

Geometric Hitting Set for Segments of Few Orientations

Sndor P. Fekete (TU Braunschweig)

Kan Huang (Stony Brook University)

Joseph S. B. Mitchell (Stony Brook University)

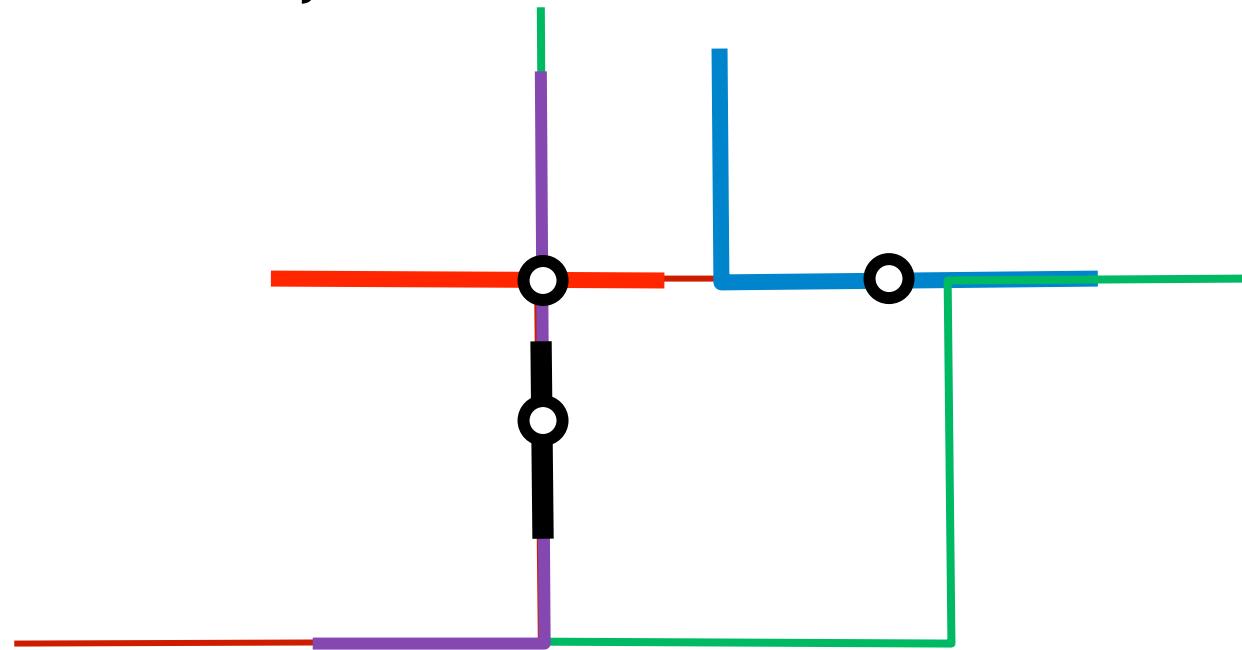
Ojas Parekh (Sandia National Laboratories)

Cynthia A. Phillips (Sandia National Laboratories)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

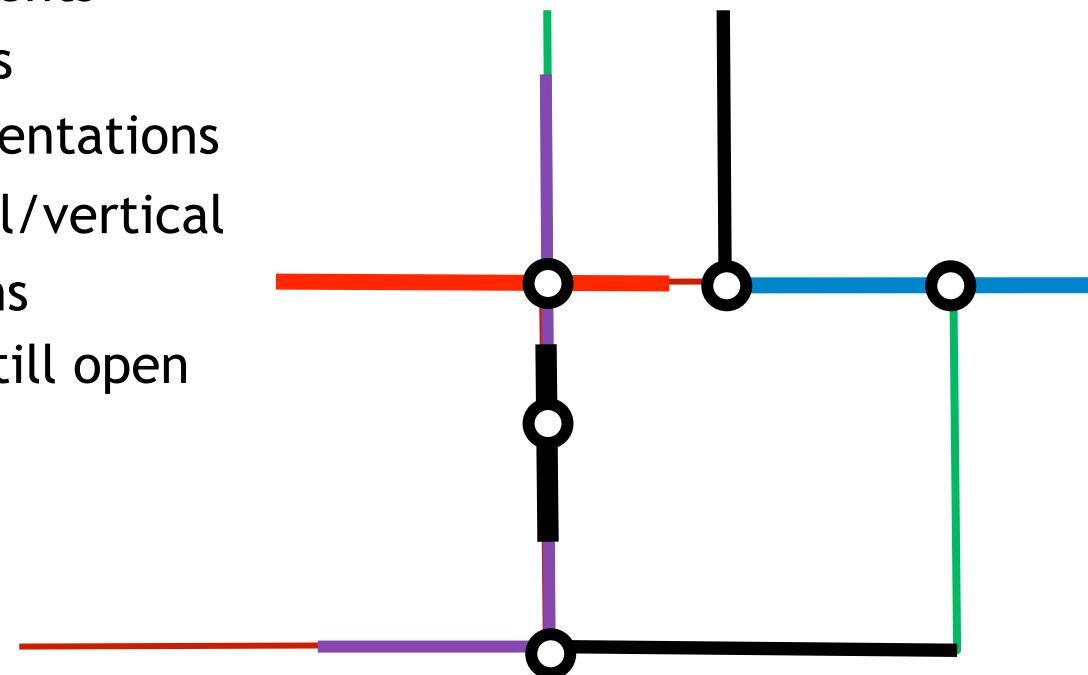
Path Monitoring: Ultimate Goal

- Given: Trajectories in the plane. Segments connecting waypoints.
- Observe (**hit**) each trajectory at least once
 - “Sensor placement”
 - Service placement in a city



