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1 EXECUTIVE SUMMARY 

PEM fuel cells remain an emerging technology in the vehicle market with several cost and 
reliability challenges that must be overcome in order to increase market penetration and 
acceptance.  The DOE has identified the lack of a cost effective, reliable, and efficient air supply 
system that meets the operational requirements of a pressurized PEM 80kW fuel cell as one of 
the major technological barriers that must be overcome.  This project leveraged Roots positive 
displacement development advancements and demonstrated an efficient and low cost fuel cell 
air management system.  Eaton built upon its P-Series Roots positive displacement design and 
shifted the peak efficiency making it ideal for use on an 80kW PEM stack.  Advantages to this 
solution include: 

 Lower speed of the Roots device eliminates complex air bearings present on other 
systems.   

 Broad efficiency map of Roots based systems provides an overall higher drive cycle fuel 
economy. 

 Core Roots technology has been developed and validated for other transportation 
applications. 

 

Eaton modified their novel R340 Twin Vortices Series (TVS) Roots-type supercharger for this 
application.  The TVS delivers more power and better fuel economy in a smaller package as 
compared to other supercharger technologies.  By properly matching the helix angle with the 
rotor’s physical aspect ratio, the supercharger’s peak efficiency can be moved to the operating 
range where it is most beneficial for the application.  The compressor was designed to meet the 
90 g/s flow at a pressure ratio of 2.5, similar in design to the P-Series 340.  A net shape plastic 
expander housing with integrated motor and compressor was developed to significantly reduce 
the cost of the system. This integrated design reduced part count by incorporating an overhung 
expander and motor rotors into the design such that only four bearings and two shafts were 
utilized. 
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2 ACCOMPLISHMENTS 

Specific project objectives include: 

Primary Objectives 

 62/64% (baseline 2011)  >  65/70% (target 2017)  Compressor/expander efficiency at 

25% of full flow 

 80% (baseline 2011) > 90% (target 2017)  Combined motor/motor controller efficiency at 

full flow 

 11.0/17.3kW (baseline2011) < 8/14kW (target 2017) Compressor/expander input power 

at 100% of full flow 

 
Secondary Objectives 

 Meeting all 2017 Project Target  objectives in Table 1 

 Conduct a cost reduction analysis to identify areas for additional possible cost reductions 

A fully tested and validated TRL 7 Air Management System hardware capable of meeting the 
2017 Project Targets in Table 1 was delivered at the conclusion of this project. 
 
Table 1 below displays a tabulated comparison of key performance parameters for Eaton’s 
actual performance versus original project and DOE goals. 
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Table 1: 2017 Project Targets 

Characteristic  Units  
Eaton 
Status  

DOE 
Target  
2017  

Project  
Target  
2015  

Input power 
a

 at full flow
 b

, (with 
expander / without expander)  

kW
e
  10.6 / 14.8  8 / 14  8 / 14  

Combined motor & motor controller 

efficiency at full flow 
b

  
%  93  90  90  

Compressor / expander efficiency at 

full flow (C/E only) 
b

  
%  65 / 65  75 / 80  75 / 75  

Input power at 25% flow
 c

 (with 
expander/without expander)  

kW
e
  2.0/2.0  1.0 / 2.0  1.0 / 2.0  

Combined motor & motor controller 

efficiency at 25% flow 
c

  
%  82 80  80  

Compressor / expander efficiency at 

25% flow
 c

  
%  65 / 51 65 / 70  65 / 70  

Input power at idle 
d

 (with / without 
expander)  

W
e
  405 / 405 200 / 200  200 / 200  

Combined motor / motor controller 

efficiency at idle
 d

  
%  50 70  ---  

Compressor / expander efficiency at 

idle
 d

  
%  21 60 / 60  60 / 60  

Turndown ratio (max/min flow rate)   20  20  20  

Noise at maximum flow (excluding 
air flow noise at air inlet and 
exhaust)  

dB(A) at 1 
meter  

65 (with 
enclosure & 
suppression)  

65  
65 (with 

enclosure & 
suppression)  

Transient time for 10 - 90% of 
maximum airflow  

sec  1 1  1  

System volume 
e

  liters  10.8  15  15  

System weight 
e

  kg  15.9 15  15  

System cost 
f    

  $  984 500  500  

Input power 
a

 at full flow
 b

, (with 
expander / without expander)  

kW
e
  10.6 / 14.8 8 / 14  8 / 14  

a    Electrical input power to motor controller when bench testing fully integrated system. Fully integrated system includes control 
system electronics, air filter, and any additional air flow that may be used for cooling.  
 b  Compressor: 92 g/s flow rate, 2.5 bar (absolute) discharge pressure; 40°C, 25% RH inlet conditions. Expander: 88 g/s flow 
rate, 2.2 bar (absolute) inlet pressure, 70°C, 100% RH inlet conditions.  
 c Compressor: 23 g/s flow rate, minimum 1.5 bar (absolute) discharge pressure; 40°C, 25% RH inlet conditions. Expander: 23 
g/s flow rate, 1.4 bar (absolute) inlet pressure, 70°C, 100% RH inlet conditions.  
 d  Compressor: 4.6 g/s flow rate, minimum 1.2 bar (absolute) discharge pressure; 40°C, 25% RH inlet conditions. Expander: 4.6 
g/s flow rate, < compressor discharge pressure, 70°C, 20% RH inlet conditions.  
 e  Weight and volume include the motor, motor controller and system enclosure.  
 f    Cost target based on a manufacturing volume of 500,000 units per year.  
 g   DTI cost model of the Honeywell 100,000 rpm machine, 2.5 bar (absolute), 92 g/s, dry air, 40°C: $960 including markup. TIAX 
2009 estimate of Honeywell technology (compressor, expander, motor, motor controller) presented at 2010 Annual Merit Review 
and Peer Evaluation: $790 including 15% markup.  
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3 PROJECT ACTIVITY SUMMARY 

3.1 Analytical Development of the Compressor & Expander using CFD Modeling 

Eaton’s CFD software of choice used to evaluate the efficiency of positive displacement Roots 
device was not able to converge the analysis due to the small clearances between the rotor tips 
and housing wall. To overcome this limitation, the clearances were increased approximately 
three times from the targeted design values to allow for the model to successfully run, see 
Figure 1. The increased clearance impacts the device volumetric efficiency and requires a 
correction to the RPM to match the targeted flow.  To validate the impact, efficiency tests were 
run the baseline design in supercharger and expander flow directions. The data showed that 
there was approximately a 10% reduction in efficiency with the increased clearance which 
correlation to the CFD analysis results as per Figure 2 & Figure 3.  Upon validation, the CFD 
model was then used to develop the expander inlet and outlet designs. 
 
Internal Eaton resources completed the initial CFD modeling as Kettering University developed 
an alternative CFD approach with a different software package to enable for the desired 
clearances to be evaluated. 
 

 
  

Figure 1: Limitation of 
FLUENT capabilities 
overcome by scaling 

clearance to 600 micron 

Figure 2: Design 1 
expander tested for reverse 
and forward flow showed a 
10 % decrease in efficiency 

Figure 3: Modeling of 
expander also predicted a 
10% decrease in efficiency 

 

 New CFD Tool Approach and Development Background 3.1.1

Kettering’s first step was to access several CFD, grid-generation, and post-processing software 
tools. Due to the complexity of the Roots rotor geometries and small clearances that exist 
between the rotors components, the first software tool used to generate the FEA grid contained 
numerous distorted and skewed cells. Several attempts were made to eliminate these distorted 
cells, but STAR-CCM+ mesh was never successful. 

As a result, a decision was made to use a more specialized grid-generation software. This tool 
had a better meshing algorithm and was able to generate an accurate grid as outlined Figures 4 
and 5.  This meshing process was very labor intensive since the geometry does not contain any 
axis-symmetry that could have simplified the meshing process. Figures 6 and 7 show the 
interior mesh in two cut planes, one along the axis of the rotors, and one perpendicular to the 
axis. The small clearances that exist between the rotors and the housing are clearly visible in 
these figures. Figures 8 and 9 show the refined mesh created around each rotor. These regions 
are required in order to accurately model each rotor. The analysis successfully completed three 
revolutions of the rotors. 



Eaton  DE-EE0005665 
Final Scientific/Technical Report    

10 

 

 
Figure 4: Mesh of the expander 

 

 
Figure 5: Meshed rotors 

 
Figure 6: Interior axial plane mesh 

 
 

Figure 7: Interior radial plane mesh 

 
Figure 8: Refined mesh (highlighted in 
yellow) between rotor and S/C housing 

 
Figure 9: Refined mesh (highlighted in 

yellow) between each rotor 

 

 
Even though the team was successful in performing CFD calculations using the first software 
tool, the calculations of torque did not correlate very well with the experimental data.  Moreover, 
the CFD analysis was done with a 3-6 times larger than production gap between the rotors and 
housing. This increased gap width was used due to the difficulty in generating a refined mesh 

Rotor 

Wall of 
Housing 

Rotor-1 

Rotor-2 
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with the available software. Hence, it was decided to acquire specialized software to be able to 
generate a refined mesh between the housing and rotor that is a few times less than the current 
production gap. The specialized software included a module that generated rotor profiles and a 
module that meshed the profiles. Figure 10 shows the template for inputting the rotors geometry 
data, and Figure 11 shows an image of the mesh generated by new software.  Since the CFD 
analysis was performed with the rotors rotating, additional meshes were generated with the 
rotors at different positions. That is, each rotor was simulated to make one complete revolution 
and hence the rotor motion was divided into 468 steps and a mesh of the region around the 
rotors was generated at those 468 steps. A total of 936 mesh files were created (468 for each 
rotor). 
 

