

Overview of In-core Degradation Process

SAND2015-7739PE

Presented by
Larry Humphries

Albuquerque, NM
September 2015

Phenomena Modeled by MELCOR

- **Main phenomena modeled include**
 - Two-phase hydrodynamics, from RCS (Reactor Coolant System) to environment
 - Heat conduction in solid structures
 - Reactor core heat-up and degradation
 - Ex-vessel behavior of core debris
 - Fission product release and transport
 - Aerosol and vapor physics

MELCOR Modeling Approach

- **Modeling is as mechanistic as possible, consistent with a reasonable run time**
 - “Reasonable” is up to the user, depends on level of detail
 - Original thought was “a few hours”
 - Some applications now run many days
- **Some parametric models, where appropriate**
- **Uses general, flexible models**
 - Relatively easy to model novel designs
 - Puts greater burden on analyst to develop input deck
- **Allows sensitivity analyses**
 - Many parameters accessible to user from input
 - Properties of materials, coefficients in correlations, numerical controls and tolerances, etc.

MELCOR Packages

- **Major pieces of MELCOR called “Packages”**
 - Each handles a set of closely-related modeling functions
- **Packages (Order of Advancement)**
 - DCH: decay heat data
 - COR: Models the Reactor Core
 - SPR: Containment Sprays
 - BUR: Hydrogen Burn
 - FDI: Fuel Dispersal Interactions
 - CAV: Ex-vessel Molten Core/Concrete Interactions (MCCI)
 - ESF: Engineered Safety Features (PARS, Fan Coolers CND, PCCS)
 - RN: Radionuclides
 - HS: Heat Structures
 - CVH: Thermal Hydraulics

MELCOR COR Modeling

Introduction

- **MELCOR COR package models core-specific structures in the core and lower plenum**
 - Fuel assemblies
 - Fuel rods (and grid spacers), BWR canisters
 - Control elements
 - PWR rods, BWR blades
 - Structural elements
 - Core plate
 - BWR control-rod guide tubes
 - Vessel lower head
 - Including penetrations

MELCOR Core Modeling Phenomenological Models

- **Nuclear heat sources in core**
 - Fission power from models in COR package
 - Decay power from decay heat (DCH) package
- **Thermal response of core**
 - Temperature and stored heat in core structures and debris
 - Conduction and radiation between them
 - Convective and radiative heat transfer to CVH fluids
 - Radiation to boundary structures in HS package
- **Oxidation behavior**
 - Oxidation of Zircaloy and steel by water vapor and/or O₂
 - Oxidation of boron carbide (B₄C) in BWRs
 - Heat generation by oxidation
 - Release of hydrogen (and other gases) to CVH package

MELCOR Core Modeling

Phenomenological Models (2)

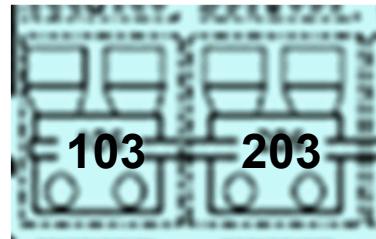
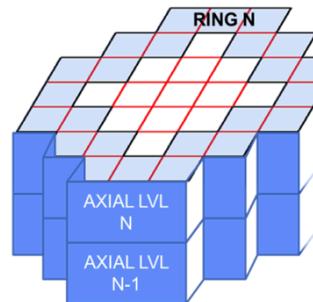
- **Failure of core and lower plenum structures**
 - Local failure by loss of integrity
 - Melting, oxidation, materials interactions
 - Local failure of supporting elements under load
 - Failure of other elements by loss of support
- **Creation of debris beds**
 - Contain material from failed original structures
- **Relocation of core materials**
 - Downward flow of molten debris, “candling”
 - Downward relocation of solid debris
 - Radial spreading (leveling) of molten and/or solid debris, when appropriate
 - Changes in volume distribution communicated to CVH