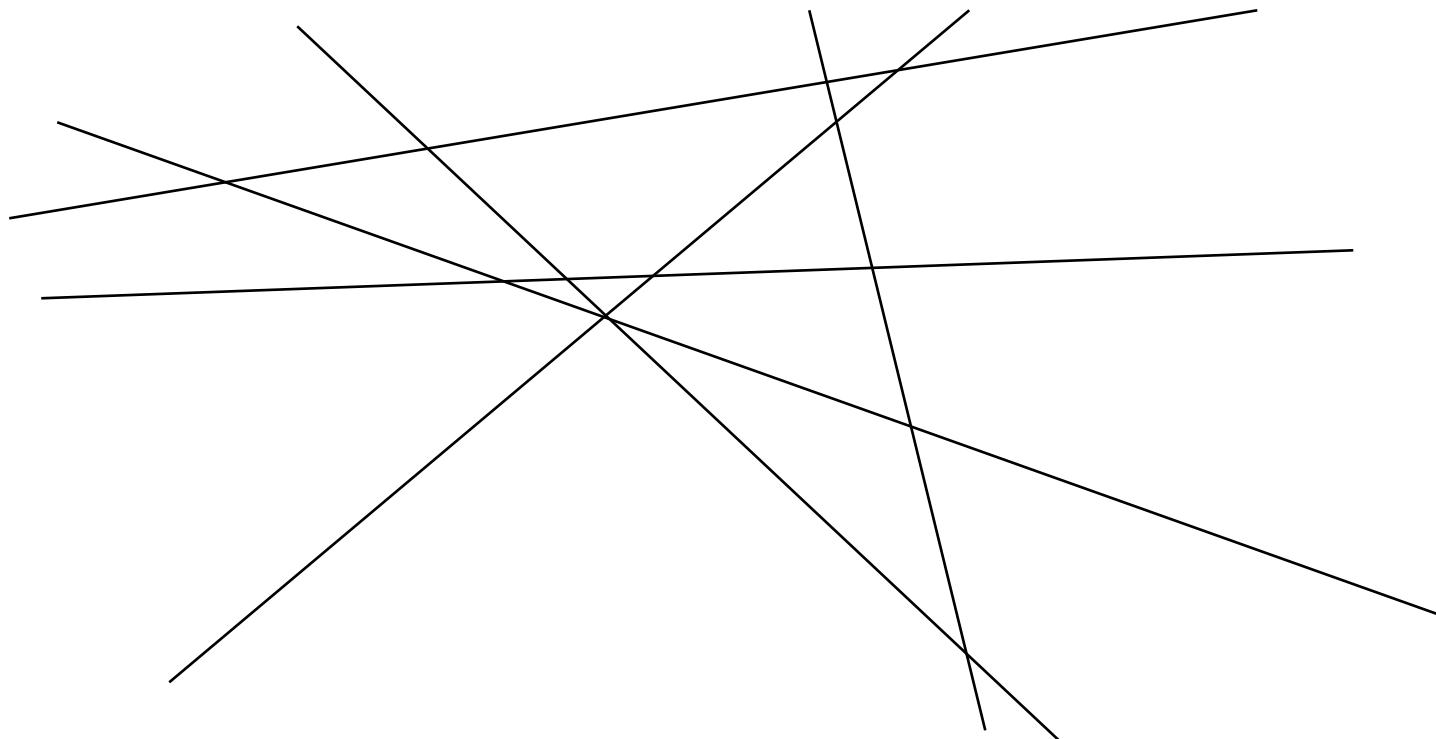
Path Monitoring: Simplified Goal

- Straight lines
 - Lines, rays, segments
 - Arbitrary overlaps
- Limited number of orientations
 - Largely horizontal/vertical
 - Also 3 orientations
- Considerable theory still open
- Guide heuristics



Hitting lines in the Plane (previous results)

- Arbitrary orientations
- Max SNP-hard (Kumar, Arya, Ramesh 2000); APX-hard (Brodén, Hammar, Nilsson, 2001)
- Greedy is $\log(\text{OPT})$ approximation (Kovaleva, Spieksma 2006)
- Greedy is $\Omega(\log n)$ approximation (Dumitrescu, Jiang 2013)



WAOA September 2015

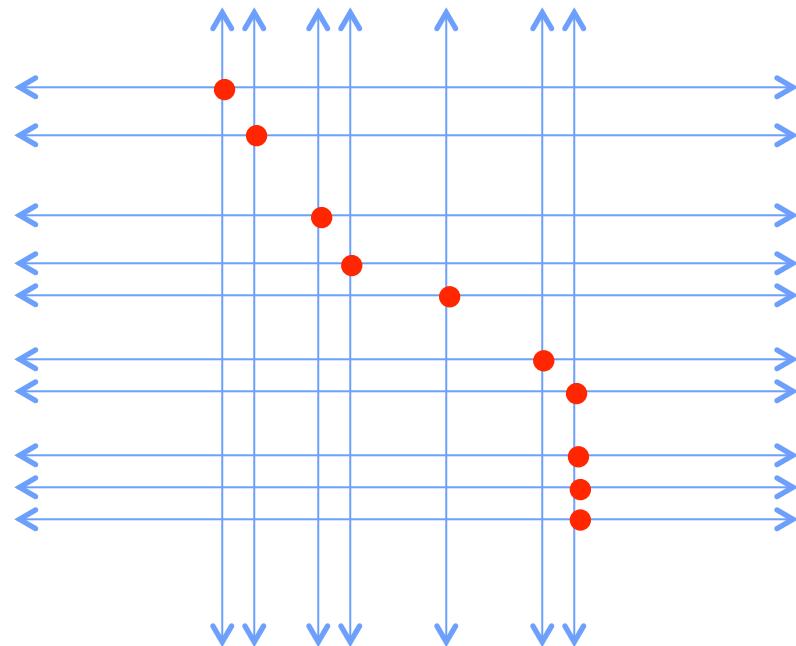
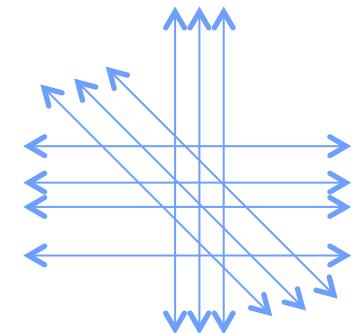
Results

Objects to hit	Complexity	Approximation
Lines, 3 slopes	NP-hard	1.4
Lines, Axis-parallel 3D	NP-hard	3 (trivial)
Vertical lines/ Horizontal rays	$O(nM)$, where $M =$ Bipartite matching	1
Vertical lines/ Horizontal segments	NP-hard even unit-length segments	5/3
Horizontal and vertical segments	APX-hard NP-hard unit size	2
Group of k segments from r orientations	LP-based	kr
Triangle-free segments	$O(n)$ not LP-based	3

- n total objects to hit
- All objects in the plane unless otherwise indicated.

