
Enabling Tractable Exploration of the
Performance of Adaptive Mesh Refinement

Courtenay T. Vaughan and Richard F. Barrett
Center for Computing Research

Sandia National Laboratories

Workshop on Representative Applications
at IEEE Clusters 2015

September 7, 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,!
a wholly owned subsidiary of Lockheed Martin Corporation, for the!

U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.!

SAND2015-7740C

Motivation

• An implementation of AMR in a mini-app to
explore issues with AMR on parallel machines
– added complexity of AMR bookkeeping
–  refinement frequency
–  load balancing strategies (frequency and methods)
– effects of indirection
– effects of block size
– communication strategies
– OpenMP strategies (future work)
–  task parallel programming models (future work)

miniAMR

• AMR version of miniGhost – written in C
• Part of the Mantevo Suite (mantevo.org)
• Same finite volume calculation as miniGhost

–  no real physics and little fake physics, but kernel could
be easily modified

• Many smaller blocks per processor
• Similar communication strategy to miniGhost

– May have more communication partners due to the block
structure

• Needs load balancing
– One area may refine while rest does not

• More complicated bookkeeping
–  each block has between 6 and 24 neighbors and parent

Details of AMR

• All blocks have same
number of cells

• Blocks can only have
“1 to 1” or “2 to 1”
ratio with neighbors

• Area refine determined
by moving shapes
through mesh

2D slice of 3D mesh with sphere

AMR Details Continued

• Initial mesh is a unit cube
• Each processor has an initial number of blocks at

the lowest refinement level
• Initially the processors are arranged in a npx x

npy x npz grid with position determined by an
RCB (Recursive Coordinate Bisection) ordering

• Refinement is controlled by objects that move
through the mesh and can change size

• Typical problems for AMR applications will have 4
to 7 levels of refinement

Structure of miniAMR

for some number of timesteps {
 for some number of stages {
 communicate ghost values between blocks
 perform stencil calculation on arrays
 if time for checksums
 perform checksum calculations and compare
 }
 if time for refinement
 refine mesh
}

Communication

• For each direction, each rank maintains a list of
its block’s faces that need to be communicated to
adjacent ranks
– ordered by rank

• Communication step for one direction
– Post receives
– Pack messages and do sends
– Do on-rank communication of faces via memory

copy
– Complete receives and unpack messages

Refinement

• When a block is refined, it is replaced by 8 blocks
(2 x 2 x 2) each being half the physical size in
each direction, but with the same number of cells

• The original block’s communications in the lists
are revised to reflect the new blocks

• A parent block is created to replace the original
block
– Stays on rank where created during load balancing

• Coarsening is done similarly except that all eight
blocks need to be on the same rank as the parent
before they can be consolidated

Refinement (continued)

• Marking blocks for refinement is done by levels
starting with the most refined blocks
– Refining a block can cause its neighbors to refine

or prevent them from unrefining
• After each level is marked then the results are

communicated and then the next level can be
marked

• Blocks that are marked to be refined are refined,
changes to the mesh are communicated, and then
any blocks that need to be consolidated are

Load Balancing

• After blocks are refined (or unrefined), then load
balancing is done

• We use Recursive Coordinate Bisection (RCB)
with the directions fixed during initialization
– This keeps data movement down

• At each step, a group or ranks and associated
blocks are divided into some number of sets and
then the process is repeated for each set

• Since block locations in a direction are limited,
we represent the centers by an integer, and
determining the cut can be done by binning the
centers

miniAMR	
 –	
 block	
 structure	
 –	
 hollow	
 sphere	

Ghost	
 Value	
 Communica:on	
 Pa<ern	
 Changes	

Comments on Scaled Speedup Curve

• Communication dominates the time and is increasing
gradually
–  Includes time to communicate boundary information on

blocks on the same core (30.6% of communication time
on 128 cores)

• Calculation time is a consistent amount of time per
block
–  If completely refined, then the 128 core problem would

have 524288 blocks instead of 18168 and the calculation
time would be 218 seconds instead of 7.6 seconds

• The refinement and gridsum times both are increasing
gradually

• These reflect tradeoffs that AMR makes to allow
problems to be run in less time on fewer nodes

CTH

• Three-dimensional shock hydrodynamics code
• In AMR mode, each processor has a number of

smaller blocks and typically sends more smaller
messages
– Communication pattern changes during run

• During each timestep, there are several stages,
each of which has a ghost value exchange, and
some number of collective operations
– For problems we are using, there are 17 boundary

exchanges and 62 collectives per timestep

Comparison with CTH

• Run Sphere hits Block problem on 128 cores
• CTH problem is a sphere that hits a block at an

oblique angle and produces a shock wave
– modeled in miniAMR as a deforming spheroid with

an expanding hemisphere to represent the shock
• CTH averages 140.9 blocks/core over the run

– average core has 16.3 messages per
communication stage that average 261 KB

• miniAMR averages 141.9 blocks/core over the run
– average core has 18.4 messages per

communication stage that average 224 KB

Communication Matrices
(sphere hits block)

CTH miniAMR

Comparison with CTH (Four Spheres)

• Run on 128 cores
• CTH

– 685.8 blocks/rank
– 18.4 messages
– 503 KB average

• miniAMR
– 669.3 blocks/rank
– 17.3 messages
– 593 KB average

Communication Matrices
Four Spheres

CTH miniAMR

Communication Differences

• Communication patterns are dependent on the
load balancing after refinement

• Three differences between CTH and miniAMR
– For CTH when a cut is made and there are ties,

those blocks are assigned in a random fashion,
while miniAMR blocks are assigned based on their
position in the cut plane

– CTH limits the number of blocks that can be moved
at any timestep, while miniAMR has no limit

– CTH allows the cut directions in RCB to be
determined when the cuts are made, while these are
fixed for miniAMR at initialization

Modifications to miniAMR load balancing

• Modified miniAMR load balancing to mimic that of
CTH

• For Four Spheres problem, the number of blocks
moved increased by a factor of 8 and the
refinement time tripled

• In addition, the communication time increased by
14% due to the number of messages and size
increasing

Communication Matrices
Sphere hits block

CTH modified miniAMR

Communication Matrices
Four Spheres

CTH modified miniAMR

Communication for Refinement Step
Sphere hits Block

CTH miniAMR

Refinement Step Differences

• Refinement step communication has the regular
communication pattern embedded in it since
information about what blocks are being refined
has to be passed to neighboring blocks

• Diagonal lines in miniAMR matrix is
communication for load balancing

• Large amount of communication for CTH is
communication with parent blocks since CTH
load balances those parent blocks

• CTH uses 34 times as many messages and
communicates 54 times as much information for
refinement than does miniAMR

Conclusions and Future Directions

• miniAMR can be fairly representative of the
communication portion of CTH in AMR mode
– We have explained the differences in the codes

• We are planning to use what we have learned
from miniAMR to improve CTH

• We are planning to improve the OpenMP
implementation of miniAMR

• We are working on a task-parallel version of
miniAMR

• We are working on other changes to miniAMR to
look at varying workloads among blocks