 
Figure 10: New software input template 

 

 
Figure 11: Mesh generated in new software 
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The 2nd CFD solver tool used for this analysis required generating separate meshes for the inlet 
and outlet regions and was combined with the mesh files from the new software. Figure 12 
shows the completed geometry and mesh. The 968 mesh files generated in new software were 
then imported into 2nd CFD solver tool and were used during the CFD analysis. Using this 
procedure, mesh deformation was not used during the CFD analysis, but rather the new 
software meshes were used at the appropriate time-step.  
 

 
Figure 12: Complete mesh of unit 

 Initial CFD Results and Comparison to Experimental Data: 3.1.2

In order to determine the accuracy of the results from the methodology just described, two 
cases were considered. In both of these cases the supercharger-expander given in 1 was 
simulated with the following conditions: 
 

Table 2: Operating conditions used in the numerical simulations 

Parameter Case 1 Case 2 

Inlet Pressure 220 kPa (absolute) 140 kPa (absolute) 

Outlet Pressure 100 kPa (absolute) 1000 kPa (absolute) 

Rotational Speed 10,000 RPM 2,000 RPM 

 
Transient CFD calculations were performed in both cases to simulate a complete revolution of 
the rotors. Constant density air at 25°C was considered to enter the unit at the inlet. The 
numerical simulations included calculating the velocity field, pressure distribution, turbulence 
kinetic energy and dissipation, throughout the entire three-dimensional model.  
 
Figures 13 and 14 show the results for Case 1, and Figures 15 and 16 show the results for 
Case 2. Figures 13 and 15 depict the calculated torque on both rotors as a function of time in 
terms of the number of simulation time-steps for Case 1 and Case 2, respectively.  Similarly, 
Figures 14 and 16 show the inlet and outlet mass flow rates as a function of time for Case 1 and 
Case 2, respectively.  
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Figure 13: CFD results showing calculated 
torque in CFX on both rotors for the 10,000 

RPM case 

 
Figure 14: Inlet and outlet mass flow rates 
calculated in CFX for the 10,000 RPM case 

 

 
Figure 15: CFD results showing calculated 
torque in CFX on both rotors for the 2000 

RPM case 

Figure 16: Inlet and outlet mass flow rates 
calculated in CFX for the 2000 RPM case 

 
 
In order to verify the CFD results performed in 2nd CFD solver tool, the average calculated 
values of torque and mass flow rates were compared with the experimental data. A summary of 
the comparison are listed in Table 3 and Table 4. 
 

Table 3: Comparison between numerical results and experimental data for Case 1 

Parameter Experimental Numerical 

Inlet Pressure (kPa abs.) 211 220 

Outlet Pressure (kPa abs.) 101.9 101.3 

Inlet Temperature (C) 147.8 25 

RPM 10067 10000 

Average Rotor Torque (N.m) 4.13 3.74 

Average Mass Flow Rate (kg/s) 0.089 0.160 
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Table 4: Comparison between numerical results and experimental data for Case 2 

Parameter Experimental Numerical 

Inlet Pressure (kPa abs.) 142 140 

Outlet Pressure (kPa abs.) 101.1 101.3 

Inlet Temperature (C) 95.8 25 

RPM 2041 2000 

Average Rotor Torque (N.m) 1.615 1.47 

Average Mass Flow Rate (kg/s) 0.021 0.041 

 
In both cases, the calculated average torque was about 9% lower than the measured 
experimental values. In order to compare the mass flow rates we have to adjust the calculated 
values to the air inlet temperature used during the experiments, since in the CFD calculations 
air with constant density at 25 C was used. The calculated mass flow rate was adjusted as 
follows: 
 
Mass Flow Rate = Air density x Volume Flow Rate 

Air Density =
p

RT
, where p is absolute pressure, T is absolute temperature, and R is the gas 

constant for air.  

  @25@

298
Mass Flow Rate (Mass Flow Rate)

in
CT

inT
   

So, for Case 1 the adjusted mass flow rate is: 
298

0.16 0.113 kg/s
147.8 273

 
  

 
 which is 27% 

higher than the experimental value. For Case 2, the adjusted mass flow rate is: 

298
0.041 0.033 kg/s

95.8 273

 
  

 
 which is 51% higher than the experimental value. This 

difference could be due to the gap width in the unit used in the experiments was higher than the 
gap width used in the CFD model. Moreover, thermal expansion of the housing on the 
experimental unit could have occurred during the experiments which would result in a wider gap 
width.  
 
The next step in the modeling process was to better understand the air flow through, and the 
performance of, various configurations of expanders and compressors. 

 Expander CFD Results 3.1.3

The CFD analysis demonstrated that the modeling process being used was accurately 
predicting improvements trends to expander geometric changes. There were a total of ten (10) 
expander geometries and configurations analyzed. All were compared to the baseline V250 
expander configuration.  

1. Configuration #1 - a V250 expander geometry with divider #2 

2. Configuration #2 - a V250 expander geometry with divider #4 

3. Configuration #3 - a V250 expander geometry with an extended inlet 

4. Configuration #4 - a V250 expander geometry with bearing clearances added 

5. Configuration #5 - a V250 expander with half the tip clearances and no end clearances 

6. Configuration #6 - a V210 expander with the 1st outlet geometry as shown in Figure 17 
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7. Configuration #7 - a V210 expander with the 2nd outlet geometry as shown in Figure 17 

8. Configuration #8 - a V210 expander with the 3rd outlet geometry as shown in Figure 17 

9. Configuration #9 - a V210 expander with the 2nd geometry with bearing clearances 

added  

10. Configuration #10 - a V210 expander with the 1st geometry and half the tip clearances 

and no end clearances. 

 

 
1

st
 Geometry                          2

nd
 Geometry                          3

rd
 Geometry 

Figure 17: Expander Outlet Geometries 
 
The V250 and V210 expander units were three-lobe rotors. By the end of the program modeling 
the three-lobe rotors become a straight forward process for the CFD team. Mesh generation of 
the geometries was performed using the proprietary software and transient, three-dimensional 
CFD analysis was accomplished using the 2nd CFD solver tool.  
 

Table 5: Expander CFD Results 
 RPM Boost Mass Flow Torque Power Tin Tout 

   (g/s) (N.m) (W) (C) (C) 

   CFD Base % diff CFD Base % diff CFD Base % diff   

1 2100 1.4 24.63 25.33 2.76 1.51 1.54 1.94 332 338 1.77 90 75-76 

2 2100 1.4 25.33 25.33 0 1.51 1.54 1.94 334 338 1.18 90 75-76 

3 2100 1.4 25.38 25.33 -0.19 1.54 1.54 0 338 338 0 90 75-76 

4 2100 1.4 26.15 25.33 -3.23 1.53 1.54 0.64 337 338 0.29 90 75-76 

5 2100 1.4 20.53 25.33 18.9 1.53 1.54 0.64 336 338 0.59 90 45-76 

6 2100 1.4 25.04 25.33 1.14 1.31 1.54 14.93 289 338 14.49 90 73-82 

7 2100 1.4 24.07 25.33 4.97 1.31 1.54 14.93 290 338 14.20 90 73-82 

8 2100 1.4 24.43 25.33 3.55 1.32 1.54 14.28 290 338 14.20 90 73-82 

9 2100 1.4 24.53 25.33 3.15 1.31 1.54 14.93 290 338 14.20 90 73-82 

10 2100 1.4 18.06 25.33 28.7 1.31 1.54 14.93 289 338 14.49 90 73-82 

 
 RPM Boost Mass Flow Torque Power Tin Tout 

   (g/s) (N.m) (W) (C) (C) 

   CFD Base % diff CFD Base % diff CFD Base % diff   

1 10,000 2.2 93.07 97.19 4.24 4.17 4.39 5.01 4380 4590 4.58 150 88-93 

2 10,000 2.2 95.53 97.19 1.71 4.29 4.39 2.28 4480 4590 2.40 150 88-93 

3 10,000 2.2 97.95 97.19 -0.78 4.38 4.39 0.23 4580 4590 0.22 150 88-93 

4 10,000 2.2 99.11 97.19 -1.98 4.35 4.39 0.91 4560 4590 0.65 150 85-93 

5 10,000 2.2 89.70 97.19 7.71 4.38 4.39 0.23 4590 4590 0.00 150 85-93 

6 10,000 2.2 87.72 97.19 9.74 3.81 4.39 13.21 3989 4590 13.09 150 84-95 

7 10,000 2.2 86.67 97.19 10.82 3.81 4.39 13.21 3989 4590 13.09 150 84-95 

8 10,000 2.2 87.67 97.19 9.80 3.83 4.39 12.76 4014 4590 12.55 150 84-95 

9 10,000 2.2 87.68 97.19 9.78 3.80 4.39 13.44 3984 4590 13.20 150 84-95 

10 10,000 2.2 77.52 97.19 20.24 3.83 4.39 12.76 4007 4590 12.70 150 84-95 
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The conclusions from the CFD results demonstrated that all changes to date only affect the flow 
performance and therefore expander efficiency, and not the torque or power performance at the 
modeled speed. The expander configuration #1 and #2 demonstrated that the diverter can 
improve flow performance but it has to be designed correctly. Diverter 2 reduced mass flow but 
diverter 4 had no effect. Expander configuration #3 with its extended inlet had no effect on flow 
performance at all. For the expander configuration #4, adding the bearing clearance cased 
mass flow to increase as expected but it did not increase appreciably. For the expander 
configuration #5, reducing the rotor tip and end clearances did decrease the mass flow 
significantly. Expander configuration #6, #7 and #8, had their outlet geometry modified and the 
results showed that it had some effect on flow performance but it was not significant (significant 
was defined as >2g/s).  Configuration #7, the 2nd outlet geometry, had the largest flow 
performance improvement. Expander configuration #9 and #10 were similar modification to that 
of configurations #4 and #5 and the results show similar improvements.  
 