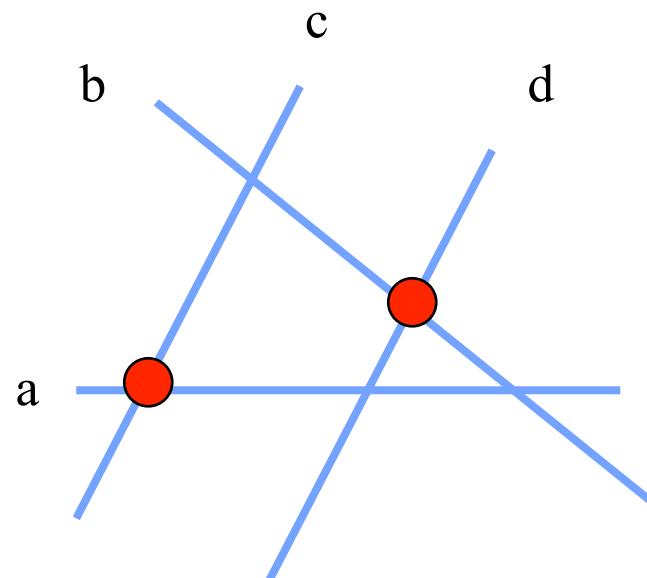
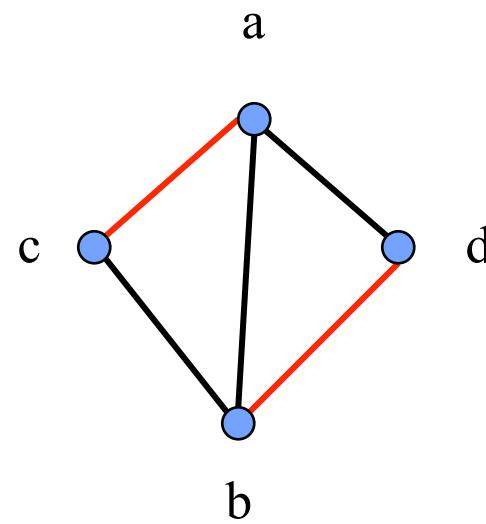
Easy problem: Lines, 2 Orientations

- Simple greedy
- m vertical, n horizontal
- WLOG $m \leq n$ then $OPT = n$
- But NP hard for 3 orientations in the plane



Easy problem: At Most Two Objects per Point

- Edge cover in the intersection graph. Matching + greedy
- Arbitrary orientations



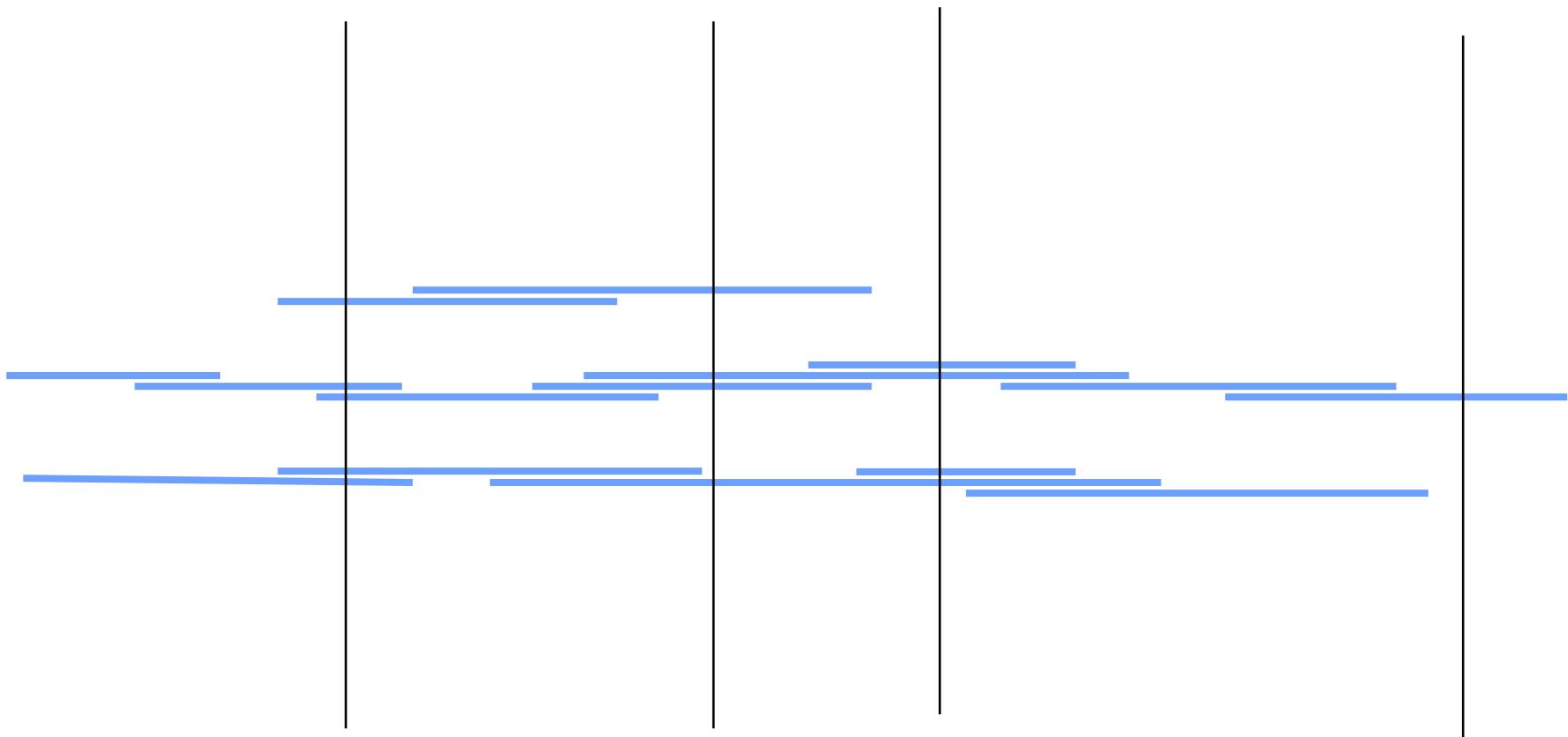
Intersection graph

Easy Problem: Segments on a Line

- Interval stabbing on a line
- Optimal Algorithm:
 - Scan left to right (events = segment endpoints)
 - Place a point when a segment ends and remove all segments that are hit
- Linear time after sorting

