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1 EXECUTIVE SUMMARY

PEM fuel cells remain an emerging technology in the vehicle market with several cost and
reliability challenges that must be overcome in order to increase market penetration and
acceptance. The DOE has identified the lack of a cost effective, reliable, and efficient air supply
system that meets the operational requirements of a pressurized PEM 80kW fuel cell as one of
the major technological barriers that must be overcome. This project leveraged Roots positive
displacement development advancements and demonstrated an efficient and low cost fuel cell
air management system. Eaton built upon its P-Series Roots positive displacement design and
shifted the peak efficiency making it ideal for use on an 80kW PEM stack. Advantages to this
solution include:

e Lower speed of the Roots device eliminates complex air bearings present on other

systems.

o Broad efficiency map of Roots based systems provides an overall higher drive cycle fuel
economy.

e Core Roots technology has been developed and validated for other transportation
applications.

Eaton modified their novel R340 Twin Vortices Series (TVS) Roots-type supercharger for this
application. The TVS delivers more power and better fuel economy in a smaller package as
compared to other supercharger technologies. By properly matching the helix angle with the
rotor’s physical aspect ratio, the supercharger’s peak efficiency can be moved to the operating
range where it is most beneficial for the application. The compressor was designed to meet the
90 g/s flow at a pressure ratio of 2.5, similar in design to the P-Series 340. A net shape plastic
expander housing with integrated motor and compressor was developed to significantly reduce
the cost of the system. This integrated design reduced part count by incorporating an overhung
expander and motor rotors into the design such that only four bearings and two shafts were
utilized.
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2 ACCOMPLISHMENTS

Specific project objectives include:

Primary Objectives
o 62/64% (baseline 2011) > 65/70% (target 2017) Compressor/expander efficiency at
25% of full flow
o 80% (baseline 2011) > 90% (target 2017) Combined motor/motor controller efficiency at
full flow
o 11.0/17.3kW (baseline2011) < 8/14kW (target 2017) Compressor/expander input power
at 100% of full flow

Secondary Objectives
e Meeting all 2017 Project Target objectives in Table 1

¢ Conduct a cost reduction analysis to identify areas for additional possible cost reductions

A fully tested and validated TRL 7 Air Management System hardware capable of meeting the
2017 Project Targets in Table 1 was delivered at the conclusion of this project.

Table 1 below displays a tabulated comparison of key performance parameters for Eaton’s
actual performance versus original project and DOE goals.
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Table 1: 2017 Project Targets

Eaton DOE Project
Characteristic Units Status Target Target
2017 2015
a b .
Input power _at full flow , (with KW_ 106/14.8 8/14 8/14
expander / without expander)
Combined motor & motor controller
. b % 93 90 90
efficiency at full flow
Compressor / expander efficiency at
b % 65 /65 75180 75175
full flow (C/E only)
Input power at 25% flow (with KW 20/2.0 1.0/2.0 1.0/2.0
expander/without expander) © ' ' ' '
Combined motor & motor controller
- c % 82 80 80
efficiency at 25% flow
Compressor / expander efficiency at
c % 65/51 65/70 65/70
25% flow
4 :
Input power at idle  (with / without W, 405 / 405 200/ 200 200/ 200
expander)
Combined motor / motor controller
.. ., d % 50 70 —
efficiency at idle
Compressor / expander efficiency at
idle d % 21 60 /60 60/ 60
Turndown ratio (max/min flow rate) 20 20 20
Noise at maximum flow (excluding dB(A) at 1 65 (with 65 (with
air flow noise at air inlet and meter enclosure & 65 enclosure &
exhaust) suppression) suppression)
Transient time for 10 - 90% of
: . sec 1 1 1
maximum airflow
System volume ¢ liters 10.8 15 15
System weight kg 15.9 15 15
System cost $ 984 500 500
a b .
expander / without expander)

a Electrical input power to motor controller when bench testing fully integrated system. Fully integrated system includes control
system electronics, air filter, and any additional air flow that may be used for cooling.

b Compressor: 92 g/s flow rate, 2.5 bar (absolute) discharge pressure; 40°C, 25% RH inlet conditions. Expander: 88 g/s flow
rate, 2.2 bar (absolute) inlet pressure, 70°C, 100% RH inlet conditions.

¢ Compressor: 23 g/s flow rate, minimum 1.5 bar (absolute) discharge pressure; 40°C, 25% RH inlet conditions. Expander: 23
g/s flow rate, 1.4 bar (absolute) inlet pressure, 70°C, 100% RH inlet conditions.

4 Compressor: 4.6 g/s flow rate, minimum 1.2 bar (absolute) discharge pressure; 40°C, 25% RH inlet conditions. Expander: 4.6
g/s flow rate, < compressor discharge pressure, 70°C, 20% RH inlet conditions.

¢ Weight and volume include the motor, motor controller and system enclosure.

f Cost target based on a manufacturing volume of 500,000 units per year.

9 DTl cost model of the Honeywell 100,000 rpm machine, 2.5 bar (absolute), 92 g/s, dry air, 40°C: $960 including markup. TIAX
2009 estimate of Honeywell technology (compressor, expander, motor, motor controller) presented at 2010 Annual Merit Review
and Peer Evaluation: $790 including 15% markup.
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3 PROJECT ACTIVITY SUMMARY

3.1 Analytical Development of the Compressor & Expander using CFD Modeling

Eaton’s CFD software of choice used to evaluate the efficiency of positive displacement Roots
device was not able to converge the analysis due to the small clearances between the rotor tips
and housing wall. To overcome this limitation, the clearances were increased approximately
three times from the targeted design values to allow for the model to successfully run, see
Figure 1. The increased clearance impacts the device volumetric efficiency and requires a
correction to the RPM to match the targeted flow. To validate the impact, efficiency tests were
run the baseline design in supercharger and expander flow directions. The data showed that
there was approximately a 10% reduction in efficiency with the increased clearance which
correlation to the CFD analysis results as per Figure 2 & Figure 3. Upon validation, the CFD
model was then used to develop the expander inlet and outlet designs.

Internal Eaton resources completed the initial CFD modeling as Kettering University developed
an alternative CFD approach with a different software package to enable for the desired
clearances to be evaluated.
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Figure 1: Limitation of Figure 2: Design 1

Figure 3: Modeling of

FLUENT capabilities
overcome by scaling
clearance to 600 micron

expander tested for reverse
and forward flow showed a
10 % decrease in efficiency

expander also predicted a
10% decrease in efficiency

3.1.1 New CFD Tool Approach and Development Background

Kettering’s first step was to access several CFD, grid-generation, and post-processing software
tools. Due to the complexity of the Roots rotor geometries and small clearances that exist
between the rotors components, the first software tool used to generate the FEA grid contained
numerous distorted and skewed cells. Several attempts were made to eliminate these distorted
cells, but STAR-CCM+ mesh was never successful.

As a result, a decision was made to use a more specialized grid-generation software. This tool
had a better meshing algorithm and was able to generate an accurate grid as outlined Figures 4
and 5. This meshing process was very labor intensive since the geometry does not contain any
axis-symmetry that could have simplified the meshing process. Figures 6 and 7 show the
interior mesh in two cut planes, one along the axis of the rotors, and one perpendicular to the
axis. The small clearances that exist between the rotors and the housing are clearly visible in
these figures. Figures 8 and 9 show the refined mesh created around each rotor. These regions
are required in order to accurately model each rotor. The analysis successfully completed three
revolutions of the rotors.
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Figure 4: Mesh of the expander Figure 5: Meshed rotors

Figure 7: Interior radial plane mesh

Figure 6: Interior axial plane mesh
Wall of
Housing

: . e _ Figure 9: Refined mesh (highlighted in
Figure 8: Refined mesh (highlighted in yellow) between each rotor
yellow) between rotor and S/C housing

Even though the team was successful in performing CFD calculations using the first software
tool, the calculations of torque did not correlate very well with the experimental data. Moreover,
the CFD analysis was done with a 3-6 times larger than production gap between the rotors and
housing. This increased gap width was used due to the difficulty in generating a refined mesh

10
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with the available software. Hence, it was decided to acquire specialized software to be able to
generate a refined mesh between the housing and rotor that is a few times less than the current
production gap. The specialized software included a module that generated rotor profiles and a
module that meshed the profiles. Figure 10 shows the template for inputting the rotors geometry
data, and Figure 11 shows an image of the mesh generated by new software. Since the CFD
analysis was performed with the rotors rotating, additional meshes were generated with the
rotors at different positions. That is, each rotor was simulated to make one complete revolution
and hence the rotor motion was divided into 468 steps and a mesh of the region around the
rotors was generated at those 468 steps. A total of 936 mesh files were created (468 for each
rotor).
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Figure 10: New software input template

Figure 11: Mesh generated in new software
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The 2" CFD solver tool used for this analysis required generating separate meshes for the inlet
and outlet regions and was combined with the mesh files from the new software. Figure 12
shows the completed 9eometry and mesh. The 968 mesh files generated in new software were
then imported into 2" CFD solver tool and were used during the CFD analysis. Using this
procedure, mesh deformation was not used during the CFD analysis, but rather the new
software meshes were used at the appropriate time-step.