In conclusion, the expander modeling demonstrated that some geometry modification, such as 
diverter and outlet geometries, can improve flow performance. The item that affected the flow 
performance the most was the rotor tip and end clearances. Therefore close attention was paid 
to tightly controlling these clearances. 

 Compressor CFD Results 3.1.4

In addition to the expander modeling, CFD modeling was conducted on the Roots compressor 
geometry. The first analyzed was the V250 compressor. All conditions were compared to a 
baseline. 
 
The three lobed compressors modeled using the same tools as that used with the expanders 
proved successful. Comparisons of the CFD results with benchmark data show that the CFD 
mass flow results are within 1 – 12% of the benchmark data, and the torque calculations are 
within 10 – 30% of the benchmark data. It was believed this difference was due to numerical 
error, round-off error, and to effects not captured by the CFD modeling such as mechanical 
resistive torque due to bearings and gears in the rotor-shaft assembly, and variable clearances 
due to uneven thermal expansion of the rotors and housing. Four compressor speeds and four 
pressure ratios were analyzed with the CFD tool. Below are the average values of the total 
torque, inlet mass flow rate, and power for the conditions modeled.  
 

Table 6: V250 Compressor CFD Results & Comparison with Baseline Data 
RPM Boost Mass Flow  Torque  Power  Tin  Tout 

  (g/s) (N.m) (kW) (C) (C) 

  CFD Base % diff CFD Base % diff CFD Base % diff   

4,090 1.2 10.09 9.05 11.5 0.80 1.13 -29.2 0.343 0.48 -28.5 20 43 

6,083 1.5 13.15 12.67 3.79 1.98 2.24 -11.6 1.27 1.43 -11.1 20 66 

10,105 1.2 40.40 40.09 0.77 0.84 1.21 -30.6 0.89 1.28 -30.4 21 42 

10,105 1.4 36.05 35.98 0.19 1.62 1.99 -18.6 1.71 2.11 -19.0 21 58 

10,105 1.6 32.27 32.20 0.22 2.38 2.72 -12.5 2.53 2.88 -12.2 21 72 

20,110 1.2 89.85 90.40 -0.61 1.05 1.24 -15.3 2.22 2.61 -14.9 23 44 

20,110 1.4 86.43 87.26 -0.95 1.80 2.00 -10.0 3.77 4.22 -10.7 23 59 

 
Below are a couple of example plots, Figures 18 & 19, at 4090 RPM  and 1.2 boost, of the 
compressor torque curve as a function of angle of rotation for Rotor 1 and Rotor 2, and the 
mass flow rate at the compressor inlet. 
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Example Plots, at 4090 RPM and 1.2 boost 

  
Figure 18: Torque Profile vs. Rotor Angle Figure 19: Mass Flow vs. Rotor Angle 

 
The results show that the torque values are a strong function of the pressure ratio across the 
unit and are not significantly dependent on the rotational speed of the rotors. The torque 
increases with pressure ratio. However, the mass flow rate depends on both the pressure ratio 
and speed of rotation of the rotors. The low rate increases with RPM and is directly proportional 
to pressure ratio in expander configuration, but is inversely proportional to pressure ratio in 
compressor configuration. 
 
The R410 compressor was analyzed to develop the capability of modeling four lobe 
compressors and to better understand the performance characteristics of this type of 
compressor. When the first set of models were run it was discovered that the proprietary 
meshing software would not work at the correct rotor clearances. In order to get the rotors to 
mesh without errors, the clearances had to be increased. The consequence was that the results 
had more leakage included in the flow numbers and had a greater error when compared to the 
test data. After discussing the issue with the proprietary software developers, the software was 
modified and a mesh for the 4-lobe rotors generated successfully. Transient, three-dimensional 
CFD analysis of the R410, P260 & V260 compressors units was completed. 
 
The 260 4-lobe compressor with reduced clearances had inconclusive results when modelled. 
The software was incapable of resolving a 4-lobe geometry with high helix angle. The mass flow 
rates were considerably less than experimentally possible at the given operating conditions.  
 
The 260 3-lobe compressor CFD analysis was run with various inlet geometries, Figure 20. The 
inlet timing was increased & decreased by +1 & -1 mm and +2 & -2 mm from the baseline 
geometry. The results show that these variations did not result in any significant changes in the 
mass flow rate and efficiency compared to the baseline values. 
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Figure 20: 3-Lobe Inlet to Rotors Area Variations 

 
In summary, the results show that for the expander units, larger clearances between the rotors 
and the housing result in an increase in the mass flow rate. The effect of decreasing the 
clearances on average torque values was insignificant. Moreover, the shape of the torque 
curves depends on the rotational speed of the rotors and the pressure ratio across the rotors. At 
high speeds the rotors are able to move the air through the outlet faster than air can flow into 
the inlet, thus causing a decrease on the high pressure side on the rotors resulting in a 
decrease of the torque. This suggests that the position of the inlet and outlet relative to the 
rotors can have an effect on the power output and efficiency of the unit.  
 

3.2 Plastic Component Development 

The goal in the development of the expander for the fuel cell application was to develop a low 
cost, small displacement, (4.6 to 92 g/s flow rate), high pressure ratio (1.2 to 2.5 bar) and 
efficient (200 We to 14 kWe) design. The primary technical challenge was the small 
displacement due to the ratio between the rotor leakage and the displaced volume.  As Roots 
devices are downsized, the rotor tip to root & rotor tip to housing leakages increase to a point 
that they dominate the overall mass flow and results in the efficiency to dropping off 
significantly. The goal was be to minimize leakages and determine the right displacement vs. 
speed to optimize the device performance for the application. Additionally, since the 
specification required improved performance over a broad operating range; optimization was 
focused on the middle to high operating range of the device. 
 
The program investigated several concepts to attempt to meet the performance requirements 
and reduce product cost. The concepts are outlined below:  
 

1. Straight Rotor 

2. Helical Rotor 

3. Plastic Housing, End Plate and Gears 

 Plastic Expander Rotor Analysis 3.2.1

In the development of the plastic rotors Finite Element Analysis (FEA) of various rotor 
configurations was completed. The results indicated a 60% reduction in stress with the baseline 
4 lobe design over the baseline 3 lobe design as shown in Figure 21.  Even with a 60% 
reduction in stress, the four lobe design is more than twice the expected limits for the plastic 
chosen.  Experimental testing shows part failure in the same location as predicted by the 
analysis.  To reduce the stresses to the acceptable range an improved rotor design was created 
and analyzed. 
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Figure 21: FEA of 3 and 4 Lobe Plastic Rotors 

 
To resolve the stress issue an optimized 4 lobe rotor design with the addition of an extruded 
aluminum sub-frame was developed. The intent of the aluminum sub-frame is to provide support 
and stiffness in the high stress root region as well as provide a mechanical lock to improve the 
adhesion in the lobe. Table 7 shows the stresses and achieved speeds (rpm) at 150°C for four 
designs that were evaluated.  The failure mechanism for all designs occurred when the 
composite delaminates from the aluminum extrusion at the mechanical locking feature. Design 
iteration 4 achieved 20,000 rpm although the stresses exceeded the capability of the glass 
reinforced composite. The application under consideration does not exceed a temperature of 
70°C and as this analysis was done at a maximum temperature of 150°C, design four was 
considered acceptable.  

Table 7: Summary of FEA results at 150°C 
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Based on the FEA results a tool design was initiated that would allow for molding of a polymer 
rotor with or without the aluminum support.  The runner system for the rotor injector mold was 
optimized through mold flow simulations.  Initial design was a pin gate located at the tip of each 
of the four lobes, refer to Figure 22.  Fibers were highly oriented at the gate location on the lobe 
tip and became increasingly more random towards the root, Figure 23. In an effort to increase 
fiber orientation at the root, and thereby increase the root strength, a second runner system was 
designed and evaluated, Figure 24.  The final design had a runner system with 8 pin gates that 
were located in the root at two points. The resulting fiber orientation increased the alignment in 
the root region with random fiber orientation at the tip Figure 25.  