MELCOR Core Modeling

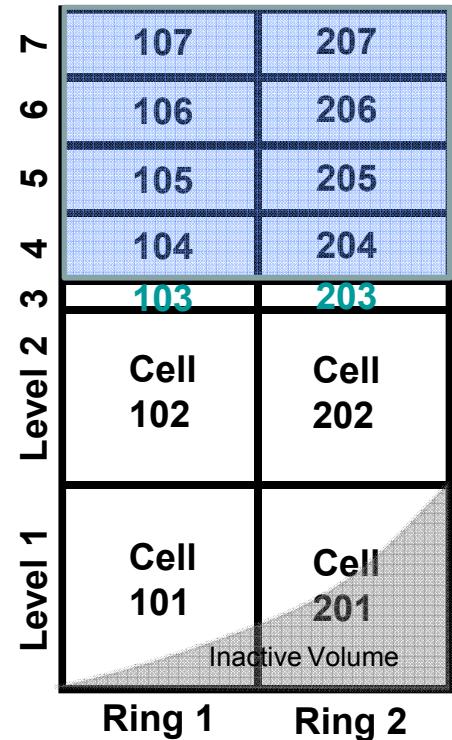
Phenomenological Models (3)

- **Response of vessel lower head**
 - Failure of penetrations
 - Gross failure of lower head
- **Ejection of debris to reactor cavity**
 - “Handed off” to cavity models via a utility interface
- **Interface is the Transfer Process (TP) package**
 - Eliminates need for detailed knowledge of other models
 - Simplifies handling of different representations
 - Cavity (CAV) package has different equations of state
 - Deals with data storage, possible fallbacks
 - Material can go directly to CAV, or consider other Fuel Dispersal Interactions first, in the FDI package
 - Return to this later

MELCOR Core Modeling



Basic Approach

- **Take boundary conditions from CVH and HS**
 - Standard approaches and heat transfer correlations
- **Nodalization may be more detailed than hydro**
 - Local temperature profiles inferred where necessary
- **Build core structures from “components”**
 - Limited number of “building blocks”
 - Components have temperature (enthalpy), mass, composition, surface area
- **Use lumped mass treatment for each component in each cell**
 - Single temperature
 - Multiple materials
 - Distinguish original (“intact”) masses from melted/refrozen masses (“conglomerate debris”)
- **Unified approach for PWR and BWR**


MELCOR Core Modeling

Core Nodalization

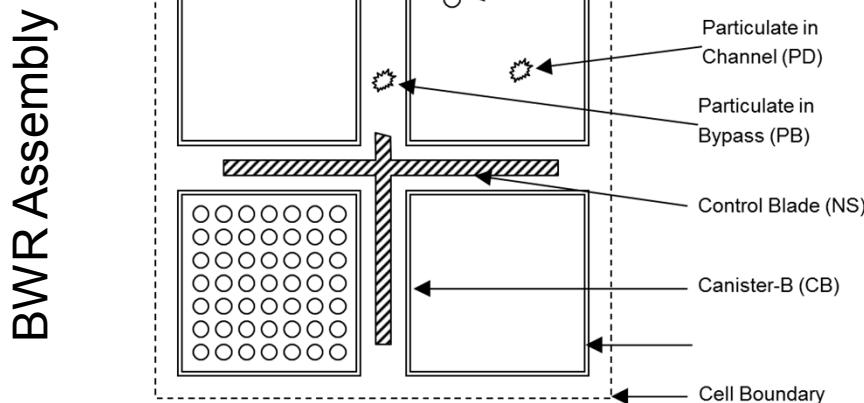
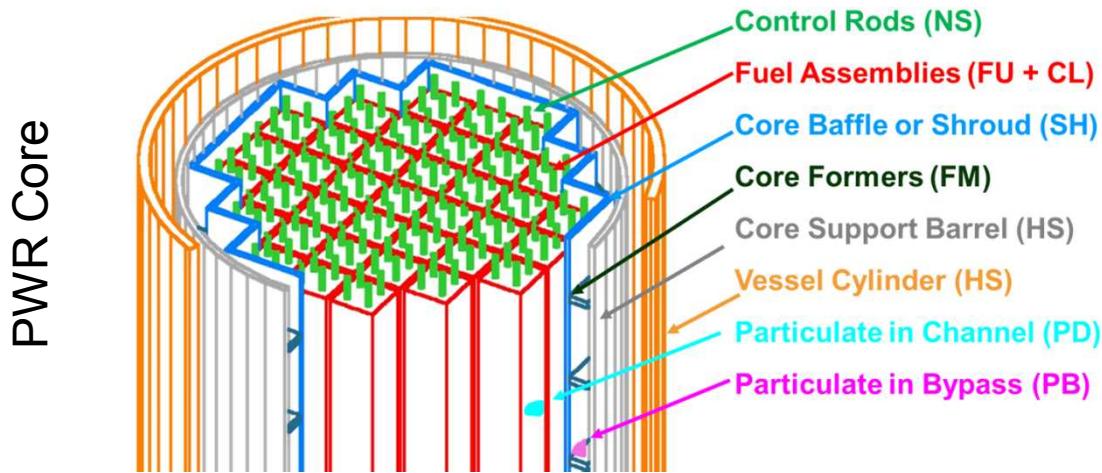
- **Core and lower plenum divided axially and radially into cells**
 - Number and size of cells defined by user input
 - Axial *levels* numbered from bottom up
 - Radial *rings* numbered from center out
- **Contents determine function**
 - Core plate is just another level (3)
 - A ring in fueled region represents a group of assemblies

