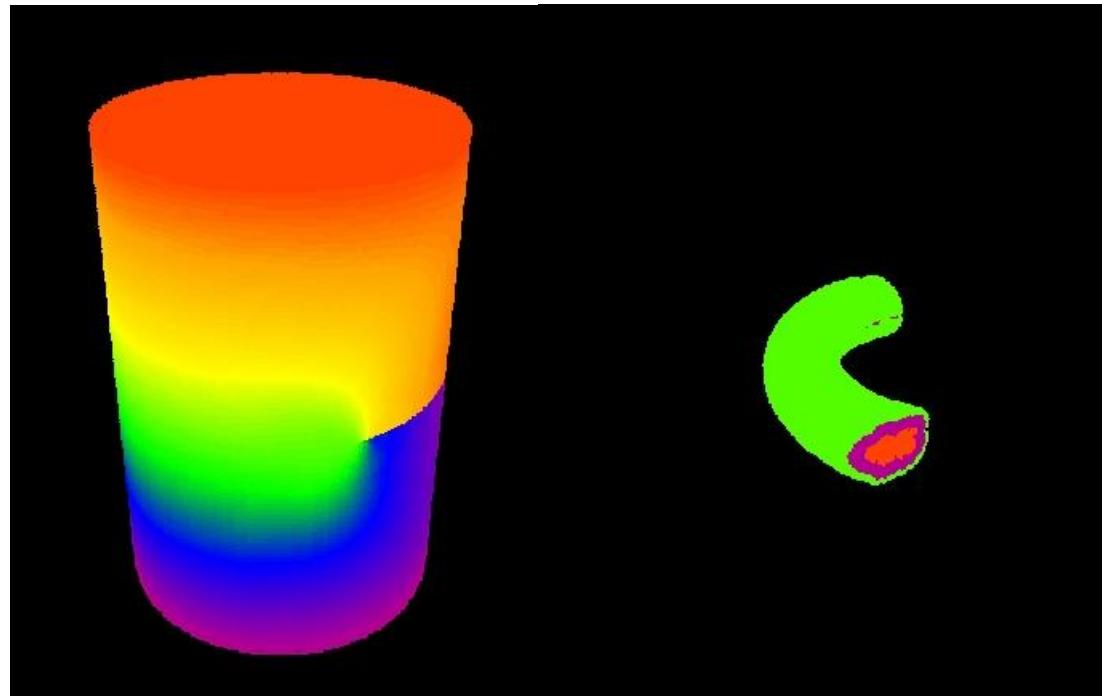
Metallic glass fracture (Hofmann et al, Nature 2008)

Branching in a heterogeneous medium

- Multiscale method tracks crack growth between randomly placed hard inclusions.



