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Dielectric / Semiconductor Metamaterials

® First theorized by Lewin in 1947
® Proc. Inst. Elec. Eng. 94 65 (1947)

® Utilize Mie resonances in dielectric particles
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Optical Dielectric Metamaterials

Particle Resonances Perfect / Magnetic Reflectors
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Kuznetsov et. al. Nano Lett (2012), Brener et. al. Optica (2014), Valentine et.
Evlyukhin et. al. Nano Lett (2012), al. ACS Phot. (2015)
Kivsha_r et. al. Nano Lett (2013)
Nonlinear Enhancement Metasurfaces

Peak pump intensity (GW/cm?)
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Kivshar, Neshev et. al. Nano Lett (2014), Valentine, Nano Lett (2014),

ACS Phot. (2015 Brongersma, Science (2014)
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Spectral Response
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Moitra et. al. ACS Photonics, 2, 692-698 (2015)
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Fano-Resonant Metamaterials

High-Q Requirements - A 4 /
1. Minimize non-radiative damping (yz) N [ A £

2. | Minimize radiative damping (7z) A
Plasmonic Fano-resonant Metamaterials: wl xf i)/
. ‘X)‘
¢ D0m|nated by yNR: Q-faCtorS ~10 ulc ' 140 ' 1s|c ' 1slc ' zclno ' zzlo
Dielectric Fano-resonant Metamaterials: Giessen et al, Nat. Mat., 2010

* Reduced v,y , Q-factors ~100
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Dark and Bright Collective Modes

Resonator 2: Resonator 1:
“Dark” Mode “Bright” Mode

¢ %h = Y1,RTY1,NR

Y2 = V2,rRTV2NR

Key Points:
1. Reduction of y, increases the Q-factor =—=> minimize y,
2. Inthe limit of y, > 0, d7/dw a x! —  minimize x

Yang, Y. et. al. Nature Communications 5, 5753 (2014)
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Reducing Radiative Losses

Isolated Resonator

Radiative Losses

(Large 72 _

Interacting Resonators
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Near-field Coupling
Minimize Radiative Losses
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Coherent Metamaterials
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Implementation in Silicon
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Implementation in Silicon
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Role of Coupling Coefficient
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Mesoscale Interactions - Experimental
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® (Q-factor is strong function of # of

500
resonators 200
® Q-factor remains limited by radiative and £
non-radiative loss -
© 200
Yang, Y. et. al. Nature Communications 5, 5753 (2014) 100
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Comparison to PC Slabs

® Advantages of MM Approach
* Ability to control Q-factor
* Field localization

® Disadvantages of MM Approach
®* Complex structure = lower Q-factor Leeet.al. PRL 109, 067401 (2012)
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See also: Paddon et. al. PRB (2000), Ochiai et. al. PRB (2001), Fan et. al. PRB (2002)
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Refractive Index Sensing
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Figure of Merit

Sensitivit
Y ® Figure of Merit
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1356 °* FOM = S/AA
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s °* AA=2.8nm

= 1352

£ 1348 289 nm/RIU | ® LSPR Sensors (Fano)
1346} * FOM up to ~20

T40 147 1.42 143 144 . SPPSensors (weak
Refractive Index localization)?

* FOM up to ~300
1Zhang et. al. Nano Lett (2011), “Kabashin et. al. Nat Mat. (2009)
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Focusing the Field
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p,=3800nm|Theoretical Q-factor: 374
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Third Harmonic Configuration

[E/IE,|

Quartz

—

Polycrystalline silicon on quartz
xo ~2.79%107*m?V?

r=210nm
g = 60nm
® t=120nm

Theoretical Q-factor: 1498
Experimental Q-factor: 466 0
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Nonlinear Measurements

Lock-in Amplifier
Chopper Controller

Tungsten-Halogen
Lamp

Chameleon Ti-Sapphire Laser Half Waveplate €
+Mira OPO +Polarizer
80MHz, 250fs, 1-1.6pum

PMT

Multiphoton Filter

Sample

Spectrometer

o < Objective Objective o
Chopper  Flip Mirror 5% 0.1 4NA1 60x, 0.95NA Flip Mirror

llumination
diameter: 15um
(225 um?)
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Third Harmonic Generation
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® THG Enhancement Factor of 1.5 x 10°
® Pump at 1350 nm, average power: 25mW EF =
® Peak Intensity: 1.6 GW/cm? B,W,Sl'Fl'[m

3w,MM
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Absolute Conversion Efficiency

Peak Pump Intensity (GW cm™)
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® Peak efficiency = 1.2 x 10°® (theory = 10-%)
® Limit not yet clear (most likely TPA limited at higher power)

® Discrepancy with theory (1) lower Q-factor, (2) angle of incidence
dispersion
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Dispersion with Angle of Incidence
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Conclusion

g
*°*Si-Based Fano Metamaterials
* Low-loss, high efficiency

* Offer real advantages over metal
implementations (higher Q, damage
threshold)

® Potential nonlinear applications: all

optical modulation and self-adjusting SRS SRRl FEEg
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Intensity Dependent Index

Fundamental Wavelength(nm)

® @08 GW/Cm2 x10° 13.30 13.40 1.3-50 13.60 13.70

° 0.93 nmshiftin THG (2.79 §
nm at fundamental) 27 e —08GWcm? !
® 1st order approx: S R i
, , %1.0- peak = ° : L
J, EF By E a
”:”2(Si)]0 l v N :o{
o _ Si £0.5 |
Based on field, S : ;
n, =2.7x10¥m2wW-1: O - é'i. .

°* An~0.011 440 445 450 455 460

. Third Harmonic Wavelength(nm)
®* AA~1.17nm in THG (3.5nm
at fundamental)
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Exploring the Kerr Effect

Peak Pump Intensity (GW cm™) (T-T)/T,,
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® T—transmittance @ A
® T,—linear (low power) transmittance @ A
® Max modulation depth: 36%

unpublished
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Exploring the Kerr Effect

Peak Pump Intensity (GW cm™) (T-T)/T,,
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Exploring the Kerr Effect

Peak Pump Intensity (GW cm™) (T-T)/T,,
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® T—transmittance @ A
® T,—linear (low power) transmittance @ A
® Max modulation depth: 36%

unpublished
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Comparison to Theory

Simulation Experiment
Peak Pump Intensity (GW cm™) (T—TO)/T o Peak Pump Intensity (GW cm?) (T-T)/T,
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£ [ - 1700 = 1 30
£1356 £1356
5 - 1600 5 |50
15 - 500 O
Q
‘;" 4% ;352 |
1352
. 0 5 0
é 200 é 10
100 s

1348 21348
5 0 7 -20

30 40
Average Pump Power (mW)

® Nonlinear simulations in Lumerical
® Silicon props: y,, =2.79x10"*m?*V?2 B=5x10""mW"

® Discrepancy: (1) Lower Q-factor, (2) finite angle of

incidence, (3) free carrier absorption
unpublished
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Optical Dielectric Metamaterials

Magnetic Resonances Overlappmg Resonances
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Kuznetsov et. al. Nano Lett (2012), Kivshar et. al. ACS Nano (2013)
Evlyukhin et. al. Nano Lett (2012) Luk’yanchuk et. al. Nat. Comm (2013)
Fano Resonances Metasurfaces
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