Core Support Plate
& Elephant's Foot

MELCOR Core Modeling

Channel and Bypass

- **Same representation used for PWR and BWR**
 - In a BWR, MELCOR calls the region outside the canisters (channel boxes) in the core region the “bypass”
 - In a PWR, MELCOR calls the region outside the core shroud the “bypass”
 - Everything else is called the “channel”
 - In a BWR, “channel” includes the interior of canisters and the lower plenum
- **Input specifies the CVH volume representing channel and bypass for each core cell**
 - No distinction in the lower plenum
 - Common to interface several cells to a single CVH volume



MELCOR Core Modeling

Core Components

- **Each core cell may contain one or more of a set of permitted core components (or none)**

1	FU	intact fuel component
2	CL	intact cladding component
3	CN	intact canister component (portion not adjacent to control blade)
4	CB	intact canister component (portion <u>adjacent</u> to control blade)
4	SH	Intact PWR core shroud (baffle)
5	FM	Intact PWR core formers
6	PD	particulate debris component (portion in the channel for a BWR)
7	SS	supporting structure component
8	NS	nonsupporting structure component
9	PB	particulate debris component in the bypass (for a BWR)
10	MP1	Oxide or mixed molten pool component (portion in channel for a BWR)
11	MB1	Oxide or mixed molten pool component in bypass (for a BWR)
12	MP2	Metallic molten pool component (portion in channel (for a BWR)
13	MB2	Metallic molten pool component in bypass (for a BWR)

MELCOR CORE Representation COR Components

Conglomerate On Components

- **Each component has an intact mass field**
 - User typically defines intact masses only (before onset of core degradation)
 - User also defines surface areas of intact components
 - Intact material has never melted (though it may have resulted from failure of intact component, i.e., intact particulate debris)
- **Each component has a conglomerate mass field**
 - Material has melted but may have refrozen on surfaces
 - Can be molten in molten pool component
 - Can fill interstitials in particulate debris
 - Different Composition
 - Can have materials that are not available in the intact field
 - Intact and conglomerate mass in thermal equilibrium (same temperature)
 - Affects surface area exposed to fluid convection, oxidation, radiation, and further refreezing
 - Affects thermal conductivity of particulate debris

Special Components Created During Core Degradation

Particulate Debris (PD, PB)

- Formed when an intact component fails or when molten pool freezes
- Has both intact & conglomerate fields
 - Unique composition but same temperature
- “Intact” mass
 - Porosity assumed from user input & conglomerate mass
 - Has never melted
- Conglomerate mass
 - Fills interstitials first
 - Affects effective thermal conductivity, heat surfaces for oxidation and radiation, and fluid flow
 - Excess assumed above

Molten Pool (MP1, MP2, MB1, MB2)

- Formed when other components melt
 - molten material blocked during candling
 - Melting PD
- All mass resides in the conglomerate field.
- Freezing MP is moved to the PD component and equilibrated
- Can form contiguous molten pool
 - Special routines for convection and freezing (Stefan model)
- Non-contiguous cells
 - Does not participate in convecting molten pool calculation (more later)
 - Heat transfer similar to PD