 

 

Figure 22: 4 pin runner system 

 

Figure 23: Fiber orientation with red being 
highly oriented and blue being random 

 
Figure 24: 8 pin runner system 

 
Figure 25: Fiber orientation with red being 

highly oriented and blue being random 

 Straight Rotor Hardware Development 3.2.2

Plastic rotors with the above mentioned aluminum support structure was fabricated.  Figure 26 
shows the process to assemble the tool. There were 6 inserts to form the rotor lobes and allow 
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for the runner system to be gated at the root.  The aluminum support structure was press fit onto 
the shaft and loaded into the tool, the shaft protrudes into the base of the tool.  As a contingency 
plan billet aluminum rotors were also procured. 

 

 
Figure 26: Tool design has 6 segments to form the rotor lobes while allowing for the 

runner system.  Once the 6 segments are assembled the shaft and aluminum support 
structure are loaded (locating pins are present for alignment). 

 
Upon completion of procurement, Figures 27 & 28 spin testing of the rotors was completed at 
speeds of 15,000, 17,500 and 20,000 at a constant temperature.  Testing was conducted at 
three temperature set points – 70C, 90C and 100C with dwell times of 5 minutes.  The over-
molded rotor was able to achieve the maximum rpm at maximum temperature (20,000 rpm at 
110C) with no evidence of delamination.   

 

Figure 27: As molded rotors. Component 
completely filled with no evidence of 

delamination or porosity 

 

Figure 28: Rotor posttest (conditions 
20,000 rpm at 110C).  No failure and no 
indication of delamination.  Scuff marks 
from contact with housing delamination 
from the aluminum support structure. 

 

 Helical Rotor Hardware Development 3.2.3

Due to the successful testing of the straight plastic rotors, the development of the helical shape 
rotors proceeded.  The straight aluminum support structure, as seen in Figure 29, was revised 
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to accommodate a helical rotor. Interlocking features were optimized to increase polymer 
adhesion.  FEA was used to validate the helical design and material selection, as seen Figure 
30. 

 
Figure 29: As Molded 

Straight Rotors 

 
Figure 30: FEA of helical overmold 

rotor; validation of interlocking 
design 

 
Figure 31: Mold Flow 
Results showing fiber 

orientation 
 

 

Mold flow analysis was completed and gate configuration designed to optimize fiber orientation 
for hoop strength, as shown in Figure 31.  Tooling was designed and fabrication of components 
was completed.  Figure 32 shows the completed prototype of the aluminum support structure for 
the rotors.   These components were manufactured via an additive manufacturing process and 
were chosen due to the quantity of pieces ordered, timing and part complexity. 

 

Figure 32: Additive Manufactured 
Aluminum Support Structure 

 

Figure 33: Rotors overmolded onto 
aluminum support structure 

 
The aluminum support structures were press fit onto the steel rotor shafts and loaded into the 
injection molding machine for overmolding with polymer.  Both right hand and left hand rotors 
were molded, as seen in Figure 33.  The rotors were finished with a coating which reduces 
rotor-to-rotor and rotor-to-housing clearances.  The rotors were tested at a maximum speed of 
12000 rpm and pressure ratio of 1.5 bar without failure.  
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 Plastic Housing, End Plate and Gears 3.2.4

An expander containing plastic rotors, housing, end plate, and gears was developed and 
experimentally evaluated, Figure 34.  During testing, the unit was run up to a maximum of 
18000 rpm and pressurized to maximum of 2.0 pressure ratio at 130°C without failure. The 
plastic expander clearances were larger than that of a comparable aluminum unit due to the 
tolerance capability of the plastic injection molding process. These large clearances are a result 
of the tolerance capability of the plastic injection molding process.  The clearances can be 
significantly improved with further adjustments to the housing and rotor molds. 

 
Figure 34: Plastic V210 Expander on Test Stand 

3.3 Compressor Development 

The goal in the development of the expander for the fuel cell application was to develop a small 
displacement, (4.6 to 92 g/s flow rate), high pressure ratio (1.2 to 2.5 bar) and efficient (200 We 
to 14 kWe) design. The primary technical challenge was the small displacement due to the ratio 
between the rotor leakage and the displaced volume.  As Roots devices are downsized, the 
rotor tip to root & rotor tip to housing leakages increase to a point that they dominate the overall 
mass flow and results in the efficiency to dropping off significantly. The goal was be to minimize 
leakages and determine the right displacement vs. speed to optimize the device performance 
for the application. Additionally, since the specification required improved performance over a 
broad operating range; optimization was focused on the middle to high operating range of the 
device. 
 
The three target specifications for the compressor operated at 40°C, 25% relative humidity inlet 
conditions are as follows. 

1. High flow rate = 92 g/s flow rate, pressure ratio = 2.5 bar and power =  14 kWe 

2. Middle flow rate = 23 g/s flow rate, pressure ratio = 1.5 bar and power =  2 kWe 

3. High flow rate = 4.6 g/s flow rate, pressure ratio = 1.2 bar and power =  200 We 

 
The program investigated several concepts to attempt to improve the performance of Roots 
compressors. The concepts are outlined below:  

1. High Pressure Recirculation - Directing high pressure, high velocity air from the outlet of 

the compressor to the back of the rotor housing, with a particular timing.  The concepts 

goal was to reduce the back rush of air at the outlet thus reducing temperature and 

increasing the ultimate pressure ratio capability of the compressor. 

 
2. High Helix Rotor - Assessment of short rotor designs with increased helix angle to 

determine if higher pressure ratio can be achieved. 



Eaton  DE-EE0005665 
Final Scientific/Technical Report    

24 

 

 
3. Low Thermal Growth Rotor - Investigation into the use of low thermal grow material so 

that closer tolerances can be held within the air cavity to reduce leakage, enabling 

higher pressure ratios and efficiencies.  

 High Pressure Recirculation  3.3.1

As a Roots compressor spins, it moves air trapped at ambient pressure, from the intake of the 
compressor to the positive pressure outlet.  Once the air is released by the lobes, there is a 
back rush of pressurized air that compresses the air that was just released before it is pushed 
out by the next rotor lobe. This back rush of air is a contributor to the increased outlet air 
temperature of the compressor.  A Roots compressor’s maximum pressure ratio capability is 
limited by outlet air temperature and its impact on the materials exposed to these temperatures. 
Therefore, it was hypothesized that by directing high pressure, high velocity air from the outlet of 
the compressor to the back of the rotor housing, with a particular timing, the pressurized air’s 
momentum and increased pressure would help to reduce the back rush of air at the outlet thus 
reducing temperature and increasing the ultimate pressure ratio capability of the compressor.  

This theory was tested using an R340 compressor with a modified outlet to direct recirculated 
pressurized air to the rotor housing, and a modified housing to time and direct the pressurized 
air to the rotors, see Figure 35. The R340 was initially tested with the recirculation tube 
obstructed by a sealing gasket material. The test was then rerun with the recirculation port 
unobstructed and the results compared. Overall performance was reduced with the maps 
indicating an increase in leak rate, especially at higher speeds and pressure ratios. With 
leakage comes a loss and shift in the efficiency islands, an increase in power consumption and 
larger temperature differentials. There was an increase in the temperature differential of ten to 
twelve degrees Celsius at all points, thus limiting the compressor’s maximum pressure ratio 
capability.  

 
Figure 35: High Pressure Recirculation Setup 

 High Helix Rotor  3.3.2

Testing results have shown that the shortest rotor design provided the highest pressure ratio 
capability.  Although inlet and outlet geometries vary by application, the consistent contributor to 
the increased capability, of the shortest rotor, is the increased helix angle. This can be seen 
when comparing the R340 map with the R410 map, seen in Figure 36. For experimental 
verification, the P400 was selected for testing, at increased pressure ratio, as it has the greatest 
helix angle of any Eaton prototype compressor to date, shown in Figure 37. 
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Figure 36: R410 vs. R340 PR Comparison 

 
Figure 37: P400 Test Unit 

 
Results of the P400 testing demonstrated that the increased helix angle pushed the P400 
efficiency map to a pressure ratio over 2.6 without exceeding the maximum temperature of the 
unit.   

 Low Thermal Growth Rotor Experiment 3.3.3

The purpose of this experiment was to assess the use of low thermal growth material to 
maintain tight air cavity clearances. The intention was to reduce leakages, enabling higher 
pressure ratios and efficiencies.  Figures 38 and 39 are the low thermal growth compressor 
rotors that were developed in both 3 and 4 lobe architectures for a 260cc/rev displacement 
compressor.  These were made from a ferrous material and coated with an abradable material 
that should provide better compressor sealing. The rotor design utilized a low inertia 
architecture to minimize impact on acceleration speeds relative to the solid billet design. 
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Figure 38: 4-Lobe Compressor Rotors 

 
Figure 39: 3-Lobe Compressor Rotors 

 
The preliminary fabrication process introduced tolerances and distortions that were greater than 
the outlined specification. Due to timing, further development of this technology was halted on 
the program but Eaton development has continued on the concept. 
 