Failure of a glass rod in tension



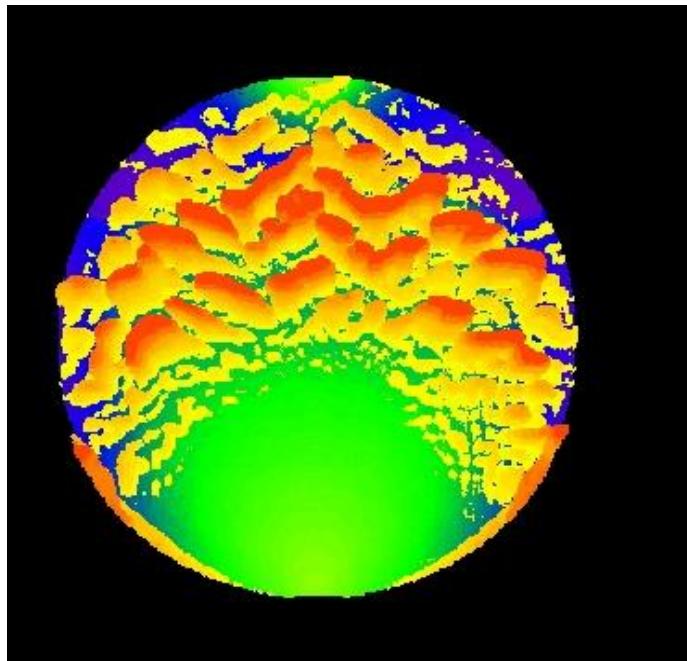
Level 1 displacement

Level 0 surrounds the crack front

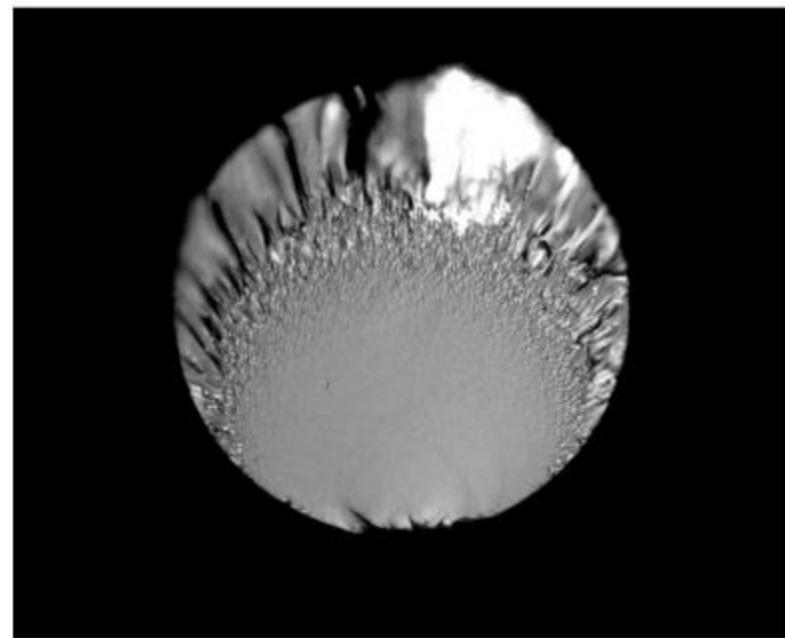
- Level 1 multiscale.
- 20,000,000 level 0 sites (most are never used).
- Level 0 horizon is $25\mu\text{m}$.

Mirror-mist-hackle

- Model predicts roughness and microbranches that increase in size as the crack grows.
- Transition radius decreases as initial stress increases – trend agrees with experiments.



3D peridynamic model



Fracture surface in a glass optical fiber
(Castilone, Glaesemann & Hanson, Proc. SPIE (2002))

Fatigue model

- The fatigue model specifies how the remaining life of each bond depends on the loading.

$$\frac{d\lambda}{dN}(N) = -A\varepsilon^m$$

where A and m are constants and ε is the cyclic bond strain.

- The constants are calibrated separately for phases I and II (nucleation and growth).

Time mapping permits very large N

- We can avoid modeling each cycle explicitly.
- Define the *loading ratio* by

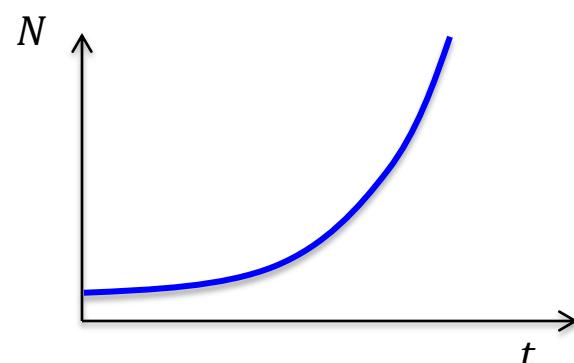
$$R = \frac{s^-}{s^+} \quad \Rightarrow \quad \varepsilon = |s^+ - s^-| = |(1 - R)s^+|.$$

- Map t to N :

$$N = e^{t/\tau}$$

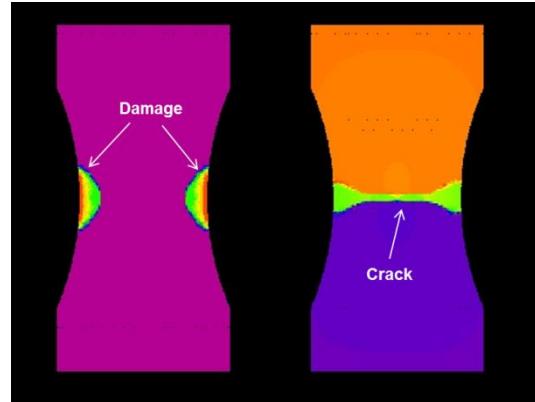
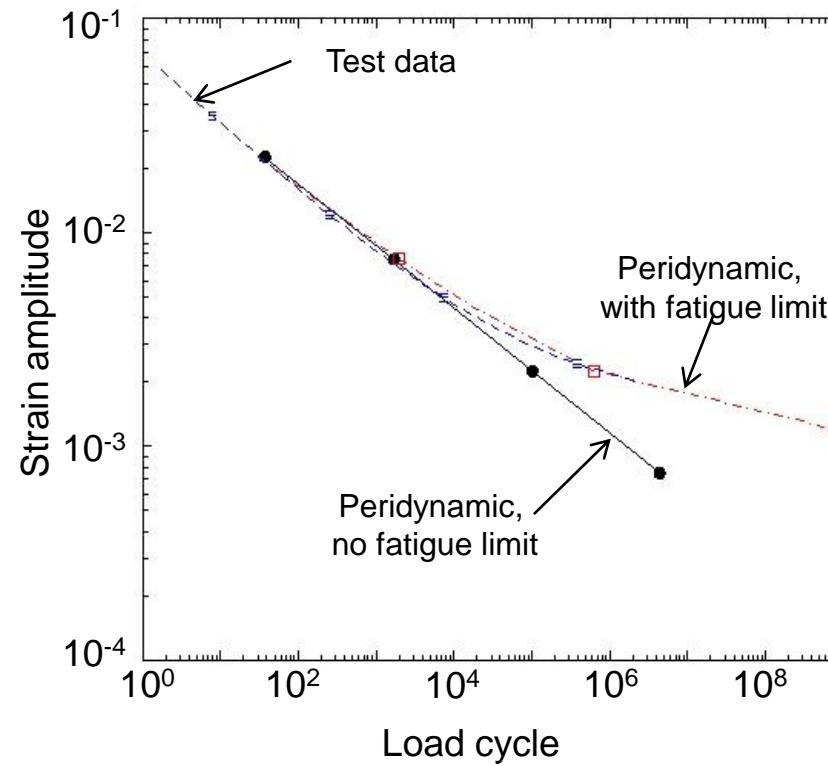
where τ is a constant chosen according to convenience.