Sandia
National
Laboratories

MELCOR Core Modeling

Input for Cell Contents

- **User input defines the components initially present in each core cell**
 - Masses of materials in each component
 - Can contain one or more of a list of 7 materials defined in the material properties package
 - Restricted list for most components
 - PD, MP, and conglomerate can contain any of them,
 - User can redefine materials
 - Initial temperature of each component
 - Surface areas of components
 - Except debris and molten pool which are Internally calculated from surface/volume ratio
 - Hydraulic diameters
 - PD porosity

<u>COR name</u>	<u>MP name</u>
UO ₂	‘URANIUM DIOXIDE’
ZR	‘ZIRCALOY’
ZRO ₂	‘ZIRCONIUM DIOXIDE’
SS	‘STAINLESS STEEL’
SSOX	‘STAINLESS STEEL OXIDE’
CRP (control rod poison)	‘BORON CARBIDE’ for BWR or ‘SILVER INDIUM CADMIUM’ for PWR
INC (Inconel)	‘STAINLESS STEEL’

Heat Transfer Axial Conduction

- Like components in adjacent axial cells
- Plate supporting structure and all components supported by it
- Component and particulate debris in adjacent cells if
 - component exists in only one of the two adjacent cells
 - physical contact between debris and component is predicted.
 - assumed if the debris resides in the overlying cell where it is presumed to rest on components in the underlying cell
- Heat transfer from convecting molten pool components handled separately

$$q_{ij} = K_{\text{eff}} (T_i - T_j)$$

$$K_{\text{eff}} = \frac{1}{\frac{1}{K_i} + \frac{1}{K_j}}$$

$$K_i = \frac{k_i A_i}{\Delta x_i}$$

$$A_i = \frac{V_{\text{tot,comp},i}}{\Delta z_i}$$

$$\Delta x_i = \frac{1}{2} \Delta z_i$$

Sandia
National
Laboratories

Heat Transfer

Conduction - Other

- **Radial**
 - Conduction is calculated between elements of supporting structure (SS) modeling contiguous segments of a plate in radially adjacent core cells.
 - Conduction is also calculated between particulate debris in radially adjacent core cells unless the path is blocked by intact canisters
- **Intracell**
 - debris and any remaining intact core components.

Intracell

$$A_i = A_j = \frac{V_{tot,PD}}{V_{tot,PD} + V_{free}} A_{intact}$$

$$\Delta x_{PD} = \frac{V_{bed}}{2 A_{bed}}$$

$$\Delta x_{intact} = \frac{V_{tot,intact}}{2 A_{intact}}$$

Heat Transfer Convection

- **Heat transfer rates calculated for each component using heat transfer coefficients**
 - Uses Local cell temperature predicted from dT/dz model

$$q = h_{rlx} A_s (T_s - T_f)$$

- **Partially implicit solution**
- **Does not use a critical Reynolds number to determine laminar or turbulent flow regimes**
 - Maximum of laminar and turbulent Nusselt number is used
 - Maximum of forced and free used
 - Alleviates some numerical difficulties associated with discontinuities in Nu

Oxidation Models - General

- **Objects that can oxidize**
 - COR components
 - Metals include Zr, SS, and B4C
 - Debris in CAV package
- **Objects that cannot oxidize**
 - Heat structures
- **Oxidation behavior for COR components**
 - Oxidation of Zircaloy and steel by water vapor and/or O₂
 - Oxidation of boron carbide (B₄C) in BWRs
 - Heat generation by oxidation
 - Release of hydrogen (and other gases) to CVH package

Oxidation Reactions

- **Specific models for each oxidizing material**
- [Reaction Kinetics](#)
- **Zircaloy**
 - [Reactions](#)
 - [Kinetics](#)
- **Steel**
 - [Reactions](#)
 - [Kinetics](#)
- **Boron Carbide**
 - [Reactions](#)

Solid-state diffusion of oxygen through an oxide layer to unoxidized metal is represented by the parabolic rate equation:

$$\frac{d(W^2)}{dt} = K(T)$$

This is integrated over a timestep:

$$(W^{n+1})^2 = (W^n)^2 + K(T^n) \Delta t$$

Urbanic Heidrich evaluation of rate constant, K

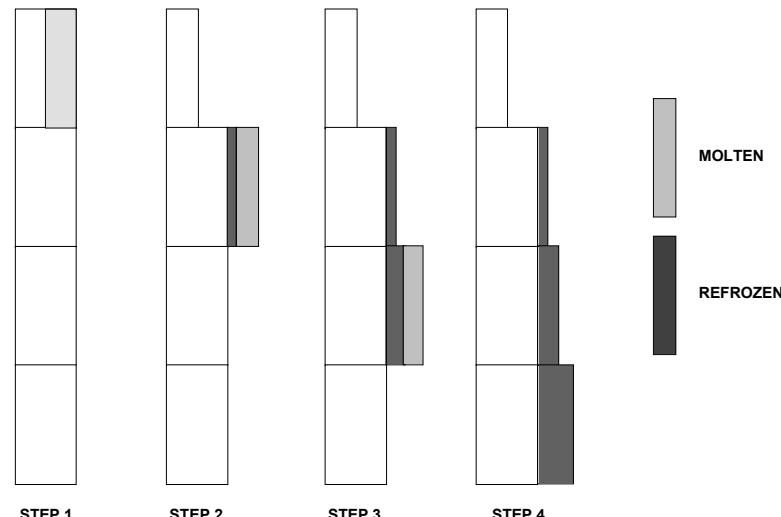
For very low oxidant concentrations, gaseous diffusion may limit the reaction rate.

$$\frac{dW}{dt} = \frac{MW k_c P_{ox}}{n R T_f}$$

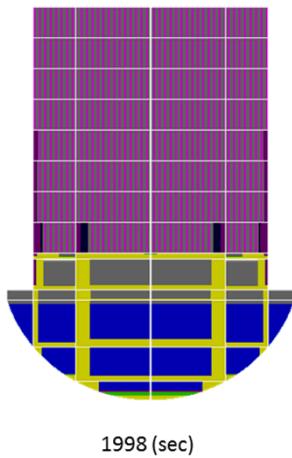
The gaseous diffusion oxidation rate is used if it is less than the rate calculated from the parabolic rate equation.

Oxidation

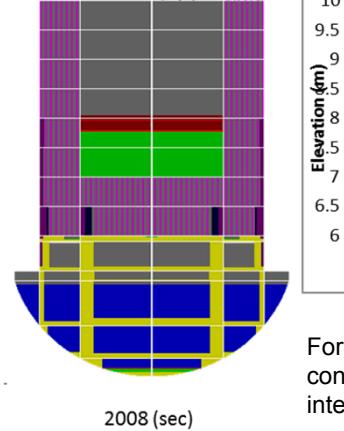
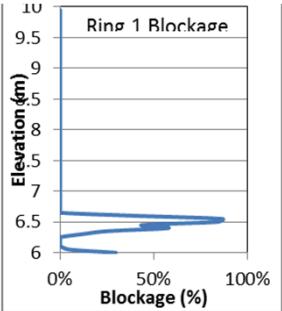
Additional Considerations

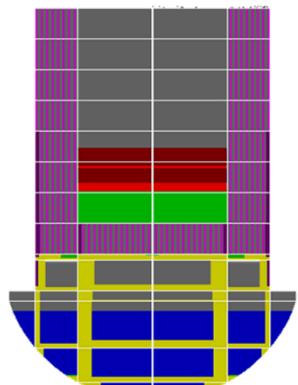
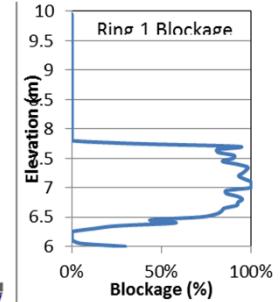

- **Refrozen conglomerate (candled) material blocks intact surface (including PD) from oxidation**
- **Surface areas must be defined consistently with component mass since they are used in calculating thickness.**
- **Two-sided components residing in channel with a surface in contact with bypass can oxidize**
 - Volume expansion accommodated through borrowing virtual volume from bypass
- **Zirconium emissivity is calculated as a function of oxide thickness**
- **Oxidation calculated for submerged surfaces**
 - Gas film between unquenched surfaces and pool
 - Currently suppressed by default because of uncertainty in quenching?
- **Debris surface area is partitioned between Zr, SS, and other materials**
 - Surface area for Zr oxidation from volume fraction of Zr + ZrO₂
 - Modeled as layers with ZrO₂ outer layer
 - Surface area for SS oxidation from volume fraction of SS + SSOX
 - Modeled as layers with SSOX outer layer