 Final Compressor Design 3.3.4

The final compressor design was a V250 compressor, see Figure 40.  This is a 3-lobe 
compressor with a 247 cc/rev displaced volume.  

 Rotors: The rotor set was optimized for midrange performance, in a three lobe design, 
with an increased helix angle to achieve the higher pressure ratios required by the DOE. 
The rotors were made from the traditional Eaton prototyping process; they are machined 
from aluminum billet. Tolerances are tightly controlled to keep clearances low to 
maintain good compressor efficiency. 

 Housing: The housing design featured an optimized outlet geometry as well as an 
integrated motor adaptor plate. The housing utilizes existing Eaton production seals, 
bearings, and gears to reduce cost. 

 Gears: The timing gears were an existing Eaton steel design with water cooling shared 
with the electric drive motor to increase durability at high pressure ratios. 

 

 
Figure 40: V250 Compressor 
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A full compressor map was created on the V250 compressor was qualified.  Figure 41 shows 
the results. 

 
Figure 41: V250 Uncorrected Compressor Efficiency Map 

3.4 Expander Development 

The goal in the development of the expander for the fuel cell application is to develop a low cost  
small, (4.6 to 88 g/s flow rate), high pressure ratio (1.0 to 2.2 bar) and efficient (0 We to ~6 kWe) 
design. The primary challenge in this program is the small displacement. This is due to the ratio 
between the rotor leakage and the displaced volume. As with the compressor design, as Roots 
expanders are downsized leakages increase to a point that they dominate the efficiency 
performance of the expander and cause the efficiency to drop off significantly. The goal will be 
to minimize leakages and determine the right size vs. speed design that optimizes the 
compressor performance for the application. It is possible that the optimal expander design 
might not match the compressors optimal speed range. If power is to be optimized, then a gear 
ratio might be required. Also, since the specifications drive for improve performance over a 
broad operating range; optimization will focus on the middle to high operating range. 
 
The three target specifications for the compressor operated at 70°C, 100% relative humidity 
inlet conditions are as follows. 

1. High flow rate = 88 g/s flow rate, pressure ratio = 2.2 bar and power = ~6 kWe 

2. Middle flow rate = 23 g/s flow rate, pressure ratio = 1.4 bar and power = ~1 kWe 

3. High flow rate = 4.6 g/s flow rate, pressure ratio = less than compressor pressure and 

expander does not provide any negative power (0 We) 

 

The program investigated several concepts that were thought to improve the performance of 
Roots expander. They are:  
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1. Expander Baseline Experiments - An initial series of tests were conducted using non-

modified Eaton compressors units in reverse direction.   

 

2. Inlet Port Experimentation - Several inlet port configurations were built and tested in an 

attempt to characterize which inlet port attributes effect performance and improve the 

expander efficiency and power generation.  The inlet configurations were varied by inlet 

angle, inlet diameter, and geometry near the rotor face. 

 

3. Smaller Displacement Expander - A V170 expander was designed & built to characterize the 

effect of reduced displacement on operating speed and efficiency.  It was built from a 

standard V250.  .   

 

4. Final Expander Design - A V210 expander was chosen as the compressor with the best 

performance for the final application.  

 Expander Baseline Experiments 3.4.1

At the beginning of the program very limited research had been done on the development of 
Roots expanders at Eaton. The initial series of test were conducted using non-modified Eaton 
compressors spun in the reverse direction.  The tests were run on a dynamometer where 
pressurized air was flowed through the expander.  The first series of tests were run on three 
units a R200, a V250 Gen 1 and a V250 Gen 2.  The V250 Gen 1 was set as the expander 
baseline.  

3.4.1.1 R200 Results 
The R200 compressor design is different from the 3 lobe rotor V250 Gen 1 and Gen 2 since the 
R200 uses a TVS 4 lobe rotor and its displacement is 50 cc/rev less or 200cc/rev. This unit was 
first tested as a compressor to confirm the unit’s performance and then tested as an expander in 
two configurations. The first expander configuration provided pressurized air to the 
compressor’s inlet and the second configuration provided pressurized air to the outlet of the 
compressor.  The compressor inlet and outlet are outlined in Figure 42.  The pressurized outlet 
configuration depicted in Figure 42, proved to have best performance for the R200.   
 

 
Figure 42: R200 with Pressurized Outlet 
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3.4.1.2 V250 Gen 2 Results 
The V250 Gen 2 compressor shown in Figure 43 is different in design when compared to the 
V250 Gen 1 as changes to outlet geometry and rotor length were completed.  Prior to expander 
testing, the V250 Gen 2 unit was first tested as a compressor to confirm the unit’s performance. 
The first configuration as an expander provided pressurized air to the compressor’s inlet (this is 
the axial flow end), Figure 43. The second configuration provided pressurized air to the outlet of 
the compressor (this is the perpendicular flow end), Figure 44.  Historically, optimal performance 
of a compressor, as an expander, has been found by pressurizing the outlet of the compressor. 
This was true of the V250 Gen 2 as well.  
 
When comparing the performance of the V250 Gen 2 to the V250 Gen 1 expander, the V250 
Gen 2 did not produce as much power as the V250 Gen 1 at the 100% target but was slightly 
better at the 25% target.  

 
Figure 43: V250 Gen 2 with Pressurized 

Compressor Inlet 

 
Figure 44: V250 Gen 2 with Pressurized 

Compressor Outlet 

 
3.4.1.3 V250 Gen 1 Results 
From the previous two sets of tests, it appeared that the V250 Gen 1 (Figure 45) had the best 
opportunity to produce the most power as an expander. As such, it was decided to use this unit 
as the baseline to investigate new designs or configurations.  

 Inlet Port Experimentation 3.4.2

Several inlet configurations were built and tested with the V250 Gen 1 unit in an attempt to 
characterize which attributes effect performance as well as further improve the efficiency and 
power generation. The inlet configurations were varied by inlet angle (Figure 46), inlet diameter 
(Figure 47), and geometry near the rotor face. 
 

  
Figure 45: V250 Gen 1 Expander In & Outlet Figure 46: V250 Gen 1 Expander Inlet Angle 
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Figure 47: V250 Gen 1 Expander Inlet 

Diameter 
Figure 48: V250 Gen 1 Expander 90 deg (A) 

Inlet vs. 90 deg (S) Inlet 
 

The results from the first round of intake testing were graphed and are given in in Figure 49. It is 
important to note that the inlets tested were created from ABS plastic with a maximum operating 
temperature of 115°C. This limited the upper pressure ratio capability of the test to 1.8 PR below 
the required DOE target of 2.2 PR. Mass flow rate was accurate for both 25% and 100% DOE 
targets.  The reduced PR at 100% target influence the absolute values at that point however, 
the relative values illustrate the effect of the design changes.  Nine tests were run on this unit 
when evaluating the inlet designs.   

 

 
Figure 49: Inlet Test Results of V250 Gen 1 Expander 

 
In summary, testing to this point suggested that an optimal inlet geometry for the V250 Gen 1 
expander had the large inlet diameter, the small inclined angle and a means to directed air flow 
towards the outside of the rotor housing, see Figures 50 and 51. 
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Figure 50: V250 Gen 1 Expander Inlet with 
Direct Air Flow Path 

 

Figure 51: V250 Gen 1 Rotor Housing with 
Direct Air Flow Path 

 

 Smaller Displacement Expander 3.4.3

A V170 expander, Figure 52, was designed and built to assess a downsized expander.  This is 
the smallest expander tested at Eaton to date. It was built using a standard V250 Gen 1, the 
one used in baseline testing, by adding shortened rotors and a fill plate to correct rotor timing 
and prevent additional air leakage. The V250 Gen 1 rotor has a length of 66 mm and a 
displacement of 247cc/rev. This rotor set was shortened to 44 mm in length equaling a 1/3 
reduction in displacement to 165cc/rev.  
 
The main objective of the V170 unit is to characterize the effect of reduced displacement on 
operating speed and efficiency.  To meet the 100% flow target, the V170 test has a 41.5% 
increase in operating speed compared to the V250.  Additionally, there is a reduction in 
isentropic efficiency of 5.5% at this point. This translates to a reduction in power output from 
4.35 kW with the V250 baseline to 4.04kW for the V170 at the 100% flow target. 
 

 
Figure 52: V170 CAD Model 

 

 Final Expander Design 3.4.4

A V210 expander was chosen as the displacement with the best performance for the application 
(refer to Figure 53 for a picture of the final assembly). The design features were as follows: 

 Rotors: The rotor set was optimized for performance with a displacement of 210 cc/rev.  
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Figure 53: V210 Expander Assembly 

 

 Housing: The housing was fabricated from Eaton’s standard aluminum material and 
incorporated communized shaft, bearing, and seal sizes as well as improved inlet 
geometry. 
 

 Outlet: The expander outlet was originally designed as a glass reinforced plastic part 
that locates the shaft ends with two incorporated sealed roller bearings with plastic dust 
covers. Three different plastic materials were evaluated; see Figure 54, to determine the 
lowest cost option that also met the expander requirements. The bottom right outlet 
aluminum and was the material used for the Ballard testing.  