Figure 12: Complete mesh of unit

3.1.2 Initial CFD Results and Comparison to Experimental Data:

In order to determine the accuracy of the results from the methodology just described, two
cases were considered. In both of these cases the supercharger-expander given in 1 was
simulated with the following conditions:

Table 2: Operating conditions used in the numerical simulations

Parameter Case 1 Case 2
Inlet Pressure 220 kPa (absolute) 140 kPa (absolute)
Outlet Pressure 100 kPa (absolute) 1000 kPa (absolute)
Rotational Speed 10,000 RPM 2,000 RPM

Transient CFD calculations were performed in both cases to simulate a complete revolution of
the rotors. Constant density air at 25°C was considered to enter the unit at the inlet. The
numerical simulations included calculating the velocity field, pressure distribution, turbulence
kinetic energy and dissipation, throughout the entire three-dimensional model.

Figures 13 and 14 show the results for Case 1, and Figures 15 and 16 show the results for
Case 2. Figures 13 and 15 depict the calculated torque on both rotors as a function of time in
terms of the number of simulation time-steps for Case 1 and Case 2, respectively. Similarly,
Figures 14 and 16 show the inlet and outlet mass flow rates as a function of time for Case 1 and
Case 2, respectively.
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Figure 13: CFD results showing calculated
torque in CFX on both rotors for the 10,000

RPM case

Figure 14: Inlet and outlet mass flow rates
calculated in CFX for the 10,000 RPM case
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Figure 15: CFD results showing calculated
torque in CFX on both rotors for the 2000
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Figure 16: Inlet and outlet mass flow rates
calculated in CFX for the 2000 RPM case

In order to verify the CFD results performed in 2™ CFD solver tool, the average calculated
values of torque and mass flow rates were compared with the experimental data. A summary of
the comparison are listed in Table 3 and Table 4.

Table 3: Comparison between numerical results and experimental data for Case 1

Parameter Experimental Numerical
Inlet Pressure (kPa abs.) 211 220
Outlet Pressure (kPa abs.) 101.9 101.3
Inlet Temperature (C) 147.8 25
RPM 10067 10000
Average Rotor Torque (N.m) 4.13 3.74
Average Mass Flow Rate (kg/s) 0.089 0.160
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Table 4: Comparison between numerical results and experimental data for Case 2

Parameter Experimental Numerical
Inlet Pressure (kPa abs.) 142 140
Outlet Pressure (kPa abs.) 101.1 101.3
Inlet Temperature (C) 95.8 25
RPM 2041 2000
Average Rotor Torque (N.m) 1.615 1.47
Average Mass Flow Rate (kg/s) 0.021 0.041

In both cases, the calculated average torque was about 9% lower than the measured
experimental values. In order to compare the mass flow rates we have to adjust the calculated
values to the air inlet temperature used during the experiments, since in the CFD calculations
air with constant density at 25 C was used. The calculated mass flow rate was adjusted as
follows:

Mass Flow Rate = Air density x Volume Flow Rate

Air Density:%, where p is absolute pressure, T is absolute temperature, and R is the gas

constant for air.

(Mass Flow Rate) . = (Mass Flow Rate)g s x?

298
147.8+273
higher than the experimental value. For Case 2, the adjusted mass flow rate is:

0.041x 298
95.8+ 273

difference could be due to the gap width in the unit used in the experiments was higher than the
gap width used in the CFD model. Moreover, thermal expansion of the housing on the
experimental unit could have occurred during the experiments which would result in a wider gap
width.

So, for Case 1 the adjusted mass flow rate is: O.lﬁx( jz 0.113 kg/s which is 27%

]=0.033 kg/s which is 51% higher than the experimental value. This

The next step in the modeling process was to better understand the air flow through, and the
performance of, various configurations of expanders and compressors.

3.1.3 Expander CFD Results

The CFD analysis demonstrated that the modeling process being used was accurately
predicting improvements trends to expander geometric changes. There were a total of ten (10)
expander geometries and configurations analyzed. All were compared to the baseline V250
expander configuration.

1. Configuration #1 - a V250 expander geometry with divider #2

Configuration #2 - a V250 expander geometry with divider #4

Configuration #3 - a V250 expander geometry with an extended inlet

Configuration #4 - a V250 expander geometry with bearing clearances added
Configuration #5 - a V250 expander with half the tip clearances and no end clearances
Configuration #6 - a V210 expander with the 1* outlet geometry as shown in Figure 17

ook LN
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7. Configuration #7 - a V210 expander with the 2" outlet geometry as shown in Figure 17

8. Configuration #8 - a V210 expander with the 3™ outlet geometry as shown in Figure 17

9. Configuration #9 - a V210 expander with the 2" geometry with bearing clearances
added

10. Configuration #10 - a V210 expander with the 1* geometry and half the tip clearances
and no end clearances.

1% Geometry 2" Geometry 3" Geometry
Figure 17: Expander Outlet Geometries

The V250 and V210 expander units were three-lobe rotors. By the end of the program modeling
the three-lobe rotors become a straight forward process for the CFD team. Mesh generation of
the geometries was performed using the proprietary software and transient, three-dimensional
CFD analysis was accomplished using the 2" CFD solver tool.

Table 5: Expander CFD Results

RPM Boost Mass Flow Torque Power Tin Tout
(9/s) (N.m) W) ©) ©)
CFD Base | %diff | CFD | Base | % diff | CFD | Base | % diff

1 2100 14 24.63 25.33 2.76 151 1.54 1.94 332 338 1.77 90 75-76

2 2100 1.4 25.33 | 25.33 0 1.51 1.54 1.94 334 338 1.18 90 75-76

3 2100 1.4 2538 | 2533 | -0.19 | 1.54 1.54 0 338 338 0 90 75-76

4 2100 14 26.15 25.33 -3.23 1.53 1.54 0.64 337 338 0.29 90 75-76

5 2100 14 20.53 25.33 18.9 1.53 1.54 0.64 336 338 0.59 90 45-76

6 2100 14 25.04 25.33 1.14 1.31 1.54 14.93 289 338 14.49 90 73-82

7 2100 14 24.07 25.33 4.97 1.31 1.54 14.93 290 338 14.20 90 73-82

8 2100 14 24.43 25.33 3.55 1.32 1.54 14.28 290 338 14.20 90 73-82

9 2100 14 24.53 25.33 3.15 1.31 1.54 14.93 290 338 14.20 90 73-82

10 2100 14 18.06 25.33 28.7 1.31 1.54 14.93 289 338 14.49 90 73-82
RPM Boost Mass Flow Torque Power Tin Tout

(9/s) (N.m) (W) © ©

CFD Base | %diff | CFD | Base | % diff | CFD | Base | % diff

1 10,000 2.2 93.07 97.19 4.24 4.17 4.39 5.01 4380 4590 4.58 150 88-93
2 10,000 2.2 95.53 97.19 1.71 4.29 4.39 2.28 4480 4590 2.40 150 88-93
3 10,000 2.2 97.95 97.19 -0.78 4.38 4.39 0.23 4580 4590 0.22 150 88-93
4 10,000 2.2 99.11 97.19 -1.98 4.35 4.39 0.91 4560 4590 0.65 150 85-93
5 10,000 2.2 89.70 | 97.19 7.71 4.38 4.39 0.23 | 4590 | 4590 0.00 150 | 85-93
6 10,000 2.2 87.72 97.19 9.74 3.81 4.39 13.21 | 3989 4590 13.09 150 84-95
I 10,000 2.2 86.67 97.19 10.82 3.81 4.39 13.21 | 3989 4590 13.09 150 84-95
8 10,000 2.2 87.67 97.19 9.80 3.83 4.39 12.76 | 4014 4590 12.55 150 84-95
9 10,000 2.2 87.68 97.19 9.78 3.80 4.39 13.44 | 3984 4590 13.20 150 84-95
10 | 10,000 2.2 77.52 97.19 20.24 3.83 4.39 12.76 | 4007 4590 12.70 150 84-95
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The conclusions from the CFD results demonstrated that all changes to date only affect the flow
performance and therefore expander efficiency, and not the torque or power performance at the
modeled speed. The expander configuration #1 and #2 demonstrated that the diverter can
improve flow performance but it has to be designed correctly. Diverter 2 reduced mass flow but
diverter 4 had no effect. Expander configuration #3 with its extended inlet had no effect on flow
performance at all. For the expander configuration #4, adding the bearing clearance cased
mass flow to increase as expected but it did not increase appreciably. For the expander
configuration #5, reducing the rotor tip and end clearances did decrease the mass flow
significantly. Expander configuration #6, #7 and #8, had their outlet geometry modified and the
results showed that it had some effect on flow performance but it was not significant (significant
was defined as >2g/s). Configuration #7, the 2™ outlet geometry, had the largest flow
performance improvement. Expander configuration #9 and #10 were similar modification to that
of configurations #4 and #5 and the results show similar improvements.