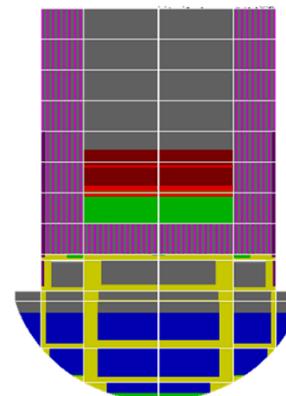
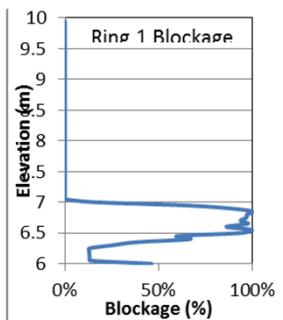
COR Degradation Models

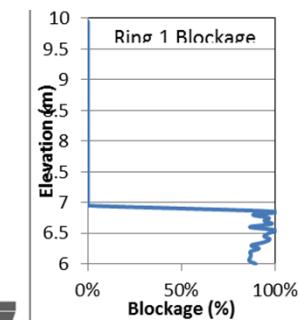

- **Ballooning Model**
 - There is no comprehensive model for clad ballooning in the code though MELCOR provides limited capabilities for simulating the effects.
 - Gap release model
 - Gap release at user temperature (1173 K default)
- **Candling**
 - Thermal-hydraulic based
 - (does not account for viscosity or surface tension)
 - Does not have a separate field (temperature)
 - Simple holdup model for melt inside an oxide shell
 - Formation of blockages from refrozen material
- **Formation of Particulate debris**
 - Failure temperature / component thickness / CF / support structures
 - Clad optional time at temperature modeling (best practice)
 - Downward relocation of (axial and radial) by gravitational settling
 - not modeled mechanistically but through a logical sequence of processes through consideration of volume, porosity, and support constraints.
 - Time constants associated with leveling
 - Fall velocity that limits axial debris relocation rates
 - Support structure modeling for COR components leads to failure of supported intact components when support structure is lost
- **Molten Pool Modeling**
 - Forms when downward candling molten material reaches a blockage and still has superheat
 - Settling similar to particulate debris but particulate debris displaces molten pool
 - Time constants associated with leveling
 - Fall velocity that limits axial debris relocation rates

Downward Relocation of Molten Material



- **Candling** - Downward flow of molten core materials
 - Subsequent refreezing (creation of 'conglomerate')
 - Blockage (creation of molten pool)
 - Solid material transport of secondary materials
 - Thin oxide shells or dissolution of UO₂ by molten Zr
- **Semi-mechanistic**
 - Based on fundamental [heat transfer principles](#)
 - Assumptions
 - Steady generation and flow of molten material
 - Does not solve a momentum equation for velocity
 - All material generated in a time step reaches its final destination in that step
 - » There is no separate field for conglomerate and must equilibrate with a component
 - relatively independent of time step history
 - Molten material is held up behind [oxide shell](#) or retained behind [blockage](#).
 - For [breakaway melt](#), assumption of steady generation no longer valid
 - Freezes on originating component or [alternate component](#)