 

 
Figure 54: Expander Outlet Plates in Multiple Materials  

 

 Timing Gears: The timing gears used an existing Eaton plastic/steel hybrid design. 
Figure 55 shows one of the two plastic timing gear materials that will be assessed.  
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Figure 55: Plastic Expander Timing Gears 

 

 Step-up Gears:  

 Figure 56: Steel Motor to Expander Step-Up Gears 

  56 shows the step-up gears that are used between the motor and expander.  These 
gears were used to optimize the speed points between the compressor and expander. 
This set of gears drove the expander 2.2 times faster than the compressor.  

 

 
Figure 56: Steel Motor to Expander Step-Up Gears 

3.5 Motor and Controller Testing 

Eaton has worked with several motor OEM’s over the years to apply their technologies to fuel 
cell applications. The intention from the start was to use motor and controller technologies 
previously developed and apply them here (Eaton had previously developed a 7 turn & 12 turn 
motor).  A baseline motor and controller performance map was created using the 7 turn 
brushless DC motor and controller, Figure 57. The motor and controller map, was provided to 
Argonne National Labs for integration into the Fuel Cell System model. 
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Figure 57: Motor and Controller Map 
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 Motor Design 3.5.1

The final motor configuration used existing motor rotor & stator that was adapted for this 
application. In the development process it was determined that the 12 turn motor, which 
produced 16 kilowatts, was required for best efficiency and performance for the operating range 
of the air system.  The motor supplier provided the controller, rotor, stator and stator housing.  
Eaton designed and fabricated the mounting for the expander and compressor to both sides of 
the motor.  Figure 58 shows the electric motor layout with the end plates which incorporate the 
motor bearings, water cooling passages and the mating surfaces for mounting the expander and 
compressor. 

 

Figure 58: 12-turn Motor Layout 
 
Figure 59 shows the motor and controller mounted on the dyno for testing. 

 

 
Figure 59: 12-Turn Motor and Controller on Test 
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 Motor Testing 3.5.2

Final testing on the 12-turn motor and controller resulted in the following performance maps. 
Figure 60 shows the efficiency map test results per the test plan specifications 3.1.3 & 12.2.2. 
The motor efficiency results are indicated by black lines and the electrical power supplied to the 
motor are indicated by red lines. Figure 61 also displays the motor efficiency map but the red 
lines represent the mechanical power, or shaft power, supplied by the motor, which will 
ultimately be the power supplied to the compressor/expander assembly. 

Power(in) = Power(out)+Motor Losses 

   Volts x Current = Torque x rpm + Motor Losses 

Where: 

Power(in) = Red lines in Figure 60Figure 60  

Power(out) = Red lines in Figure 61 

This map includes the compressor/expander operational points which are mapped with the blue 
dotted line. The data shows that the motor is about 95% efficient at the top-end operating point 
(92 g/s flow rate, 2.5 bar) and drops down to ~75% efficiency at the 25% operating point (23 g/s 
flow rate, minimum 1.5 bar). 

 
Figure 60: 12-Turn Motor and Controller Power(in) Map 
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Figure 61: Motor Power(out) Map with Compressor Operation Zone Mapped 

  



Eaton  DE-EE0005665 
Final Scientific/Technical Report    

38 

 

3.6 System Testing  

 Approach 3.6.1

Prior to testing the AMS as a complete sub-unit a study was conducted to determine the best 
way to test the unit in the lab. The strategy settled upon was an approach that tested the 
compressor and motor separate from the expander. This strategy was chosen because it 
presented the easiest means to control the compressor and expander and provide the best 
results. 
 
Figures 62 and 63 outline the setups for the two separate tests. As a side note, prior to running 
these two tests, each of the individual components, compressor, motor and expander, were 
tested both under room/dry conditions and then the performance maps were adjusted to the 
specified operating conditions. When those tests were completed, the combined expander and 
a non-powered motor (the non-powered motor is included in order to obtain the motor and 
gearing parasitics in the expander mapping results), as shown in Figure 62, were tested 
together to obtain its combined performance maps. This setup was tested both at, dry and wet 
(wet is used to refer to the test being run at it specified relative humidity condition).  

 
Figure 62: Independent Control Strategy A 

 
After the expander map was created it was used as the input condition for the full system 
dynamometer test. This test combined the 12 turn motor with the V250 compressor and the 
supercharger dynamometer, as shown in Figure 63. The dynamometer was used as a motor to 
provide expander input power. The expander/motor maps generated in the first test was used 
as inputs to the motoring dynamometer which simulates the expander characteristics. 
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Figure 63: Independent Control Strategy B 

 Expander Component Testing  3.6.2

The expander was mounted to the dynamometer and pressurized air was supplied via an 
electric driven R410 compressor as shown in Figure 64.  
 

 
Figure 64: Dynamometer and Mounting Bench 
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The V210 expander tested was a 3-lobe, aluminum billet rotor expander. It was designed to 
operate at about half the speed of the compressor so that a larger, more efficient expander 
could be used.  
 
For this test, the expander was mounted directly to the dynamometer and tested to “dry” test 
conditions. The inlet mass flow rate, inlet temperature, inlet pressure, outlet temperature, outlet 
pressure, speed and torque were monitored and recorded.  
 
Figure 65 is the detailed map for the V210 expander. The expander efficiency results are shown 
by circular black lines. The output power of the expander is given by the angled red lines. The 
vertical green lines are the compressor speeds and the horizontal blue lines are the temperature 
differential of the air as it is expanded. The solid green line overlaid on the map is the 100%, 
25% and idle operating points specified in the test plan.  One can see that this expander has a 
fairly broad efficient range.  

 
Figure 65: V210 Expander Map with Operating Points Mapped 

 
Data for the 3 specified tests points, as tested, are as follow, derived from Figure 65 map: 

 
Mass 
Flow PR kW RPM Eff. 

Delta 
Temp 

100% 88 2.2 3.6 9200 58 -43 

25% 23 1.4 0.32 2300 39 -20 

Idle 4.6 <1.2 -- -- -- -- 
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 Motor Component Testing  3.6.3

Testing on the 12-turn motor & controller indicated that this motor configuration closely matched 
the V250 compressor speed range. The efficiency was greater than 95% for the 100% flow point 
and it only drops down to 75% efficiency at the 25% operating point.  

Figures 66 and 67 are the efficiency maps for the motor and controller. Figure 66 shows the 
motor efficiency results (shown by black lines) and the electrical power supplied to the motor 
(shown by red lines). Figure 67 is also the motor efficiency map but the red lines are the 
mechanical power, or shaft power, supplied by the motor (this will be the power supplied to the 
compressor/expander assembly). 

For reference, Figure 66 is the performance map of the motor with the electrical power supplied 
to the motor or Power(in). Figure 67 is the performance map of the motor with the mechanical 
power coming out of the motor, shaft power, or Power(out). Below is the equation showing the 
relationship between the two maps 

Power(in) = Power(out)+Motor Losses 

Power(in) = Volts x Current 

Power(out)= Torque x rpm 

or 

Volts x Current = Torque x rpm + Motor Losses 

Where: 

Power(in) = Red lines on Figure 66 graph 

Power(out) = Red lines on Figure 67 graph 

 
Figure 66: 12-Turn Motor and Controller Power(in) Map  

.  
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Figure 67: Motor Power(out) Map with Compressor Operation Zone Mapped 

 Compressor Component Testing  3.6.4

The V250 compressor tested is a 3-lobe, aluminum billet rotor compressor. It was designed to 
have the highest efficiency island located in the mid-speed operating range. The reason for 
placing the efficiency at this location was so that the maximum compressor efficiency would be 
located where the fuel cell operated the most. If the maximum operating range was located at 
maximum power point (i.e., 100% flow), then an alternative compressor would have been 
chosen.  
 
For this test, the compressor was mounted directly to the dynamometer. The inlet mass flow 
rate, inlet temperature, inlet pressure, outlet temperature, outlet pressure, speed and torque 
were monitored and recorded. A back pressure valve controlled the exhaust air from the 
compressor for the purpose of controlling the compressor pressure ratio. Figure 68 is the 
compressor mounted to the motor. 
 
Figure 69 is the detailed map for the V250 compressor. The compressor efficiency results are 
shown by circular black lines. The input power to the compressor is given by the angled red 
lines. The vertical green lines are the compressor speeds and the horizontal blue lines are the 
temperature increase of the air as it is compressed. The solid green line overlaid on the map is 
the 100%, 25% and idle operating points specified in the test plan.  

One can see that this compressor has a fairly broad efficient range. The compressor efficiency 
is greater than 66% between 35% flow and 80% flow. This provides good overall operating 
performance for a fuel cell application that has a broad operating range. 

The map shows that the V250 compressor has a power requirement of 14.8 kW, an efficiency of 
59%, a maximum temperature of 166C and an operating speed of 22000 rpm at the 100% flow 
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point (92 g/s flow rate, 2.4 bar). At the 25% operating point (23 g/s flow rate, minimum 1.5 bar) 
the power requirement drops to 1.4 kW, the efficiency raises to 63%, the temperature drops to 
86C at an operating speed of 6000 rpm. When the compressor performance is evaluated to idle 
the power required is 230 watts, the efficiency is 56%, the operating temperature is 60C and the 
operating speed is 2000 rpm. 