In conclusion, the expander modeling demonstrated that some geometry modification, such as
diverter and outlet geometries, can improve flow performance. The item that affected the flow
performance the most was the rotor tip and end clearances. Therefore close attention was paid
to tightly controlling these clearances.

3.1.4 Compressor CFD Results

In addition to the expander modeling, CFD modeling was conducted on the Roots compressor
geometry. The first analyzed was the V250 compressor. All conditions were compared to a
baseline.

The three lobed compressors modeled using the same tools as that used with the expanders
proved successful. Comparisons of the CFD results with benchmark data show that the CFD
mass flow results are within 1 — 12% of the benchmark data, and the torque calculations are
within 10 — 30% of the benchmark data. It was believed this difference was due to numerical
error, round-off error, and to effects not captured by the CFD modeling such as mechanical
resistive torque due to bearings and gears in the rotor-shaft assembly, and variable clearances
due to uneven thermal expansion of the rotors and housing. Four compressor speeds and four
pressure ratios were analyzed with the CFD tool. Below are the average values of the total
torque, inlet mass flow rate, and power for the conditions modeled.

Table 6: V250 Compressor CFD Results & Comparison with Baseline Data

RPM Boost Mass Flow Torque Power Tin | Tout

(9/s) (N.m) (kw) © | ©
CFD Base | %diff | CFD | Base | % diff | CFD Base | % diff
4,090 1.2 10.09 9.05 11.5 0.80 1.13 -29.2 0.343 0.48 -28.5 20 43
6,083 15 13.15 12.67 3.79 1.98 2.24 -11.6 1.27 143 -11.1 20 66
10,105 1.2 40.40 40.09 0.77 0.84 121 -30.6 0.89 1.28 -30.4 21 42
10,105 1.4 36.05 | 35.98 0.19 1.62 1.99 -18.6 1.71 2.11 -19.0 21 58
10,105 1.6 32.27 32.20 0.22 2.38 2.72 -12.5 2.53 2.88 -12.2 21 72
20,110 1.2 89.85 90.40 -0.61 1.05 1.24 -15.3 2.22 2.61 -14.9 23 44
20,110 14 86.43 87.26 -0.95 1.80 2.00 -10.0 3.77 4.22 -10.7 23 59

Below are a couple of example plots, Figures 18 & 19, at 4090 RPM and 1.2 boost, of the
compressor torque curve as a function of angle of rotation for Rotor 1 and Rotor 2, and the
mass flow rate at the compressor inlet.
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Example Plots, at 4090 RPM and 1.2 boost
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Figure 18: Torque Profile vs. Rotor Angle Figure 19: Mass Flow vs. Rotor Angle

The results show that the torque values are a strong function of the pressure ratio across the
unit and are not significantly dependent on the rotational speed of the rotors. The torque
increases with pressure ratio. However, the mass flow rate depends on both the pressure ratio
and speed of rotation of the rotors. The low rate increases with RPM and is directly proportional
to pressure ratio in expander configuration, but is inversely proportional to pressure ratio in
compressor configuration.

The R410 compressor was analyzed to develop the capability of modeling four lobe
compressors and to better understand the performance characteristics of this type of
compressor. When the first set of models were run it was discovered that the proprietary
meshing software would not work at the correct rotor clearances. In order to get the rotors to
mesh without errors, the clearances had to be increased. The consequence was that the results
had more leakage included in the flow numbers and had a greater error when compared to the
test data. After discussing the issue with the proprietary software developers, the software was
modified and a mesh for the 4-lobe rotors generated successfully. Transient, three-dimensional
CFD analysis of the R410, P260 & V260 compressors units was completed.

The 260 4-lobe compressor with reduced clearances had inconclusive results when modelled.
The software was incapable of resolving a 4-lobe geometry with high helix angle. The mass flow
rates were considerably less than experimentally possible at the given operating conditions.

The 260 3-lobe compressor CFD analysis was run with various inlet geometries, Figure 20. The
inlet timing was increased & decreased by +1 & -1 mm and +2 & -2 mm from the baseline
geometry. The results show that these variations did not result in any significant changes in the
mass flow rate and efficiency compared to the baseline values.
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Figure 20: 3-Lobe Inlet to Rotors Area Variations

In summary, the results show that for the expander units, larger clearances between the rotors
and the housing result in an increase in the mass flow rate. The effect of decreasing the
clearances on average torque values was insignificant. Moreover, the shape of the torque
curves depends on the rotational speed of the rotors and the pressure ratio across the rotors. At
high speeds the rotors are able to move the air through the outlet faster than air can flow into
the inlet, thus causing a decrease on the high pressure side on the rotors resulting in a
decrease of the torque. This suggests that the position of the inlet and outlet relative to the
rotors can have an effect on the power output and efficiency of the unit.

3.2 Plastic Component Development

The goal in the development of the expander for the fuel cell application was to develop a low
cost, small displacement, (4.6 to 92 g/s flow rate), high pressure ratio (1.2 to 2.5 bar) and
efficient (200 W, to 14 kW,.) design. The primary technical challenge was the small
displacement due to the ratio between the rotor leakage and the displaced volume. As Roots
devices are downsized, the rotor tip to root & rotor tip to housing leakages increase to a point
that they dominate the overall mass flow and results in the efficiency to dropping off
significantly. The goal was be to minimize leakages and determine the right displacement vs.
speed to optimize the device performance for the application. Additionally, since the
specification required improved performance over a broad operating range; optimization was
focused on the middle to high operating range of the device.

The program investigated several concepts to attempt to meet the performance requirements
and reduce product cost. The concepts are outlined below:

1. Straight Rotor
2. Helical Rotor
3. Plastic Housing, End Plate and Gears

3.2.1 Plastic Expander Rotor Analysis

In the development of the plastic rotors Finite Element Analysis (FEA) of various rotor
configurations was completed. The results indicated a 60% reduction in stress with the baseline
4 lobe design over the baseline 3 lobe design as shown in Figure 21. Even with a 60%
reduction in stress, the four lobe design is more than twice the expected limits for the plastic
chosen. Experimental testing shows part failure in the same location as predicted by the
analysis. To reduce the stresses to the acceptable range an improved rotor design was created
and analyzed.
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Peak Stress = 262.2 MPa

3 Lobe Design

4 Lobe Design

Peak Stress = 421.2 MPa
Figure 21: FEA of 3 and 4 Lobe Plastlc Rotors

To resolve the stress issue an optimized 4 lobe rotor design with the addition of an extruded
aluminum sub-frame was developed. The intent of the aluminum sub-frame is to provide support
and stiffness in the high stress root region as well as provide a mechanical lock to improve the
adhesion in the lobe. Table 7 shows the stresses and achieved speeds (rpm) at 150°C for four
designs that were evaluated. The failure mechanism for all designs occurred when the
composite delaminates from the aluminum extrusion at the mechanical locking feature. Design
iteration 4 achieved 20,000 rpm although the stresses exceeded the capability of the glass
reinforced composite. The application under consideration does not exceed a temperature of
70°C and as this analysis was done at a maximum temperature of 150°C, design four was
considered acceptable.

Table 7: Summary of FEA results at 150°C

Design Speed Max Principal
Iteration Achieved Stress of
{rpm) Composite
(MPa)
1 & Unable to run due to lack of
mechanical features ~ composite
separated from aluminum extrusion N/A 179

2 " addition of mechanical locking 8000

feature along length of lobe 258

Dovetail interlock along 1
diameter and at the tip of the 2500 644
root

4 Reduced height of aluminum
e.xtrugpn into the lobe; . 20,000 614
simplified geometry of dovetail
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Based on the FEA results a tool design was initiated that would allow for molding of a polymer
rotor with or without the aluminum support. The runner system for the rotor injector mold was
optimized through mold flow simulations. Initial design was a pin gate located at the tip of each
of the four lobes, refer to Figure 22. Fibers were highly oriented at the gate location on the lobe
tip and became increasingly more random towards the root, Figure 23. In an effort to increase
fiber orientation at the root, and thereby increase the root strength, a second runner system was
designed and evaluated, Figure 24. The final design had a runner system with 8 pin gates that
were located in the root at two points. The resulting fiber orientation increased the alignment in
the root region with random fiber orientation at the tip Figure 25.