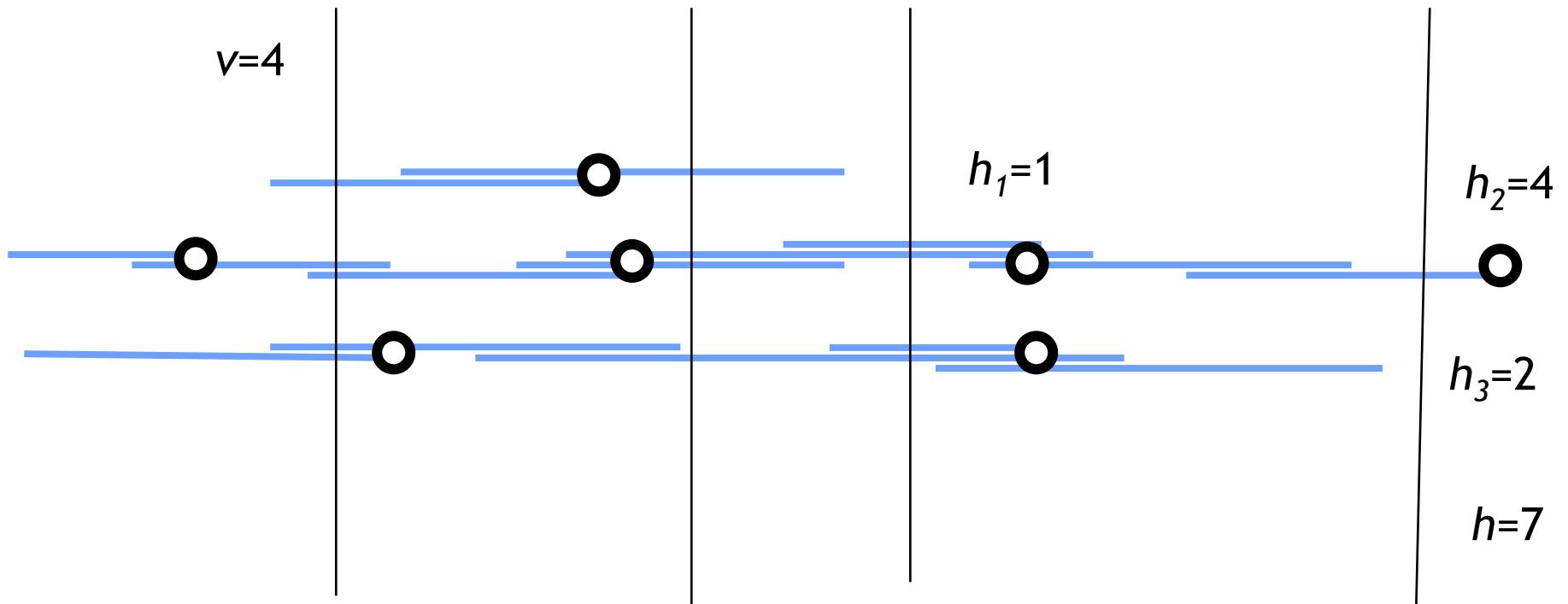
Vertical Lines, Horizontal Segments Approx

- 5/3-approximation (recall NP-hard)



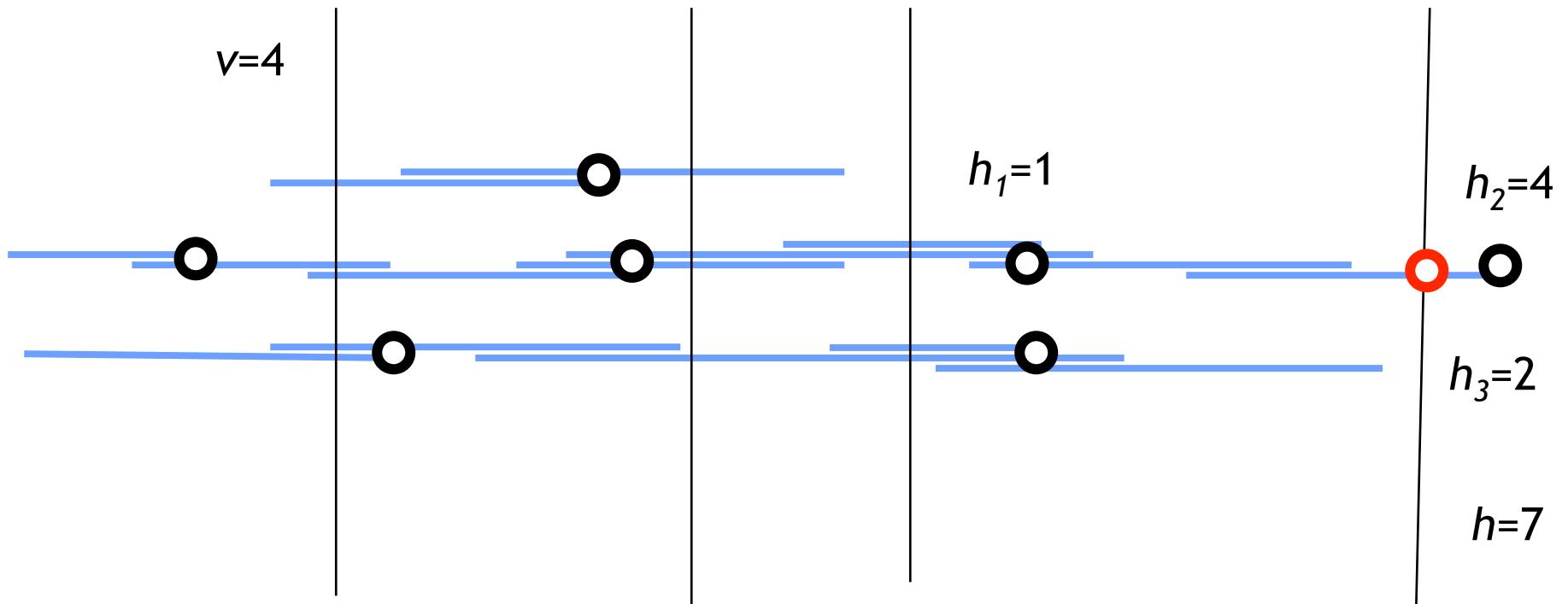
Vertical Lines, Horizontal Segments Approx