 
Mass 
Flow PR kW rpm Eff. 

Delta 
Temp 

100% 92 2.4 14.8 22000 59% 166C 

25% 23 1.5 1.4 6000 63% 86C 

Idle 4.6 1.2 0.23 2000 56% 60C 

 

 
Figure 68: V250 Compressor  

 

 
Figure 69: V250 Compressor Map with Operating Points Mapped 
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 Sub-System Testing – Expander + Motor  3.6.5

The V210 expander was attached to the 12 turn motor and then mounted to the dynamometer 
as shown in Figure 70.  Pressurized air was supplied via a driven compressor. The expander 
inlet air was temperature and humidity controlled. The exhaust air is vented to atmospheric 
pressure via room exhaust vent.  
 

 
Figure 70: Dynamometer & Mounting Bench 

 
The results with the V210 expander with motor are shown in Figure 71.  As with the other maps, 
this map follows the same color line, output parameter relationship. The solid green line overlaid 
on the map is the 100%, 25% and idle operating points specified in the test plan.  
 
Figure 71 is the map for the relative humidity test performed on the V210 expander attached to 
the motor.  The tests were completed in accordance to the published test plan. This test did not 
power the motor during the mapping process.  Its purpose of inclusion was to obtain a combined 
map with the step-up gear and parasitic losses. 

 
Figure 71: The V210 Expander + Motor Results (Wet) 
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The map shows that the V210 expander + motor produced less power than the expander alone, 
which is expected. Adding the motor introduces more parasitic losses driving down the power 
output and the overall efficiency.  

 
Figure 72: The V210 Expander + Motor Results (Dry) 

 
The combined expander and motor tested with dry conditions reduces the power output when 
compared to the humidity tests. Figure 72 shows a partial map similar to the humidity test 
shown in Figure 71. 

 Full-System Testing – Dynamometer + Motor + Compressor  3.6.6

The full-system test is designed to prove that the power generated by the expander provides an 
equal reduction in power consumption at the motor controller.  For the test, the V250 
compressor and 12 turn motor were mounted to the supercharger dynamometer.  The combined 
expander and motor (wet) data was used as an input to the dynamometer to simulate the 
expander power.  The compressor inlet air temperature was controlled.  The inlet mass flow 
rate, inlet temperature, inlet pressure, outlet temperature, inlet pressure, speed, motor current 
and voltage were measured. A back pressure was utilized in order to control the compressor 
pressure ratio. The compressor exhaust was then vented to atmospheric pressure via room 
exhaust vent.  
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Figure 73: Motor + 260 Compressor  

 
Figure 73 shows the layout of the full system test components with the dynamometer driving the 
motor in place of the expander. Figure 74 shows the actual test setup with the motor and 
compressor mounted to the dyno. 
 

 
Figure 74: Full System Test with Motor and Compressor Mounted to the Dyno 

 
The results of this test indicate that the mechanical power produced by the expander directly 
translates into electrical power saved at the system level. The results are shown in the table 
below. 

 

 
M

o
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Table 8: Total System Power with and without Expander 

System Mass 

Flow @ Comp. PR @ Comp. kWe

100% 92 2.4 15.5

25% 23 1.5 1.9

Idle 4.6 1.2 0.4

System Power Without Expander

System Mass 

Flow @ Comp. PR @ Comp. kWe

100% 92 2.4 12.1

25% 23 1.5 1.6

Idle 4.6 1.2 0.4

System Power With Expander

 
 
It must be noted that because there is a pressure and flow rate change between the air flow 
entering and exiting the fuel cell, the compressor and expander operate at different speeds and 
pressures. The power produced by the expander is directly influenced by the components of the 
fuel cell that are before it in the system. Thus, a correlation method must be determined in order 
to match the compressor operating point to the expander operating point. 
 
The method used to correlate the compressor and expander operating points is critical for 
accurate determination of the actual power consumed by the system at a given point. The test 
matrix for this test was created by selecting speed and pressure ratio data points from the 
expander + motor (wet) test. To determine the data points of the compressor + motor test to 
capture, the speed of the expander was multiplied by the gear ratio for each point and the 
pressure ratio was increased by 10% to account for the pressure losses through the fuel cell. To 
more accurately determine total system power consumption during operation, the pressure 
losses through the fuel cell should be characterized. 

 Full-System Noise Testing  3.6.7

The AMS was tested in Eaton’s acoustic dynamometer room. Figure 75 is a picture of the setup. 
A sound pressure transducer was placed about 1 meter from the AMS to measure the noise 
level. There were 3 tests run to see how Eaton’s noise abatement structure effectively reduced 
AMS noise. The first test conducted included a noise deadening enclosure with noise 
dampening material that enclosed the compressor. This test measured 95.6 dB(a) at full flow. 
The second test had the noise deadening enclosure removed but the noise dampening material 
remained attached to the compressor. The test saw an increase sound level of 2.7 dB(a) and 
results measured were 98.3 dB(a). The last test had all the noise abatement removed and 
measured a 100.4 dB(a),  a 2.4 dB(a) increase. 
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Figure 75: Noise Measurement Test Setup 

 Transient Time Testing  3.6.8

The AMS was easily able to accelerate from 10% flow to 90% flow in one second due to the 
high power capability of the motor. It took about 3.5 kilo-joules to accelerate the AMS in one 
second. Figure 76 presents the time dependent results.  

 
Figure 76: Compressor, Motor & Expander Acceleration Time Results 

 
The test was set up with the compressor outlet ported to the expander inlet and the expander 
outlet ported to room air, see Figure 77. Before the test was run, the rpm values which 
correspond to the 10% and 90% flow points (10% = 9.2 g/s & 90% = 82.8 g/s) were determined. 
These rpm points were programed into the controller, the controller voltage was set to 350 Vdc 
and the test stand was programmed to supply the appropriate current to accelerate the motor 
from the 10% flow point to the 90% flow point in one second. The compressor inlet and outlet 
pressure, inlet and outlet temperature & speed, power supply output, and mass flow were 
monitored.  
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Figure 77: AMS Acceleration Test Setup  
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3.7 HD7 Fuel Cell Testing  

 Objective 3.7.1

The objective for the work done by Ballard was to assess the performance of Eaton’s new 
compressor/ expander air delivery system on Ballard’s HD7 fuel cell system. This will require 
bench marking the HD7 fuel cell performance with our baseline air delivery system, then test the 
HD7 system with Eaton’s new compressor/ expander air delivery system.  

 Executive Summary 3.7.2

Testing at Ballard was completed over 14 months from February 2015 to March 2016 using two 
Eaton compressor/expander air delivery systems on two different Ballard test stations.  System 
1 was used for setup and software testing for integration into the Ballard HD7 module as well as 
water injection testing.  Unit 2 was used for assessment when integrated with the Ballard 
module to compare with the incumbent Ballard air delivery system. 

In addition to the assessment of the compressor the following work was also completed as part 
of this project. 

 Automated data collection using Matlab  

 Transmission of test data to ANL for use in a fuel cell/compressor model 

 Water injection testing to the compressor inlet as a possible method of reducing 
complexity of future fuel cell modules. 

 Background 3.7.3

3.7.3.1 Objective 

Testing was performed to assess a new air system provided by Eaton for use with the HD7 
module, Ballard’s next generation heavy duty fuel cell system. The overall purpose of the testing 
was to determine the performance (efficiency) benefits of the Eaton air management system 
that incorporates an exhaust expander.  

Fuel cells run with pressurized air, in some cases there is excess pressure and energy in the 
exhaust stream of the fuel cell. This series of tests investigated the advantage of using higher 
pressurized inlet air and the recapturing of the higher exhaust pressure that is a result of the 
higher inlet pressure.  Figure 78 below shows the Eaton compressor/expander setup with HD7 
heavy duty module. 
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Figure 78: Test Setup 

3.7.3.2 Test Plan 

The following diagram illustrates the test plan for the two Eaton compressors with expander 
units.   

Receipt of New Air System

Visual Inspection

Bench Test and Software

Setup of Air System

Flow/Pressure Testing

without Module

Integration with HD7

Module and Final Testing
End of Test Inspection

HD7 Module FATand 100

Hour Operation

HD7 Baseline

Operationwith existing air

system

 
Figure 79: Testing Flow Chart 

 Results and Discussion 3.7.4

 
3.7.4.1 Parameters recorded and Argonne National Laboratories Co-operation 

The following parameters were recorded for each test and the data shared with ANL for their 
model development activities. 