Figure 22: 4 pin runner system Figure 23: Fiber orientation with red being
highly oriented and blue being random

'J w42

06N

Figure 24: 8 pin runner system Figure 25: Fiber orientation with red being
highly oriented and blue being random

3.2.2 Straight Rotor Hardware Development

Plastic rotors with the above mentioned aluminum support structure was fabricated. Figure 26
shows the process to assemble the tool. There were 6 inserts to form the rotor lobes and allow
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for the runner system to be gated at the root. The aluminum support structure was press fit onto
the shaft and loaded into the tool, the shaft protrudes into the base of the tool. As a contingency
plan billet aluminum rotors were also procured.

Figure 26: Tool design has 6 segments to form the rotor lobes while allowing for the
runner system. Once the 6 segments are assembled the shaft and aluminum support
structure are loaded (locating pins are present for alignment).

Upon completion of procurement, Figures 27 & 28 spin testing of the rotors was completed at
speeds of 15,000, 17,500 and 20,000 at a constant temperature. Testing was conducted at
three temperature set points — 70C, 90C and 100C with dwell times of 5 minutes. The over-
molded rotor was able to achieve the maximum rpm at maximum temperature (20,000 rpm at
110C) with no evidence of delamination.

Figure 27: As molded rotors. Component Figure 28: Rotor posttest (conditions
completely filled with no evidence of 20,000 rpm at 110C). No failure and no
delamination or porosity indication of delamination. Scuff marks

from contact with housing delamination
from the aluminum support structure.

3.2.3 Helical Rotor Hardware Development

Due to the successful testing of the straight plastic rotors, the development of the helical shape
rotors proceeded. The straight aluminum support structure, as seen in Figure 29, was revised
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to accommodate a helical rotor. Interlocking features were optimized to increase polymer
adhesion. FEA was used to validate the helical design and material selection, as seen Figure
30.

(. e o =] - .
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Figure 30: FEA of helical overmold

Figure 29: As Molded

. rotor; validation of interlockin ;
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g Results showing fiber
orientation

Mold flow analysis was completed and gate configuration designed to optimize fiber orientation
for hoop strength, as shown in Figure 31. Tooling was designed and fabrication of components
was completed. Figure 32 shows the completed prototype of the aluminum support structure for
the rotors. These components were manufactured via an additive manufacturing process and
were chosen due to the quantity of pieces ordered, timing and part complexity.

Figure 32: Additive Manufactured Figure 33: Rotors overmolded onto
Aluminum Support Structure aluminum support structure

The aluminum support structures were press fit onto the steel rotor shafts and loaded into the
injection molding machine for overmolding with polymer. Both right hand and left hand rotors
were molded, as seen in Figure 33. The rotors were finished with a coating which reduces
rotor-to-rotor and rotor-to-housing clearances. The rotors were tested at a maximum speed of
12000 rpm and pressure ratio of 1.5 bar without failure.
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3.2.4 Plastic Housing, End Plate and Gears

An expander containing plastic rotors, housing, end plate, and gears was developed and
experimentally evaluated, Figure 34. During testing, the unit was run up to a maximum of
18000 rpm and pressurized to maximum of 2.0 pressure ratio at 130°C without failure. The
plastic expander clearances were larger than that of a comparable aluminum unit due to the
tolerance capability of the plastic injection molding process. These large clearances are a result
of the tolerance capability of the plastic injection molding process. The clearances can be
significantly improved with further adjustments to the housing and rotor molds.

Figure 34: Plastic V210 Expander on Test Stand

3.3 Compressor Development

The goal in the development of the expander for the fuel cell application was to develop a small
displacement, (4.6 to 92 g/s flow rate), high pressure ratio (1.2 to 2.5 bar) and efficient (200 W,
to 14 kW,) design. The primary technical challenge was the small displacement due to the ratio
between the rotor leakage and the displaced volume. As Roots devices are downsized, the
rotor tip to root & rotor tip to housing leakages increase to a point that they dominate the overall
mass flow and results in the efficiency to dropping off significantly. The goal was be to minimize
leakages and determine the right displacement vs. speed to optimize the device performance
for the application. Additionally, since the specification required improved performance over a
broad operating range; optimization was focused on the middle to high operating range of the
device.

The three target specifications for the compressor operated at 40°C, 25% relative humidity inlet
conditions are as follows.
1. High flow rate = 92 g/s flow rate, pressure ratio = 2.5 bar and power = 14 kWe

2. Middle flow rate = 23 g/s flow rate, pressure ratio = 1.5 bar and power = 2 kWe
3. High flow rate = 4.6 g/s flow rate, pressure ratio = 1.2 bar and power = 200 We

The program investigated several concepts to attempt to improve the performance of Roots
compressors. The concepts are outlined below:
1. High Pressure Recirculation - Directing high pressure, high velocity air from the outlet of

the compressor to the back of the rotor housing, with a particular timing. The concepts
goal was to reduce the back rush of air at the outlet thus reducing temperature and
increasing the ultimate pressure ratio capability of the compressor.

2. High Helix Rotor - Assessment of short rotor designs with increased helix angle to
determine if higher pressure ratio can be achieved.
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3. Low Thermal Growth Rotor - Investigation into the use of low thermal grow material so
that closer tolerances can be held within the air cavity to reduce leakage, enabling
higher pressure ratios and efficiencies.

3.3.1 High Pressure Recirculation

As a Roots compressor spins, it moves air trapped at ambient pressure, from the intake of the
compressor to the positive pressure outlet. Once the air is released by the lobes, there is a
back rush of pressurized air that compresses the air that was just released before it is pushed
out by the next rotor lobe. This back rush of air is a contributor to the increased outlet air
temperature of the compressor. A Roots compressor's maximum pressure ratio capability is
limited by outlet air temperature and its impact on the materials exposed to these temperatures.
Therefore, it was hypothesized that by directing high pressure, high velocity air from the outlet of
the compressor to the back of the rotor housing, with a particular timing, the pressurized air’s
momentum and increased pressure would help to reduce the back rush of air at the outlet thus
reducing temperature and increasing the ultimate pressure ratio capability of the compressor.

This theory was tested using an R340 compressor with a modified outlet to direct recirculated
pressurized air to the rotor housing, and a modified housing to time and direct the pressurized
air to the rotors, see Figure 35. The R340 was initially tested with the recirculation tube
obstructed by a sealing gasket material. The test was then rerun with the recirculation port
unobstructed and the results compared. Overall performance was reduced with the maps
indicating an increase in leak rate, especially at higher speeds and pressure ratios. With
leakage comes a loss and shift in the efficiency islands, an increase in power consumption and
larger temperature differentials. There was an increase in the temperature differential of ten to
twelve degrees Celsius at all points, thus limiting the compressor's maximum pressure ratio
capability.

-

Figure 35: High Pressure Recirculation Setub

3.3.2 High Helix Rotor

Testing results have shown that the shortest rotor design provided the highest pressure ratio
capability. Although inlet and outlet geometries vary by application, the consistent contributor to
the increased capability, of the shortest rotor, is the increased helix angle. This can be seen
when comparing the R340 map with the R410 map, seen in Figure 36. For experimental
verification, the P400 was selected for testing, at increased pressure ratio, as it has the greatest
helix angle of any Eaton prototype compressor to date, shown in Figure 37.
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Figure 36: R410 vs. R340 PR Comparison Figure 37: P400 Test Unit

Results of the P400 testing demonstrated that the increased helix angle pushed the P400
efficiency map to a pressure ratio over 2.6 without exceeding the maximum temperature of the
unit.

3.3.3 Low Thermal Growth Rotor Experiment

The purpose of this experiment was to assess the use of low thermal growth material to
maintain tight air cavity clearances. The intention was to reduce leakages, enabling higher
pressure ratios and efficiencies. Figures 38 and 39 are the low thermal growth compressor
rotors that were developed in both 3 and 4 lobe architectures for a 260cc/rev displacement
compressor. These were made from a ferrous material and coated with an abradable material
that should provide better compressor sealing. The rotor design utilized a low inertia
architecture to minimize impact on acceleration speeds relative to the solid billet design.
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Figure 38: 4-Lobe Compressor Rotors Figure 39: 3-Lobe Compressor Rotors

The preliminary fabrication process introduced tolerances and distortions that were greater than
the outlined specification. Due to timing, further development of this technology was halted on
the program but Eaton development has continued on the concept.