- Fatigue model in terms of t instead of N :



$$\frac{d\lambda}{dt} = \frac{d\lambda}{dN} \frac{dN}{dt} = \frac{-|1 - R|AN}{\tau} |s^+|^m.$$

Fatigue nucleation in aluminum alloy



- Model with a fatigue limit:

$$\frac{d\lambda}{dN}(N) = -A \left(\max(0, \varepsilon - \varepsilon_\infty) \right)^m$$

Test data: T. Zhao and Y. Jiang. Fatigue of 7075-T651 aluminum alloy. International Journal of Fatigue, 30 (2008)834-849.

Mesoscale:

Fatigue cracks at grain boundaries

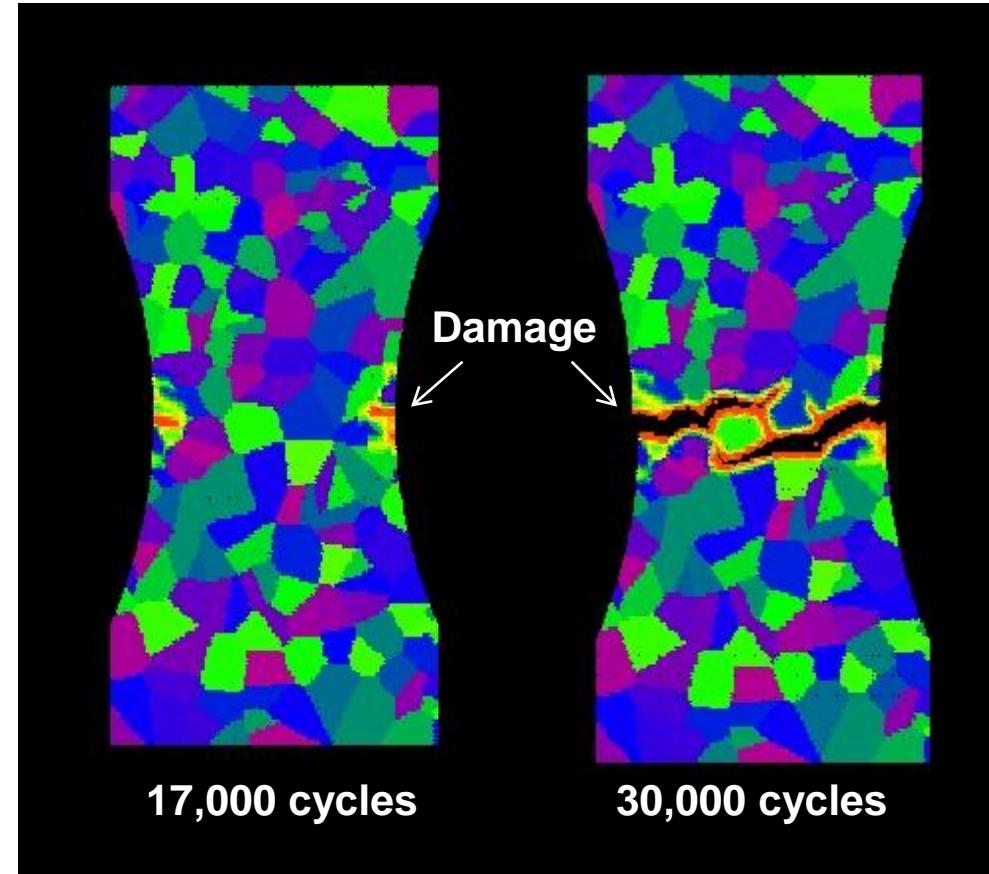
- Recall the peridynamic fatigue model: For a given bond,

$$\lambda(0) = 1, \quad \frac{d\lambda}{dN} = -A\varepsilon^m$$

- Set:

$A = 5$ for bonds within a grain

$A = 50$ for bonds between grains



Fatigue crack growth between grains
represented as Voronoi cells

Peridynamics strengths and weaknesses

Strengths

- Offers potentially great generality in fracture modeling.
 - Cracks nucleate and grow spontaneously.
 - Cracks follow from the basic field equations.
- Any material model from the local theory can be used.
 - Plus a lot more!
- Compatible with molecular scale long-range forces.
 - MD is a special case.
 - Cauchy theory is a limiting case.
- Length scale can be exploited for multiscale modeling.

Weaknesses

- Slow due to many interactions.
 - Local-nonlocal coupling will help.
 - Need smarter integration methods.
- Surface effects
 - Correction methods are available, none totally satisfactory.
 - PALS material model will help solve this.
- Boundary conditions are different from the local theory.
- Particle discretization has known limitations.
 - FE methods are under development.