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Dielectric / Semiconductor Metamaterials

• First theorized by Lewin in 1947
• Proc. Inst. Elec. Eng. 94 65 (1947)

• Utilize Mie resonances in dielectric particles
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Optical Dielectric Metamaterials

Nonlinear Enhancement

Particle Resonances

Kuznetsov et. al. Nano Lett (2012), 
Evlyukhin et. al. Nano Lett (2012), 
Kivshar et. al. Nano Lett (2013)

Metasurfaces

Valentine, Nano Lett (2014), 
Brongersma, Science (2014)

Perfect / Magnetic Reflectors

Brener et. al. Optica (2014), Valentine et. 
al. ACS Phot. (2015)

Kivshar, Neshev et. al. Nano Lett (2014), 
ACS Phot. (2015)
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Spectral Response

Bandwidth Limited By 
Radiative Damping

Moitra et. al. ACS Photonics, 2, 692−698 (2015) 
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Fano-Resonant Metamaterials

Plasmonic Fano-resonant Metamaterials:

• Dominated by γNR , Q-factors ~10

High-Q Requirements
1. Minimize non-radiative damping (γNR)
2. Minimize radiative damping (γR)

Giessen et al, Nat. Mat., 2010

Zheludev et al, Opt. Expr., 2013 Shvets et al Nat Comm., 2014

Dielectric Fano-resonant Metamaterials:

• Reduced γNR , Q-factors ~100
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Dark and Bright Collective Modes
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Resonator 2: 
“Dark” Mode

Resonator 1: 
“Bright” Mode
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Key Points:
1. Reduction of γ2 increases the Q-factor
2. In the limit of γ2 → 0, dT/dω α κ-1

minimize γ2
minimize κ

Si

Yang, Y. et. al. Nature Communications 5, 5753 (2014)
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Reducing Radiative Losses
Isolated Resonator

Interacting Resonators

Radiative Losses 
(Large γR)

Near-field Coupling 

Minimize Radiative Losses

Fedotov et al, PRL (2010)
Jenkins et al, PRL (2013)

Coherent Metamaterials
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Implementation in Silicon

• rout = 225nm
• g1 = 70nm
• g2 = 80nm
• t = 110nm
• p1 = 750nm
• p2 = 750nm

Yang, Y. et. al. Nature Communications 5, 5753 (2014)
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Implementation in Silicon

Experimental Q-factor: 483
Theoretical Q-factor: 1176
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Role of Coupling Coefficient

Increasing g1 reduces κ, Increases Q

Q-factor = 30,000 @ 
g1 = 74 nm (Δ = 2 nm)

Δ = g2 – g1
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Mesoscale Interactions - Experimental

• Q-factor is strong function of # of 
resonators

• Q-factor remains limited by radiative and 
non-radiative loss

Yang, Y. et. al. Nature Communications 5, 5753 (2014)
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Strong Field Enhancement

Ring Resonator (Q = 1176) Gap Resonator (Q = 374)
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Comparison to PC Slabs

• Advantages of MM Approach
• Ability to control Q-factor

• Field localization

• Disadvantages of MM Approach
• Complex structure = lower Q-factor

See also: Paddon et. al. PRB (2000), Ochiai et. al. PRB (2001), Fan et. al. PRB (2002) 

Lee et. al. PRL 109, 067401 (2012)
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Refractive Index Sensing
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Figure of Merit

• Figure of Merit

• FOM = S/Δλ

• S = 289 nm / RIU

• Δλ = 2.8 nm

FOM = 103

• LSPR Sensors (Fano)1

• FOM up to ~20

• SPP Sensors (weak 
localization)2

• FOM up to ~300

Sensitivity

1Zhang et. al. Nano Lett (2011), 2Kabashin et. al. Nat Mat. (2009)
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Focusing the Field

• rout = 225nm
• g3 = 70nm
• g4 = 50nm
• t = 110nm
• p1 = 750nm
• p2 = 800nm

Experimental Q-factor: 129
Theoretical Q-factor: 374
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Third Harmonic Configuration

• Polycrystalline silicon on quartz
•
• r = 210nm
• g = 60nm
• t = 120nm
• p1 = p2 = 750nm
• a = 200nm
• b = 700nm

Theoretical Q-factor: 1498
Experimental Q-factor: 466

( 3 ) 18 2 -2~ 2.79 10 m VSiχ 
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Nonlinear Measurements

Illumination 
diameter: 15µm 
(225 µm2)
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Third Harmonic Generation

• THG Enhancement Factor of 1.5 x 105

• Pump at 1350 nm, average power: 25mW
• Peak Intensity: 1.6 GW/cm2
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Absolute Conversion Efficiency

• Peak efficiency = 1.2 x 10-6 (theory = 10-4)
• Limit not yet clear (most likely TPA limited at higher power)
• Discrepancy with theory (1) lower Q-factor, (2) angle of incidence 

dispersion
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Dispersion with Angle of Incidence
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Conclusion

Si-Based Fano Metamaterials

• Low-loss, high efficiency

• Offer real advantages over metal 
implementations (higher Q, damage 

threshold)

• Potential nonlinear applications: all 
optical modulation and self-adjusting 

optics
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Thanks!

• Advisor
• Prof. Jason Valentine

• CNMS @ ORNL
• Ivan Kravchenko

• Abdelaziz Boulesbaa

• Dayrl Briggs 

• Alexander Puretzky

• David Geohegan
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Intensity Dependent Index

• @0.8 GW/cm2

• 0.93 nm shift in THG (2.79 
nm at fundamental)

• 1st order approx:

• Based on field, 
n2 = 2.7x10-18m2W-1:

• Δn ~ 0.011
• Δλ ~ 1.17nm in THG (3.5nm 

at fundamental)
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Exploring the Kerr Effect

• T – transmittance @ λ
• T0 – linear (low power) transmittance @ λ
• Max modulation depth: 36%

unpublished
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Comparison to Theory

• Nonlinear simulations in Lumerical
• Silicon props:
• Discrepancy: (1) Lower Q-factor, (2) finite angle of 

incidence, (3) free carrier absorption

( 3 ) 18 2 -22.79 10 m VSiχ  

~

,
~

12 -15 10 mW 

Simulation Experiment

,

unpublished
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Optical Dielectric Metamaterials

Fano Resonances

Overlapping Resonances

Kivshar et. al. ACS Nano (2013)
Luk’yanchuk et. al. Nat. Comm (2013)

Kivshar et. al. Nano Lett (2013), Shvets, 
Nat. Comm (2014)

Magnetic Resonances

Kuznetsov et. al. Nano Lett (2012), 
Evlyukhin et. al. Nano Lett (2012)

Metasurfaces

Valentine, Nano Lett (2014), 
Brongersma, Science (2014)