3.3.4 Final Compressor Design

The final compressor design was a V250 compressor, see Figure 40. This is a 3-lobe
compressor with a 247 cc/rev displaced volume.

o Rotors: The rotor set was optimized for midrange performance, in a three lobe design,
with an increased helix angle to achieve the higher pressure ratios required by the DOE.
The rotors were made from the traditional Eaton prototyping process; they are machined
from aluminum billet. Tolerances are tightly controlled to keep clearances low to
maintain good compressor efficiency.

e Housing: The housing design featured an optimized outlet geometry as well as an
integrated motor adaptor plate. The housing utilizes existing Eaton production seals,
bearings, and gears to reduce cost.

e Gears: The timing gears were an existing Eaton steel design with water cooling shared
with the electric drive motor to increase durability at high pressure ratios.
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A full compressor map was created on the V250 compressor was qualified. Figure 41 shows
the results.

V250 Gen 2 Compressor Baseline
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Figure 41: V250 Uncorrected Compressor Efficiency Map

3.4 Expander Development

The goal in the development of the expander for the fuel cell application is to develop a low cost
small, (4.6 to 88 g/s flow rate), high pressure ratio (1.0 to 2.2 bar) and efficient (0 W, to ~6 kW)
design. The primary challenge in this program is the small displacement. This is due to the ratio
between the rotor leakage and the displaced volume. As with the compressor design, as Roots
expanders are downsized leakages increase to a point that they dominate the efficiency
performance of the expander and cause the efficiency to drop off significantly. The goal will be
to minimize leakages and determine the right size vs. speed design that optimizes the
compressor performance for the application. It is possible that the optimal expander design
might not match the compressors optimal speed range. If power is to be optimized, then a gear
ratio might be required. Also, since the specifications drive for improve performance over a
broad operating range; optimization will focus on the middle to high operating range.

The three target specifications for the compressor operated at 70°C, 100% relative humidity
inlet conditions are as follows.
1. High flow rate = 88 g/s flow rate, pressure ratio = 2.2 bar and power = ~6 kWe

2. Middle flow rate = 23 g/s flow rate, pressure ratio = 1.4 bar and power = ~1 kWe
3. High flow rate = 4.6 g/s flow rate, pressure ratio = less than compressor pressure and
expander does not provide any negative power (0 We)

The program investigated several concepts that were thought to improve the performance of
Roots expander. They are:
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1. Expander Baseline Experiments - An initial series of tests were conducted using non-
modified Eaton compressors units in reverse direction.

2. Inlet Port Experimentation - Several inlet port configurations were built and tested in an
attempt to characterize which inlet port attributes effect performance and improve the
expander efficiency and power generation. The inlet configurations were varied by inlet
angle, inlet diameter, and geometry near the rotor face.

3. Smaller Displacement Expander - A V170 expander was designed & built to characterize the
effect of reduced displacement on operating speed and efficiency. It was built from a
standard V250. .

4. FEinal Expander Design - A V210 expander was chosen as the compressor with the best
performance for the final application.

3.4.1 Expander Baseline Experiments

At the beginning of the program very limited research had been done on the development of
Roots expanders at Eaton. The initial series of test were conducted using non-modified Eaton
compressors spun in the reverse direction. The tests were run on a dynamometer where
pressurized air was flowed through the expander. The first series of tests were run on three
units a R200, a V250 Gen 1 and a V250 Gen 2. The V250 Gen 1 was set as the expander
baseline.

3.4.1.1 R200 Results

The R200 compressor design is different from the 3 lobe rotor V250 Gen 1 and Gen 2 since the
R200 uses a TVS 4 lobe rotor and its displacement is 50 cc/rev less or 200cc/rev. This unit was
first tested as a compressor to confirm the unit’s performance and then tested as an expander in
two configurations. The first expander configuration provided pressurized air to the
compressor’s inlet and the second configuration provided pressurized air to the outlet of the
compressor. The compressor inlet and outlet are outlined in Figure 42. The pressurized outlet
configuration depicted in Figure 42, proved to have best performance for the R200.

Figure 42: R200 with Pressurized Outlet
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3.4.1.2 V250 Gen 2 Results

The V250 Gen 2 compressor shown in Figure 43 is different in design when compared to the
V250 Gen 1 as changes to outlet geometry and rotor length were completed. Prior to expander
testing, the V250 Gen 2 unit was first tested as a compressor to confirm the unit’s performance.
The first configuration as an expander provided pressurized air to the compressor’s inlet (this is
the axial flow end), Figure 43. The second configuration provided pressurized air to the outlet of
the compressor (this is the perpendicular flow end), Figure 44. Historically, optimal performance
of a compressor, as an expander, has been found by pressurizing the outlet of the compressor.
This was true of the V250 Gen 2 as well.

When comparing the performance of the V250 Gen 2 to the V250 Gen 1 expander, the V250
Gen 2 did not produce as much power as the V250 Gen 1 at the 100% target but was slightly
better at the 25% target.

Figure 43: V250 Gen 2 with Pressurized Figure 44: V250 Gen 2 with Pressurized
Compressor Inlet Compressor Outlet

3.4.1.3 V250 Gen 1 Results

From the previous two sets of tests, it appeared that the V250 Gen 1 (Figure 45) had the best
opportunity to produce the most power as an expander. As such, it was decided to use this unit
as the baseline to investigate new designs or configurations.

3.4.2 Inlet Port Experimentation

Several inlet configurations were built and tested with the V250 Gen 1 unit in an attempt to
characterize which attributes effect performance as well as further improve the efficiency and
power generation. The inlet configurations were varied by inlet angle (Figure 46), inlet diameter
(Figure 47), and geometry near the rotor face.
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Figure 47: V250 Gen 1 Expander Inlet Figure 48: V250 Gen 1 Expander 90 deg (A)

Diameter Inlet vs. 90 deg (S) Inlet

The results from the first round of intake testing were graphed and are given in in Figure 49. Itis
important to note that the inlets tested were created from ABS plastic with a maximum operating
temperature of 115°C. This limited the upper pressure ratio capability of the test to 1.8 PR below
the required DOE target of 2.2 PR. Mass flow rate was accurate for both 25% and 100% DOE
targets. The reduced PR at 100% target influence the absolute values at that point however,
the relative values illustrate the effect of the design changes. Nine tests were run on this unit
when evaluating the inlet designs.

Inlet Geometry vs. Mechanical Efficiency

65.0
60.0 / e Unrestricted (baseline)
= Large Inlet Angle, Small Inlet Dia. (S)
55.0 - Large Inlet Angle, Small Inlet Dia. (A)
== |Unrestricted (baseline EOT)
50.0 - — Small Inlet Angle, Large Inlet Dia.
Medium Inlet Angle, Small Inlet Dia.
45.0 7 Medium Inlet Angle, Large Inlet Dia.
// Medium Inlet Angle, Large Inlet Dia.
40.0 / Medium Inlet Angle, Large Inlet Dia.
35.0 w ‘

Efficiency @ 25% Flow (%) Efficiency @ 100% Flow (%)
Figure 49: Inlet Test Results of V250 Gen 1 Expander

In summary, testing to this point suggested that an optimal inlet geometry for the V250 Gen 1
expander had the large inlet diameter, the small inclined angle and a means to directed air flow
towards the outside of the rotor housing, see Figures 50 and 51.
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Figure 50: V250 Gen 1 Expander Inlet with ~ Figure 51: V250 Gen 1 Rotor Housing with
Direct Air Flow Path Direct Air Flow Path

3.4.3 Smaller Displacement Expander

A V170 expander, Figure 52, was designed and built to assess a downsized expander. This is
the smallest expander tested at Eaton to date. It was built using a standard V250 Gen 1, the
one used in baseline testing, by adding shortened rotors and a fill plate to correct rotor timing
and prevent additional air leakage. The V250 Gen 1 rotor has a length of 66 mm and a
displacement of 247cc/rev. This rotor set was shortened to 44 mm in length equaling a 1/3
reduction in displacement to 165cc/rev.

The main objective of the V170 unit is to characterize the effect of reduced displacement on
operating speed and efficiency. To meet the 100% flow target, the V170 test has a 41.5%
increase in operating speed compared to the V250. Additionally, there is a reduction in
isentropic efficiency of 5.5% at this point. This translates to a reduction in power output from
4.35 kW with the V250 baseline to 4.04kW for the V170 at the 100% flow target.

Figure 52: V170 CAD Model

3.4.4 Final Expander Design

A V210 expander was chosen as the displacement with the best performance for the application
(refer to Figure 53 for a picture of the final assembly). The design features were as follows:
e Rotors: The rotor set was optimized for performance with a displacement of 210 cc/rev.
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P, .

Figure 53: V210 Expander Assembly

e Housing: The housing was fabricated from Eaton’s standard aluminum material and
incorporated communized shaft, bearing, and seal sizes as well as improved inlet
geometry.

e OQutlet: The expander outlet was originally designed as a glass reinforced plastic part
that locates the shaft ends with two incorporated sealed roller bearings with plastic dust
covers. Three different plastic materials were evaluated; see Figure 54, to determine the
lowest cost option that also met the expander requirements. The bottom right outlet
aluminum and was the material used for the Ballard testing.