- Lower bounds:
 1. $v = \# \text{ vertical lines}$,
 2. optimal coverage of each horizontal line. $h = h_1 + h_2 + h_3$



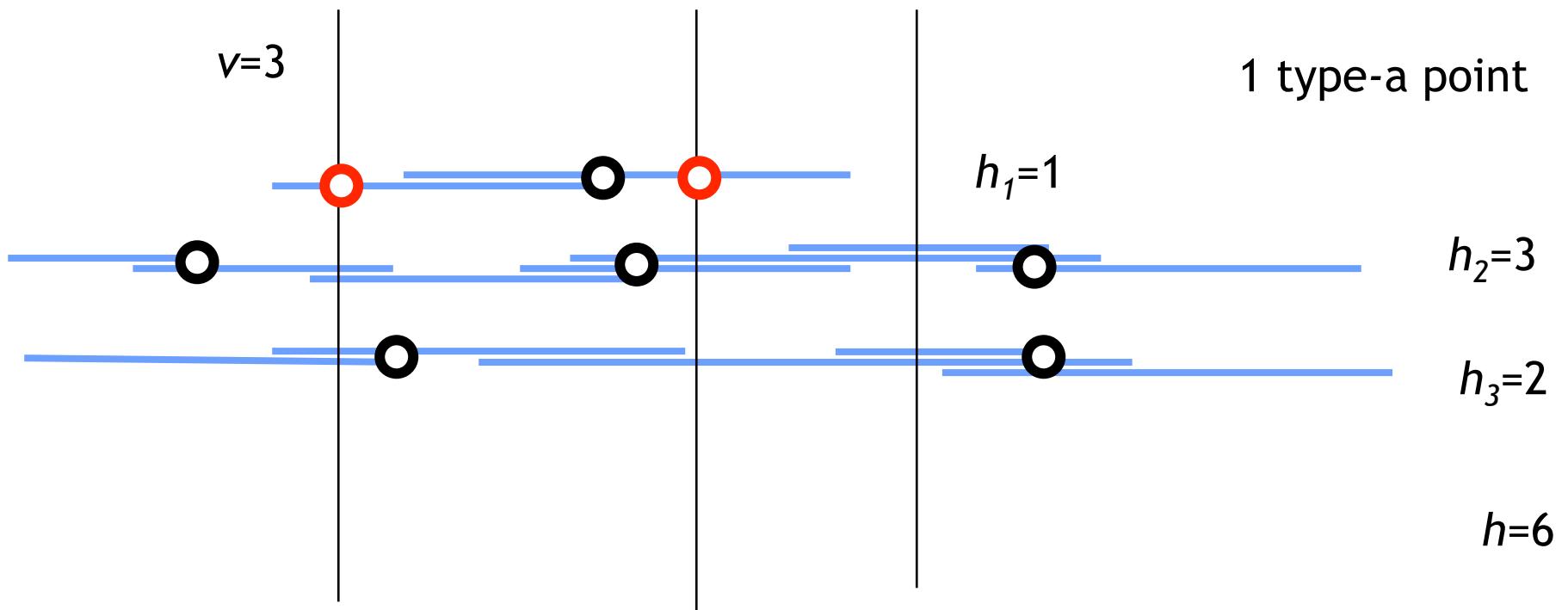
Vertical Lines, Horizontal Segments Approx

- Stage 1a: maximally productive points
 - Place points that cover a line and reduce the associated h_i by 1
 - Remove the line and all covered segments



Vertical Lines, Horizontal Segments Approx

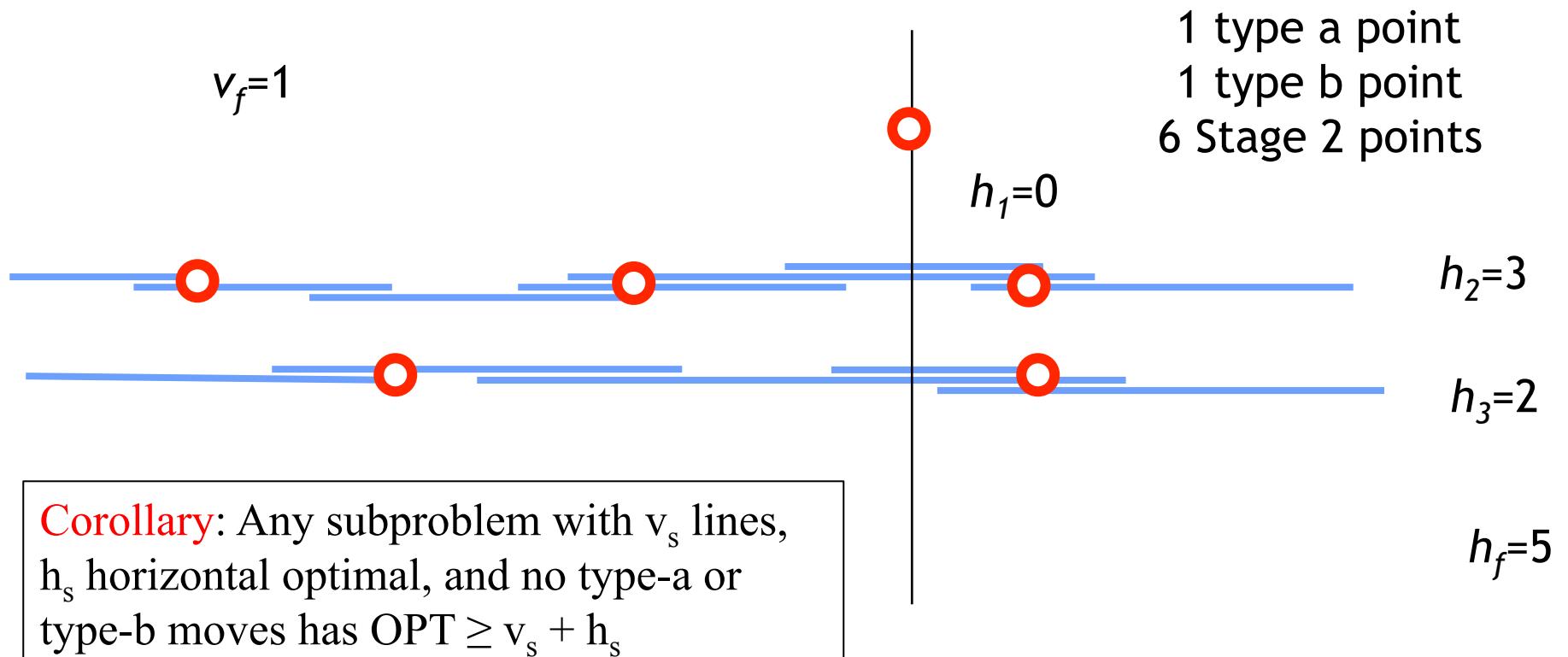
- Stage 1b:
 - Place 2 points that cover 2 lines and reduce the associated h_i by 1
 - Remove the lines and all covered segments