 Actual percent power (%) 

 Stack Current (Amps-DC) 

 Stack Voltage (Volts-DC) 

 Stack Gross Power (kW) 

 Cathode mass flow (gps) 

 Compressor outlet temperature (°C) 

 Cathode in Humidifier in temperature (°C) 

 Stack Ox inlet temperature (°C) 

 Stack Ox outlet temperature (°C) 

 Stack Fuel inlet pressure 

 Stack Coolant inlet temperature 

 Stack coolant outlet temperature 
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 Module coolant inlet temperature 

 Module coolant outlet temperature 

 Cathode Out Humidifier out temperature (°C) 

 Compressor out/Aftercooler in pressure (barg) 

 Humidifier in pressure (barg) 

 Stack Ox in pressure (barg) 

 Stack Ox outlet pressure (barg) 

 Humidifier shell outlet pressure (barg) 

 Compressor current draw (A) 

 Compressor power draw(Calculated from compressor current draw and stack voltage) 

 Compressor speed(RPM) 

Data from all test configurations were shared and analysed by ANL.  Their data and results are 
not part of this report. 

 
3.7.4.2 Baseline Testing 

 
The HD7 system was operated using the existing air system. The load profile used was a 
combination of down-polarizations, up polarizations, constant current operation, and several 
cycles of the “Whistler Drive Cycle”, which is a dynamic load profile taken from field data. The 
entire baseline test lasted for approximately 3 days. The current drawn from the system as a 
function of time is shown in Figure 80 below. 
 

 
Figure 80: Baseline Testing - Module Current 

 
During testing, a data acquisition system logs process parameters internal to the module. These 
include stack specific parameters, including voltage and current, as well as air system specific 
parameters, including flows, temperatures and pressures measured throughout the air system.  
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Figure 81 to Figure 86 below provide a graphical representation of a sample of the data 
collected. 
 

 
Figure 81: Baseline Testing - Stack Current and Voltage 

 

 
Figure 82: Baseline Testing - Oxidant Mass Flow 
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Figure 83: Baseline Testing - Oxidant Temperatures 

 

 
Figure 84: Baseline Testing - Oxidant and Fuel Pressures 

 
Additionally, the compressor current and power were also logged, as shown in the below 
figures. The data collected can be used to directly compare the performance of the existing 
system with Eaton’s Air Management System, including operation with the expander. 
 



Eaton  DE-EE0005665 
Final Scientific/Technical Report    

55 

 

 
Figure 85: Baseline Testing – Compressor Current and Speed 

 

 
Figure 86: Baseline Testing – Compressor Power 

    
The performance of the incumbent air delivery system with the Ballard HD7 fuel cell module 
(FCM) had an efficiency of 48.1% LHV H2 at the 240A fuel cell stack steady state operating 
point of 220A Fuel Cell current.   
 

LHV Efficiency = Net Power (kW) / (fuel flow(g/s))* LHV constant (120.0412 kJ/g for hydrogen)) 
Equation 1: LHV efficiency Calculation 
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3.7.4.3 Eaton Compressor/Expander Testing 

3.7.4.3.1 Integration 

Integration of the Eaton compressor/expander system with the HD7 fuel cell was successfully 
completed as depicted in Figure 87.  
 

 
Figure 87: Eaton Air Management System Partially Installed in Ballard’s compressor test 

stand. 

3.7.4.3.2 Eaton Compressor Only in Configuration 1 

 
Mechanically, the existing air-kit was removed, and a new air-kit was developed, based around 
the Eaton system. The compressor and controller were both packaged into the new air kit, and 
the oxidant plumbing was re-worked to accommodate. Also, a coolant loop was incorporated to 
controller.  Test 1 was to test the compressor only with the expander removed based on the 
diagram shown in Figure 88. 

 

Figure 88: Configuration 1 Setup 
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The load profile used was a combination of down-polarizations, up polarizations, constant 
current operation, and several cycles of the “Whistler Drive Cycle”, which is a dynamic load 
profile taken from field data. The entire test lasted for approximately three days.  

During testing, a data acquisition system logged process parameters internal to the module. 
These include stack specific parameters, including voltage and current, as well as air system 
specific parameters, including flows, temperatures and pressures measured throughout the air 
system. 

The entire baseline test lasted for approximately three days. The current drawn from the system 
as a function of time is shown in Figure 89 

 
Figure 89. Configuration 1 Testing - Module Current 

 
During testing, a data acquisition system logged process parameters internal to the module. 
These include stack specific parameters, including voltage and current, as well as air system 
specific parameters, including flows, temperatures and pressures measured throughout the air 
system. Figure 90 through Figure 93 provide a graphical representation of a sample of the data 
collected. 

 
 
 
 

Multiple Whistler Drive 
Cycles 

Constant 

Current 

Up Polarization 

Down Polarization 
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Figure 90. Configuration 1 Testing – Module Net Power and Percent Power 
 

 
Figure 91. Configuration 1 Testing - Oxidant Mass Flow 
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Figure 92. Baseline Testing - Oxidant Temperatures 

 

 
Figure 93. Baseline Testing - Oxidant and Fuel Pressures 

 
Additionally, the compressor current and power were logged, as shown in Figure 94 and Figure 
95. The data collected can be used to directly compare the performance of the existing system 
with Eaton’s Air Management System. 
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Figure 94. Configuration 1 Testing – Compressor Current and Speed 

 
Figure 95. Configuration 1 Testing – Compressor Power 
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Figure 96: Ballard HD7 Module with Eaton Air Management System 

   
Using data from the first completed cycle the performance of the Eaton compressor with the 
Ballard HD7 FCM had an efficiency of 47.4% LHV H2 at the steady state operating point of 
240A Fuel Cell current, slightly less than the Ballard incumbent system.   

   
3.7.4.4 Eaton Compressor with Expander in Configuration 2 

The proposed setup for configuration 2 is shown in Figure 97 below.  Testing with the Eaton 
Compressor/Expander was limited to non-business hours due to the excessive noise of the unit 
in operation thus severely limiting operations on the Ballard test bench.  Due to time constraints 
with test station availability and there was limited benefit expected in this setup the testing was 
abandoned. 

 
Figure 97: Configuration 2 Test Setup 
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3.7.4.5 Eaton Compressor with Expander in Configuration 3 
 
The HD7 system operated using the upgraded compressor air system in position 3, however 
was only able to operate up to 180A during the initial run and shutdown from a fuel cell alarm 
due to air pressure being outside of specification.   A second attempt was made with the 
addition of a smaller bypass valve around the expander to prevent excessive pressure drop that 
was the suspected cause of inoperability for the first trial.  Unfortunately this too was 
unsuccessful. The unit was able to operate up to 120A followed by a 60A steady state point 
before shutting down and not able to follow the test protocol as designed.   

Figure 98 below shows the test setup for configuration 3 

 
Figure 98: Configuration 3 test set-up 

 

 

Figure 99: Configuration 3 Testing - Module Current 
 
During testing, a data acquisition system logged process parameters internal to the module. 
These include stack-specific parameters, including voltage and current, as well as air system-
specific parameters, including flows, temperatures and pressures measured throughout the air 

Shutdown 

60A steady state 
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system. Figure 100 through Figure 103 provide a graphical representation of a sample of the 
data collected. 

 
 

Figure 100: Configuration 3 Testing – Module Net Power and Percent Power 
 

 
Figure 101: Configuration 3 Testing - Oxidant Mass Flow 
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Figure 102: Configuration 3 Testing – Compressor Current and Speed 

 
 
 

 
Figure 103: Configuration 3 Testing – Compressor Power 

 
3.7.4.6 Water Injection Testing 

Due to Ballard test station availability issues only the initial water injection tests were able to be 
performed providing proof of concept for humidification and temperature reduction of the 
compressor air outlet temperature. 

 

 



Eaton  DE-EE0005665 
Final Scientific/Technical Report    

65 

 

 

Compressor  
RPM 

Flow 
(g/s) 

Pressure 
 (barg) 

temperature 
(°C) 

Dew Point 
(°C) 

H2O injected 
(ml/min) 

11000 50.1 0.49 88.1 22.8 0 

11000 51 0.49 42.4 42.1 500 

11000 50.5 0.49 42.3 42.1 250 
Table 9: Water Injection Results 

 Conclusions 3.7.5

Due to the low pressure of the fuel cell exhaust there does not seem to be a benefit for the 
Eaton compressor/expander combination and results in a less efficient air delivery system.   

These results suggest the Eaton compressor with expander is not a viable product for the HD7 
fuel cell module in the current configuration.  The current technical direction is to operate PEM 
fuel cells at lower pressures thus reducing likelihood of expander technology being economically 
feasible in this application.   
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4 PRODUCTS DEVELOPED/TECHNOLOGY TRANSFER ACTIVITIES 

 
Dale Stretch presented at the following conferences over the course of the program: 
 

 2013 DOE Hydrogen and Fuel Cells Program Review on May 14, 2013. 

 U.S. DRIVE Technical Meetings - Fuel Cell Tech Team (FCTT), February 11, 2014 

 2014 DOE Hydrogen and Fuel Cells Program Review on June 14, 2014. 

 U.S. DRIVE Technical Meetings - Fuel Cell Tech Team (FCTT), February 11, 2015 

 2015 DOE Hydrogen and Fuel Cells Merit Review on June 10, 2015. 

No patents have been applied for under this program. 
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5 COMPUTER MODELING DETAILS  

Computer modeling details can be found in Section 3.1: Analytical Development of the 
Compressor & Expander using CFD Modeling. 