Figure 54: Expander Outlet Plates in Multiple Materials

e Timing Gears: The timing gears used an existing Eaton plastic/steel hybrid design.
Figure 55 shows one of the two plastic timing gear materials that will be assessed.
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Figure 55: Plastic Expander Timing Gears

Step-up Gears:

e Figure 56: Steel Motor to Expander Step-Up Gears

e 56 shows the step-up gears that are used between the motor and expander. These
gears were used to optimize the speed points between the compressor and expander.
This set of gears drove the expander 2.2 times faster than the compressor.

Figure 56: Steel Motor to Expander Step-Up Gears

3.5 Motor and Controller Testing

Eaton has worked with several motor OEM’s over the years to apply their technologies to fuel
cell applications. The intention from the start was to use motor and controller technologies
previously developed and apply them here (Eaton had previously developed a 7 turn & 12 turn
motor). A baseline motor and controller performance map was created using the 7 turn
brushless DC motor and controller, Figure 57. The motor and controller map, was provided to
Argonne National Labs for integration into the Fuel Cell System model.
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3.5.1 Motor Design

The final motor configuration used existing motor rotor & stator that was adapted for this
application. In the development process it was determined that the 12 turn motor, which
produced 16 kilowatts, was required for best efficiency and performance for the operating range
of the air system. The motor supplier provided the controller, rotor, stator and stator housing.
Eaton designed and fabricated the mounting for the expander and compressor to both sides of
the motor. Figure 58 shows the electric motor layout with the end plates which incorporate the
motor bearings, water cooling passages and the mating surfaces for mounting the expander and
compressor.

LAGE

Figure 58: 12-turn Motor Layout

Figure 59 shows the motor and controller mounted on the dyno for testing.

P  ~*

P, W e
Figure 59: 12-Turn Motor and Controller on Test
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3.5.2 Motor Testing

Final testing on the 12-turn motor and controller resulted in the following performance maps.
Figure 60 shows the efficiency map test results per the test plan specifications 3.1.3 & 12.2.2.
The motor efficiency results are indicated by black lines and the electrical power supplied to the
motor are indicated by red lines. Figure 61 also displays the motor efficiency map but the red
lines represent the mechanical power, or shaft power, supplied by the motor, which will
ultimately be the power supplied to the compressor/expander assembly.
Power i, = Powerg)+Motor Losses
Volts x Current = Torque x rpm + Motor Losses
Where:

Power, = Red lines in Figure 60Figure 60

Power . = Red lines in Figure 61
This map includes the compressor/expander operational points which are mapped with the blue

dotted line. The data shows that the motor is about 95% efficient at the top-end operating point

(92 g/s flow rate, 2.5 bar) and drops down to ~75% efficiency at the 25% operating point (23 g/s
flow rate, minimum 1.5 bar).

12 Turn Motor Mechanical Efficlency and Power, 60 deg C Coolant
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Figure 60: 12-Turn Motor and Controller Power(in)Map
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Figure 61: Motor Power ., Map with Compressor Operation Zone Mapped
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3.6 System Testing

3.6.1 Approach

Prior to testing the AMS as a complete sub-unit a study was conducted to determine the best
way to test the unit in the lab. The strategy settled upon was an approach that tested the
compressor and motor separate from the expander. This strategy was chosen because it
presented the easiest means to control the compressor and expander and provide the best
results.

Figures 62 and 63 outline the setups for the two separate tests. As a side note, prior to running
these two tests, each of the individual components, compressor, motor and expander, were
tested both under room/dry conditions and then the performance maps were adjusted to the
specified operating conditions. When those tests were completed, the combined expander and
a non-powered motor (the non-powered motor is included in order to obtain the motor and
gearing parasitics in the expander mapping results), as shown in Figure 62, were tested
together to obtain its combined performance maps. This setup was tested both at, dry and wet
(wet is used to refer to the test being run at it specified relative humidity condition).

J - _ 1™ Comummaner + Matar + Comtratinr
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(map) the expander and
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Figure 62: Independent Control Strategy A

After the expander map was created it was used as the input condition for the full system
dynamometer test. This test combined the 12 turn motor with the V250 compressor and the
supercharger dynamometer, as shown in Figure 63. The dynamometer was used as a motor to
provide expander input power. The expander/motor maps generated in the first test was used
as inputs to the motoring dynamometer which simulates the expander characteristics.
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Figure 63: Independent Control Strategy B

3.6.2 Expander Component Testing

The expander was mounted to the dynamometer and pressurized air was supplied via an
electric driven R410 compressor as shown in Figure 64.

Figure 64: Dynamometer and Mounting Bench
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The V210 expander tested was a 3-lobe, aluminum billet rotor expander. It was designed to
operate at about half the speed of the compressor so that a larger, more efficient expander
could be used.

For this test, the expander was mounted directly to the dynamometer and tested to “dry” test
conditions. The inlet mass flow rate, inlet temperature, inlet pressure, outlet temperature, outlet
pressure, speed and torque were monitored and recorded.

Figure 65 is the detailed map for the V210 expander. The expander efficiency results are shown
by circular black lines. The output power of the expander is given by the angled red lines. The
vertical green lines are the compressor speeds and the horizontal blue lines are the temperature
differential of the air as it is expanded. The solid green line overlaid on the map is the 100%,
25% and idle operating points specified in the test plan. One can see that this expander has a
fairly broad efficient range.
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Figure 65: V210 Expander Map with Operating Points Mapped
Data for the 3 specified tests points, as tested, are as follow, derived from Figure 65 map:
Mass Delta
Flow PR kW RPM Eff. Temp
100% 88 2.2 3.6 9200 58 -43
25% 23 1.4 0.32 2300 39 -20
Idle 4.6 <1.2 -- -- -- --
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3.6.3 Motor Component Testing

Testing on the 12-turn motor & controller indicated that this motor configuration closely matched
the V250 compressor speed range. The efficiency was greater than 95% for the 100% flow point
and it only drops down to 75% efficiency at the 25% operating point.

Figures 66 and 67 are the efficiency maps for the motor and controller. Figure 66 shows the
motor efficiency results (shown by black lines) and the electrical power supplied to the motor
(shown by red lines). Figure 67 is also the motor efficiency map but the red lines are the
mechanical power, or shaft power, supplied by the motor (this will be the power supplied to the
compressor/expander assembly).

For reference, Figure 66 is the performance map of the motor with the electrical power supplied
to the motor or Power,. Figure 67 is the performance map of the motor with the mechanical
power coming out of the motor, shaft power, or Power . Below is the equation showing the
relationship between the two maps
Power,) = Power,)+Motor Losses
Power, = Volts x Current
Power = Torque x rpm

or
Volts x Current = Torque X rpm + Motor Losses
Where:
Power, = Red lines on Figure 66 graph
Power . = Red lines on Figure 67 graph
12 Turn Motor Mechanical Efficiency and Power, 60 deg C Coolant
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Figure 66: 12-Turn Motor and Controller Power,, Map
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12 Turn Motor Mechanical Efficiency and Power, 60 deg C Coolant
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Figure 67: Motor Power ., Map with Compressor Operation Zone Mapped

3.6.4 Compressor Component Testing

The V250 compressor tested is a 3-lobe, aluminum billet rotor compressor. It was designed to
have the highest efficiency island located in the mid-speed operating range. The reason for
placing the efficiency at this location was so that the maximum compressor efficiency would be
located where the fuel cell operated the most. If the maximum operating range was located at
maximum power point (i.e., 100% flow), then an alternative compressor would have been
chosen.

For this test, the compressor was mounted directly to the dynamometer. The inlet mass flow
rate, inlet temperature, inlet pressure, outlet temperature, outlet pressure, speed and torque
were monitored and recorded. A back pressure valve controlled the exhaust air from the
compressor for the purpose of controlling the compressor pressure ratio. Figure 68 is the
compressor mounted to the motor.

Figure 69 is the detailed map for the V250 compressor. The compressor efficiency results are
shown by circular black lines. The input power to the compressor is given by the angled red
lines. The vertical green lines are the compressor speeds and the horizontal blue lines are the
temperature increase of the air as it is compressed. The solid green line overlaid on the map is
the 100%, 25% and idle operating points specified in the test plan.

One can see that this compressor has a fairly broad efficient range. The compressor efficiency
is greater than 66% between 35% flow and 80% flow. This provides good overall operating
performance for a fuel cell application that has a broad operating range.