Vertical Lines, Horizontal Segments Approx

- Stage 2: Cover horizontal and vertical pieces separately

Theorem: Instances with no type-a or type-b moves require $v + h$ points



5/3 Approx: Analysis

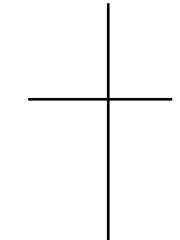
- Select k_1 type-a points. Reduces v and h each by k_1
- Select k_2 type-b points. Reduces v by k_2 and h by $k_2/2$
- Stage 2: $v_f = (v - k_1 - k_2)$ and $h_f = (h - k_1 - k_2/2)$
 - Selects $v_f + h_f$ points ($\leq \text{OPT}$ by previous corollary)
- Total selected: $v + h - k_1 - k_2/2$

Case 1: $k_1 + k_2 \leq 2\text{OPT}/3$

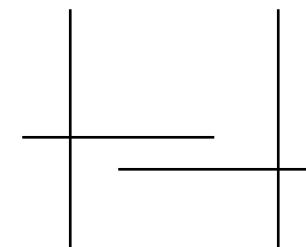
$$\text{Stage 1} + \text{Stage 2} \leq 2\text{OPT}/3 + \text{OPT} = 5\text{OPT}/3$$

Case 2: $k_1 + k_2 > 2\text{OPT}/3$

$$\begin{aligned} v + h - k_1 - \frac{k_2}{2} &\leq 2 * \text{OPT} - \frac{k_1 + k_2}{2} \\ &\leq 2 * \text{OPT} - \frac{\text{OPT}}{3} \\ &= \frac{5}{3} * \text{OPT} \end{aligned}$$



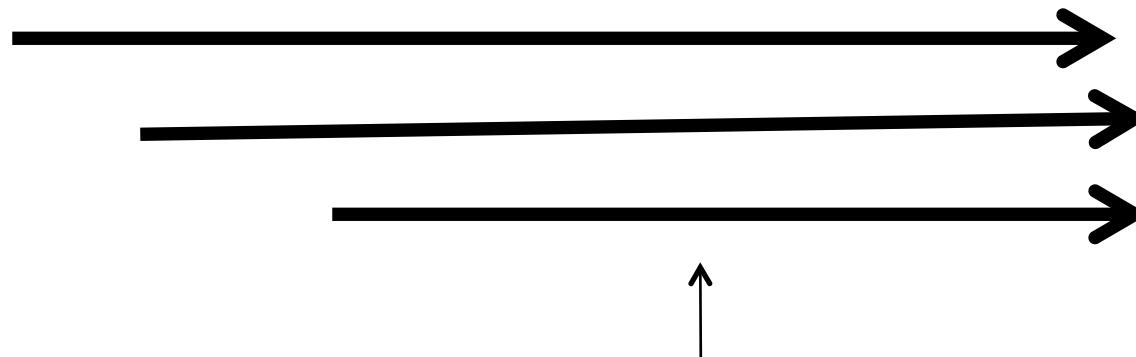
Type a



Type b

Vertical Lines and Horizontal Rays

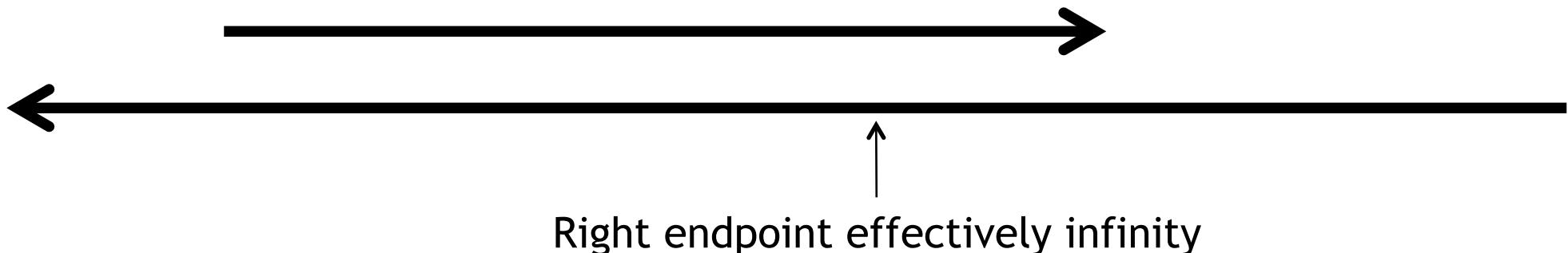
- For a given line, need to keep only one right-facing ray and one left-facing ray:



If this ray is covered, they all will be

Vertical Lines and Horizontal Rays

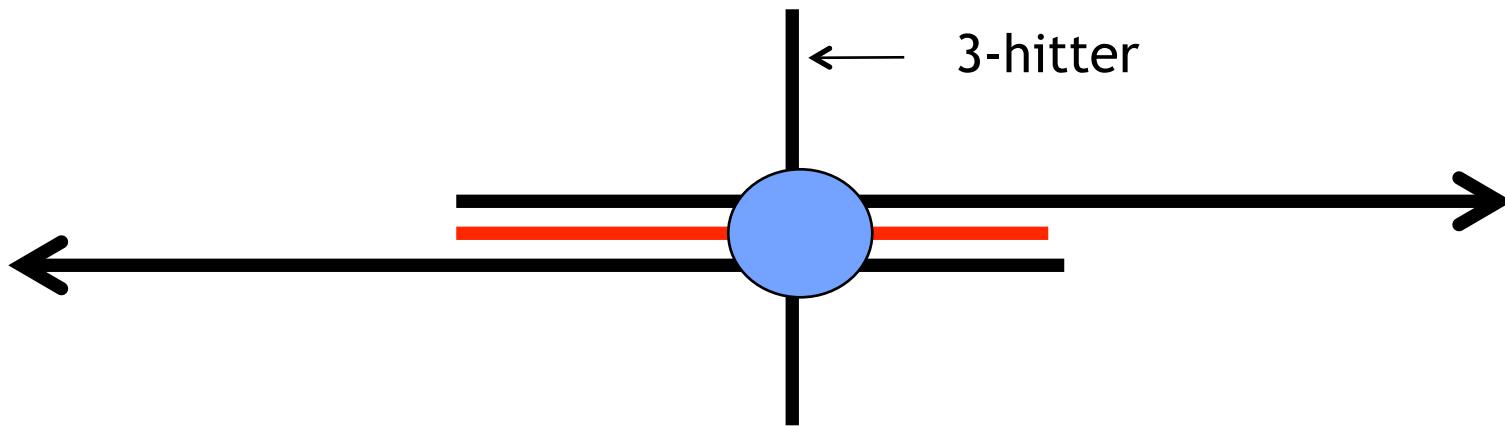
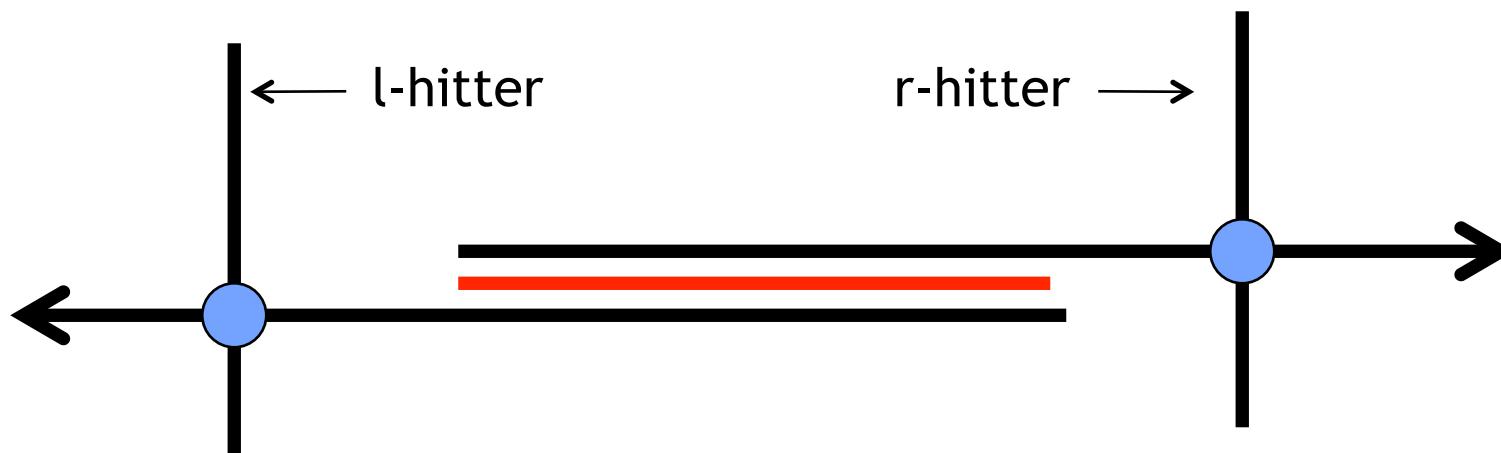
- WLOG, each horizontal line with rays has one in each direction



- The two rays intersect in a segment

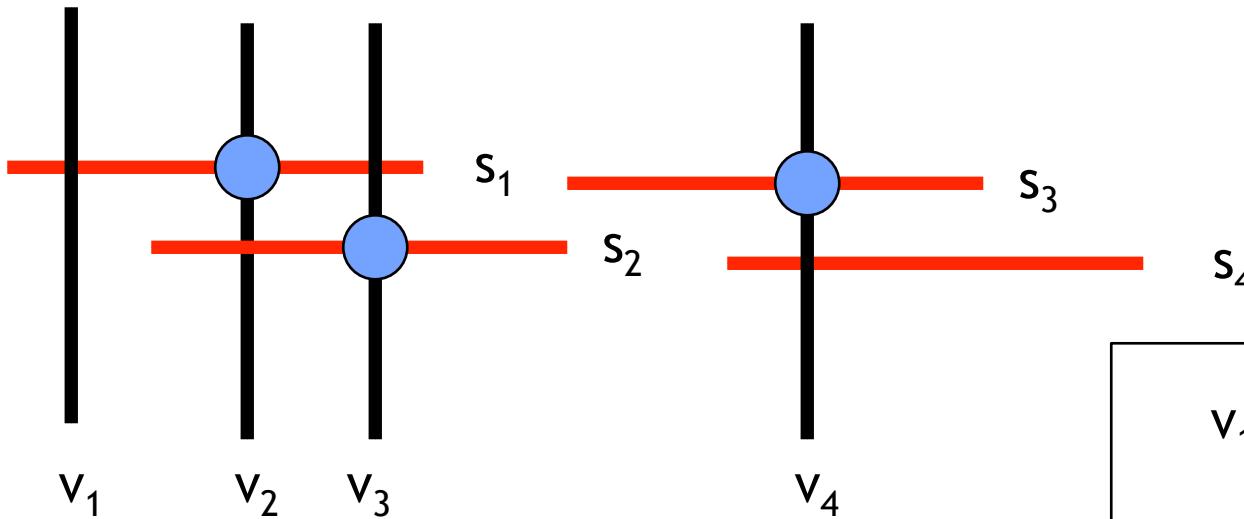
Vertical Lines and Horizontal Rays

- Best way to hit a pair of intersecting rays is in the segment
- 2 ways to hit vertical lines and horizontal rays together:

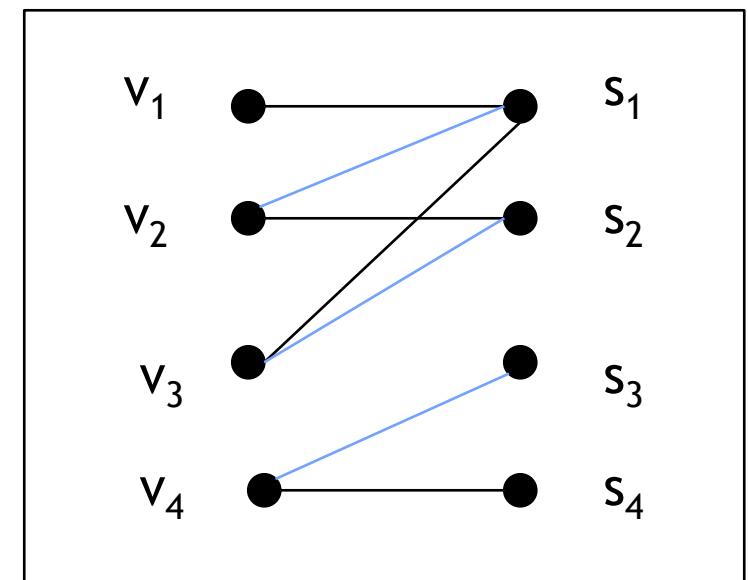


Vertical Lines and Horizontal Rays (VLHR)

- 3-hitters (line + segment) are most efficient
- Find the maximum number of 3-hitters with matching

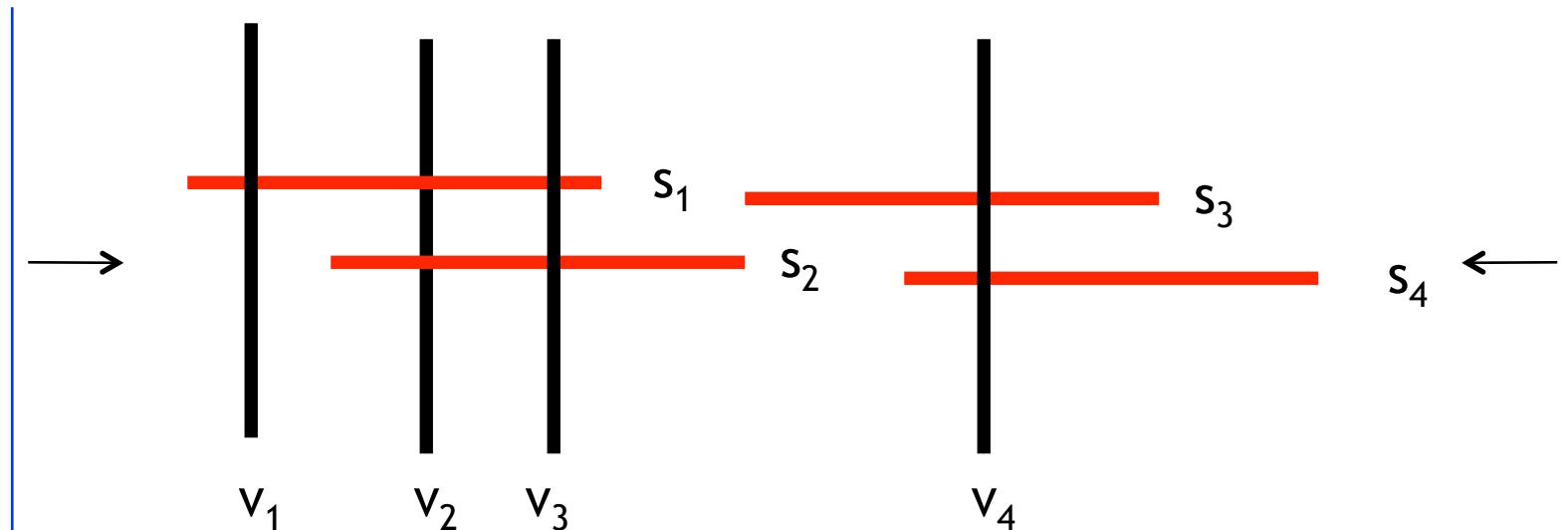


Theorem: There is a maximum matching between lines and segments that can be augmented to an optimal solution.



VLHR Algorithm sketch

- Find a suitable maximum set of 3-hitters
 - Sweep from left and right
 - Add a 3-hitter at last moment (waiting reduces number of 3-hitters, so matching is a test)
 - Balance remaining lines between left and right
 - Best chance to find a pair of lines that covers a ray pair
- Remaining objects intersect in at most pairs (easy edge cover)



Results

Objects to hit	Complexity	Approximation
Lines, 3 slopes	NP-hard	1.4
Lines, Axis-parallel 3D	NP-hard	3 (trivial)
Vertical lines/ Horizontal rays	$O(nM)$, where $M =$ Bipartite matching	1
Vertical lines/ Horizontal segments	NP-hard even unit-length segments	5/3
Horizontal and vertical segments	APX-hard NP-hard unit size	2
Group of k segments from r orientations		kr
Triangle-free segments	$O(n)$ not LP	3

- n total objects to hit
- All objects in the plane unless otherwise indicated.

Results

Open: Improve factors?
Covering versions?

Objects to hit	Complexity	Approximation
Lines, 3 slopes	NP-hard	1.4
Lines, Axis-parallel 3D	NP-hard	3 (trivial)
Vertical lines/ Horizontal rays	$O(nM)$, where $M =$ Bipartite matching	1
Vertical lines/ Horizontal segments	NP-hard even unit-length segments	5/3
Horizontal and vertical segments	APX-hard NP-hard unit size	2
Group of k segments from r orientations	LP-based	kr
Triangle-free segments	$O(n)$ not LP-based	3

- n total objects to hit
- All objects in the plane unless otherwise indicated.

Open Problems

- Improve approximation factors
 - Lines of 3 slopes in 2D: improve 1.4?
 - Vertical lines, horizontal segments: improve $5/3$?
 - Vertical/horizontal segments: improve naïve factor 2?
- Covering problems: Cover points by fewest segments/rays/lines of few orientations