The map shows that the V250 compressor has a power requirement of 14.8 kW, an efficiency of
59%, a maximum temperature of 166C and an operating speed of 22000 rpm at the 100% flow
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point (92 g/s flow rate, 2.4 bar). At the 25% operating point (23 g/s flow rate, minimum 1.5 bar)
the power requirement drops to 1.4 kW, the efficiency raises to 63%, the temperature drops to
86C at an operating speed of 6000 rpm. When the compressor performance is evaluated to idle
the power required is 230 watts, the efficiency is 56%, the operating temperature is 60C and the
operating speed is 2000 rpm.

Mass Delta
Flow PR kW rpm Eff. Temp
100% 92 2.4 14.8 22000 59% 166C
25% 23 1.5 1.4 6000 63% 86C
Idle 4.6 1.2 0.23 2000 56% 60C
240
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Figure 69: V250 Compressor Map with Operating Points Mapped
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3.6.5 Sub-System Testing — Expander + Motor

The V210 expander was attached to the 12 turn motor and then mounted to the dynamometer
as shown in Figure 70. Pressurized air was supplied via a driven compressor. The expander
inlet air was temperature and humidity controlled. The exhaust air is vented to atmospheric
pressure via room exhaust vent.

— - - =
el

Fiure 70: hlf)ynammter & Mounting Bench

The results with the V210 expander with motor are shown in Figure 71. As with the other maps,
this map follows the same color line, output parameter relationship. The solid green line overlaid
on the map is the 100%, 25% and idle operating points specified in the test plan.

Figure 71 is the map for the relative humidity test performed on the V210 expander attached to
the motor. The tests were completed in accordance to the published test plan. This test did not
power the motor during the mapping process. Its purpose of inclusion was to obtain a combined
map with the step-up gear and parasitic losses.

V210 DOE Expander With RH

Effciency (%)

Dela T (deg C)
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Figure 71: The V210 Expander + Motor Results (Wet)
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The map shows that the V210 expander + motor produced less power than the expander alone,
which is expected. Adding the motor introduces more parasitic losses driving down the power
output and the overall efficiency.

V210 Expander w/Motor (Dry)
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Figure 72: The V210 Expander + Motor Results (Dry)

The combined expander and motor tested with dry conditions reduces the power output when
compared to the humidity tests. Figure 72 shows a partial map similar to the humidity test
shown in Figure 71.

3.6.6 Full-System Testing — Dynamometer + Motor + Compressor

The full-system test is designed to prove that the power generated by the expander provides an
equal reduction in power consumption at the motor controller. For the test, the V250
compressor and 12 turn motor were mounted to the supercharger dynamometer. The combined
expander and motor (wet) data was used as an input to the dynamometer to simulate the
expander power. The compressor inlet air temperature was controlled. The inlet mass flow
rate, inlet temperature, inlet pressure, outlet temperature, inlet pressure, speed, motor current
and voltage were measured. A back pressure was utilized in order to control the compressor
pressure ratio. The compressor exhaust was then vented to atmospheric pressure via room
exhaust vent.
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=

Motor

Figure 73: Motor + 260 Compressor

Figure 73 shows the layout of the full system test components with the dynamometer driving the
motor in place of the expander. Figure 74 shows the actual test setup with the motor and

compressor mounted to the dyno.

T 1',-
Figure 74: Full System Test with Motor and Compressor Mounted to the Dyno

The results of this test indicate that the mechanical power produced by the expander directly
translates into electrical power saved at the system level. The results are shown in the table

below.
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Table 8: Total System Power with and without Expander

System Power Without Expander

System Mass
Flow @ Comp. | PR @ Comp. KW,
100% 92 2.4 155
25% 23 15 1.9
ldle 4.6 12 0.4

System Power With Expander

System Mass
Flow @ Comp. | PR @ Comp. KW,
100% 92 2.4 121
25% 23 15 16
Idle 4.6 1.2 0.4

It must be noted that because there is a pressure and flow rate change between the air flow
entering and exiting the fuel cell, the compressor and expander operate at different speeds and
pressures. The power produced by the expander is directly influenced by the components of the
fuel cell that are before it in the system. Thus, a correlation method must be determined in order
to match the compressor operating point to the expander operating point.

The method used to correlate the compressor and expander operating points is critical for
accurate determination of the actual power consumed by the system at a given point. The test
matrix for this test was created by selecting speed and pressure ratio data points from the
expander + motor (wet) test. To determine the data points of the compressor + motor test to
capture, the speed of the expander was multiplied by the gear ratio for each point and the
pressure ratio was increased by 10% to account for the pressure losses through the fuel cell. To
more accurately determine total system power consumption during operation, the pressure
losses through the fuel cell should be characterized.

3.6.7 Full-System Noise Testing

The AMS was tested in Eaton’s acoustic dynamometer room. Figure 75 is a picture of the setup.
A sound pressure transducer was placed about 1 meter from the AMS to measure the noise
level. There were 3 tests run to see how Eaton’s noise abatement structure effectively reduced
AMS noise. The first test conducted included a noise deadening enclosure with noise
dampening material that enclosed the compressor. This test measured 95.6 dB(a) at full flow.
The second test had the noise deadening enclosure removed but the noise dampening material
remained attached to the compressor. The test saw an increase sound level of 2.7 dB(a) and
results measured were 98.3 dB(a). The last test had all the noise abatement removed and
measured a 100.4 dB(a), a 2.4 dB(a) increase.
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Figure 75: Noise Measurement Test Setup

3.6.8 Transient Time Testing

The AMS was easily able to accelerate from 10% flow to 90% flow in one second due to the

high power capability of the motor. It took about 3.5 kilo-joules to accelerate the AMS in one
second. Figure 76 presents the time dependent results.
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Figure 76: Compressor, Motor & Expander Acceleration Time Results

The test was set up with the compressor outlet ported to the expander inlet and the expander
outlet ported to room air, see Figure 77. Before the test was run, the rpm values which
correspond to the 10% and 90% flow points (10% = 9.2 g/s & 90% = 82.8 g/s) were determined.
These rpm points were programed into the controller, the controller voltage was set to 350 Vg
and the test stand was programmed to supply the appropriate current to accelerate the motor
from the 10% flow point to the 90% flow point in one second. The compressor inlet and outlet

pressure, inlet and outlet temperature & speed, power supply output, and mass flow were
monitored.
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Figure 77: AMS Acceleration Test Setup
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3.7 HD7 Fuel Cell Testing

3.7.1 Objective

The objective for the work done by Ballard was to assess the performance of Eaton’s new
compressor/ expander air delivery system on Ballard’s HD7 fuel cell system. This will require
bench marking the HD7 fuel cell performance with our baseline air delivery system, then test the
HD7 system with Eaton’s new compressor/ expander air delivery system.

3.7.2 [Executive Summary

Testing at Ballard was completed over 14 months from February 2015 to March 2016 using two
Eaton compressor/expander air delivery systems on two different Ballard test stations. System
1 was used for setup and software testing for integration into the Ballard HD7 module as well as
water injection testing. Unit 2 was used for assessment when integrated with the Ballard
module to compare with the incumbent Ballard air delivery system.

In addition to the assessment of the compressor the following work was also completed as part
of this project.

¢ Automated data collection using Matlab
e Transmission of test data to ANL for use in a fuel cell/compressor model

o Water injection testing to the compressor inlet as a possible method of reducing
complexity of future fuel cell modules.

3.7.3 Background
3.7.3.1 Objective

Testing was performed to assess a new air system provided by Eaton for use with the HD7
module, Ballard’s next generation heavy duty fuel cell system. The overall purpose of the testing
was to determine the performance (efficiency) benefits of the Eaton air management system
that incorporates an exhaust expander.

Fuel cells run with pressurized air, in some cases there is excess pressure and energy in the
exhaust stream of the fuel cell. This series of tests investigated the advantage of using higher
pressurized inlet air and the recapturing of the higher exhaust pressure that is a result of the
higher inlet pressure. Figure 78 below shows the Eaton compressor/expander setup with HD7
heavy duty module.
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Figure 78: Test Setup

3.7.3.2 Test Plan

The following diagram illustrates the test plan for the two Eaton compressors with expander

units.

3.74

HD7 Baseline

HD7 Module FATand 100 - Operationwith existing air
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Visual Inspection
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A

without Module Module and Final Testing

End of Test Inspection

Figure 79: Testing Flow Chart

Results and Discussion

3.7.4.1 Parameters recorded and Argonne National Laboratories Co-operation

The following parameters were recorded for each test and the data shared with ANL for their

model development activities.

Actual percent power (%)

Stack Current (Amps-DC)

Stack Voltage (Volts-DC)

Stack Gross Power (kW)

Cathode mass flow (gps)
Compressor outlet temperature (°C)
Cathode in Humidifier in temperature (°C)
Stack Ox inlet temperature (°C)
Stack Ox outlet temperature (°C)
Stack Fuel inlet pressure

Stack Coolant inlet temperature
Stack coolant outlet temperature
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e Module coolant inlet temperature

e Module coolant outlet temperature

e Cathode Out Humidifier out temperature (°C)
e Compressor out/Aftercooler in pressure (barg)
¢ Humidifier in pressure (barg)

e Stack Ox in pressure (barg)

e Stack Ox outlet pressure (barg)

¢ Humidifier shell outlet pressure (barg)

e Compressor current draw (A)

o Compressor power draw(Calculated from compressor current draw and stack voltage)
e Compressor speed(RPM)

Data from all test configurations were shared and analysed by ANL. Their data and results are
not part of this report.

3.7.4.2 Baseline Testing

The HD7 system was operated using the existing air system. The load profile used was a
combination of down-polarizations, up polarizations, constant current operation, and several
cycles of the “Whistler Drive Cycle”, which is a dynamic load profile taken from field data. The
entire baseline test lasted for approximately 3 days. The current drawn from the system as a
function of time is shown in Figure 80 below.

Baseline - Module Current

———
480 -{|— ModuleCurrent

0 : : i |
0 0.5 1 1.5 2 25 3
Time(days)

Figure 80: Baseline Testing - Module Current
During testing, a data acquisition system logs process parameters internal to the module. These

include stack specific parameters, including voltage and current, as well as air system specific
parameters, including flows, temperatures and pressures measured throughout the air system.
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Figure 81 to Figure 86 below provide a graphical representation of a sample of the data

collected.
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Figure 81: Baseline Testing - Stack Current and Voltage
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Figure 82: Baseline Testing - Oxidant Mass Flow

53




Eaton DE-EE0005665
Final Scientific/Technical Report
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Figure 83: Baseline Testing - Oxidant Temperatures

Baseline - Oxidant & Fuel Pressures
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Figure 84: Baseline Testing - Oxidant and Fuel Pressures
Additionally, the compressor current and power were also logged, as shown in the below

figures. The data collected can be used to directly compare the performance of the existing
system with Eaton’s Air Management System, including operation with the expander.
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Figure 85: Baseline Testing — Compressor Current and Speed
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Figure 86: Baseline Testing — Compressor Power
The performance of the incumbent air delivery system with the Ballard HD7 fuel cell module

(FCM) had an efficiency of 48.1% LHV H2 at the 240A fuel cell stack steady state operating
point of 220A Fuel Cell current.

LHV Efficiency = Net Power (kW) / (fuel flow(g/s))* LHV constant (120.0412 kJ/g for hydrogen))
Equation 1: LHV efficiency Calculation
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3.7.4.3 Eaton Compressor/Expander Testing

3.7.4.3.1 Integration

Integration of the Eaton compressor/expander system with the HD7 fuel cell was successfully
completed as depicted in Figure 87.

- A 3

Figure 87: Eaton Air Management System Partiavlly Installed in Ballard’s ompressor test
stand.

3.7.4.3.2 Eaton Compressor Only in Configuration 1

Mechanically, the existing air-kit was removed, and a new air-kit was developed, based around
the Eaton system. The compressor and controller were both packaged into the new air kit, and
the oxidant plumbing was re-worked to accommodate. Also, a coolant loop was incorporated to
controller. Test 1 was to test the compressor only with the expander removed based on the

diagram shown in Figure 88.
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Figure 88: Configuration 1 Setup
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The load profile used was a combination of down-polarizations, up polarizations, constant
current operation, and several cycles of the “Whistler Drive Cycle”, which is a dynamic load
profile taken from field data. The entire test lasted for approximately three days.

During testing, a data acquisition system logged process parameters internal to the module.
These include stack specific parameters, including voltage and current, as well as air system
specific parameters, including flows, temperatures and pressures measured throughout the air
system.

The entire baseline test lasted for approximately three days. The current drawn from the system
as a function of time is shown in Figure 89
Eaton Compressor - Module Current
480 - ‘—ModuleCrurrentb
440 -
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400 Down Polarization Multiple Whistler Drive
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Figure 89. Configuration 1 Testing - Module Current

360 - Cycles

During testing, a data acquisition system logged process parameters internal to the module.
These include stack specific parameters, including voltage and current, as well as air system
specific parameters, including flows, temperatures and pressures measured throughout the air
system. Figure 90 through Figure 93 provide a graphical representation of a sample of the data
collected.
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 Eaton Compressor - Module Net Power & Percent Power
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Figure 90. Configuration 1 Testing — Module Net Power and Percent Power
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Figure 91. Configuration 1 Testing - Oxidant Mass Flow
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Figure 92. Baseline Testing - Oxidant Temperatures

Baseline - Oxidant & Fuel Pressures
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Figure 93. Baseline Testing - Oxidant and Fuel Pressures

Additionally, the compressor current and power were logged, as shown in Figure 94 and Figure
95. The data collected can be used to directly compare the performance of the existing system
with Eaton’s Air Management System.
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Figure 94. Configuration 1 Testing — Compressor Current and Speed
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Figure 95. Configuration 1 Testing — Compressor Power
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Figure 96: Ballard HD7 Module with Eaton Air Managment System

Using data from the first completed cycle the performance of the Eaton compressor with the
Ballard HD7 FCM had an efficiency of 47.4% LHV H2 at the steady state operating point of
240A Fuel Cell current, slightly less than the Ballard incumbent system.

3.7.4.4 Eaton Compressor with Expander in Configuration 2

The proposed setup for configuration 2 is shown in Figure 97 below. Testing with the Eaton
Compressor/Expander was limited to non-business hours due to the excessive noise of the unit
in operation thus severely limiting operations on the Ballard test bench. Due to time constraints
with test station availability and there was limited benefit expected in this setup the testing was
abandoned.
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Figure 97: Configuration 2 Test Setup
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3.7.4.5 Eaton Compressor with Expander in Configuration 3

The HD7 system operated using the upgraded compressor air system in position 3, however
was only able to operate up to 180A during the initial run and shutdown from a fuel cell alarm
due to air pressure being outside of specification. A second attempt was made with the
addition of a smaller bypass valve around the expander to prevent excessive pressure drop that
was the suspected cause of inoperability for the first trial. Unfortunately this too was
unsuccessful. The unit was able to operate up to 120A followed by a 60A steady state point
before shutting down and not able to follow the test protocol as designed.

Figure 98 below shows the test setup for configuration 3
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Figure 98: Configuration 3 test set-up
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Figure 99: Configuration 3 Testing - Module Current
During testing, a data acquisition system logged process parameters internal to the module.

These include stack-specific parameters, including voltage and current, as well as air system-
specific parameters, including flows, temperatures and pressures measured throughout the air
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system. Figure 100 through Figure 103 provide a graphical representation of a sample of the
data collected.
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Figure 100: Configuration 3 Testing — Module Net Power and Percent Power
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Figure 101: Configuration 3 Testing - Oxidant Mass Flow
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Figure 102: Configuration 3 Testing — Compressor Current and Speed
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Figure 103: Configuration 3 Testing — Compressor Power

3.7.4.6 Water Injection Testing

Due to Ballard test station availability issues only the initial water injection tests were able to be
performed providing proof of concept for humidification and temperature reduction of the
compressor air outlet temperature.
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Compressor Flow Pressure temperature Dew Point | H20 injected

RPM (8/s) (barg) (°) (°Q) (ml/min)
11000 50.1 0.49 88.1 22.8 0
11000 51 0.49 42.4 42.1 500
11000 50.5 0.49 42.3 42.1 250

3.7.5 Conclusions

Table 9: Water Injection Results

Due to the low pressure of the fuel cell exhaust there does not seem to be a benefit for the
Eaton compressor/expander combination and results in a less efficient air delivery system.

These results suggest the Eaton compressor with expander is not a viable product for the HD7
fuel cell module in the current configuration. The current technical direction is to operate PEM
fuel cells at lower pressures thus reducing likelihood of expander technology being economically
feasible in this application.
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4 PRODUCTS DEVELOPED/TECHNOLOGY TRANSFER ACTIVITIES

Dale Stretch presented at the following conferences over the course of the program:

2013 DOE Hydrogen and Fuel Cells Program Review on May 14, 2013.

U.S. DRIVE Technical Meetings - Fuel Cell Tech Team (FCTT), February 11, 2014
2014 DOE Hydrogen and Fuel Cells Program Review on June 14, 2014.

U.S. DRIVE Technical Meetings - Fuel Cell Tech Team (FCTT), February 11, 2015
2015 DOE Hydrogen and Fuel Cells Merit Review on June 10, 2015.

No patents have been applied for under this program.
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5 COMPUTER MODELING DETAILS

Computer modeling details can be found in Section 3.1: Analytical Development of the
Compressor & Expander using CFD Modeling.
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