Sub-Grid Model Prediction of Blockages



Candling of low melting point metals to lower fuel rods


Formation of PD and conglomerate filling interstitials

PD slumping and maintaining blockages

Melting of PD 'crust' and freezing on lower fuel rods

Sandia
National
Laboratories

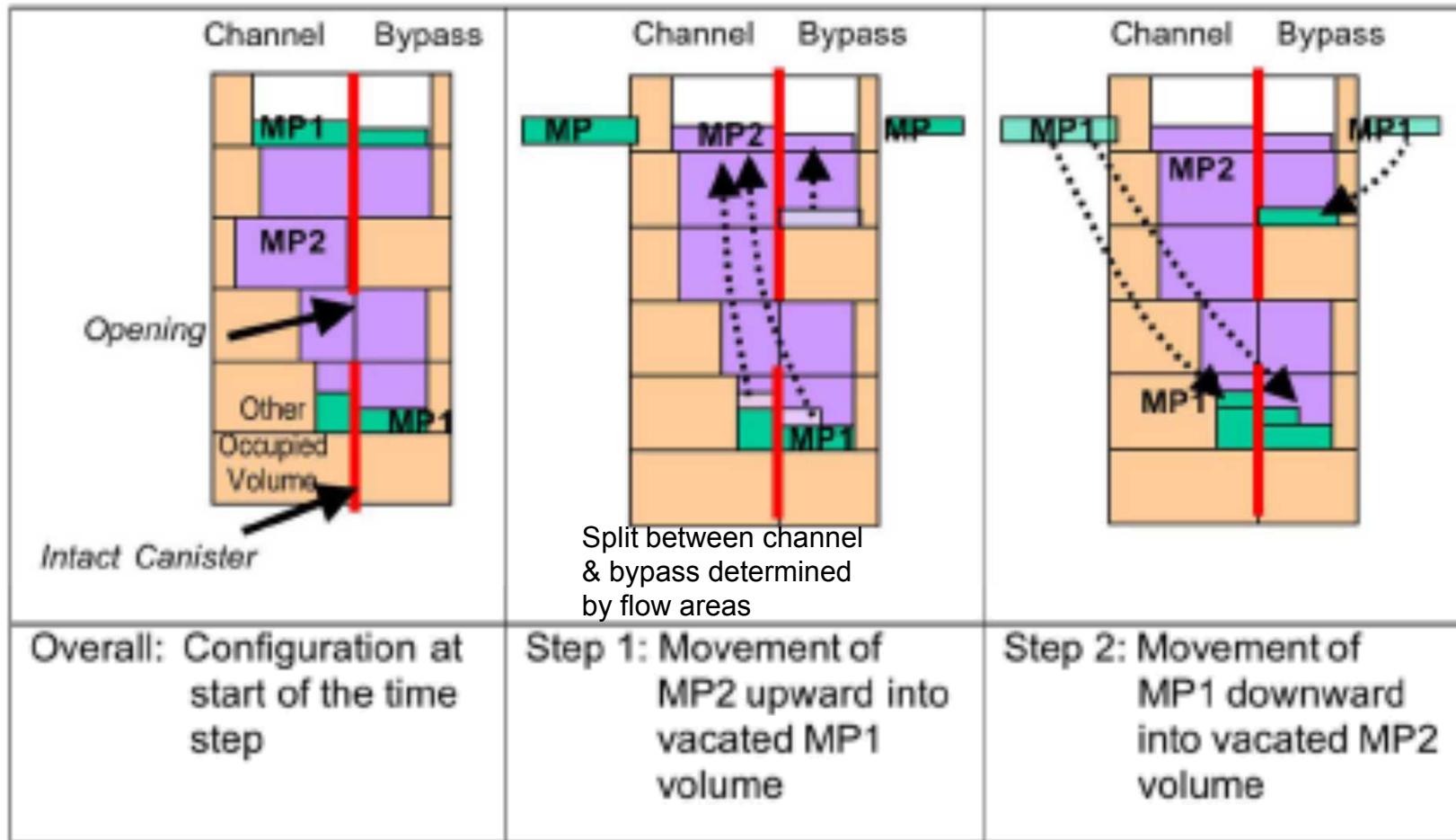
MELCOR Core Modeling Supporting Structures

- **Supporting structure can support itself, other components (including particulate debris)**
 - Load and stress calculations depend on basic model from engineering handbook equations
 - Failure by creep rupture, yielding, or buckling
 - Failure by melting
- **In a BWR, two support structures are of particular interest**
 - ‘PLATEB’ models the core support plate
 - Supports itself and debris but not assemblies
 - Does not fail when support plate in neighboring rings fail
 - Remains in place after failing but melts
 - ‘COLUMN’ models the CRGTs
 - Supports the assemblies and canisters
 - Failure in any cell leads to failure of all contiguous COLUMN elements higher
- **Other support structures available**

Sandia
National
Laboratories

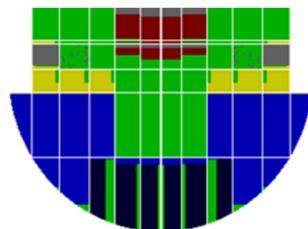
Mechanical Failure of Components (Formation of Particulate Debris)

- **Particulate debris**
 - channel and bypass
 - Debris Behavior
 - Debris Porosity and Surface Area
 - Debris Exclusion:
- **Formation from failed fuel rods:**
 - Failure of oxidized rods
 - Failure of unoxidized fuel rods
 - Inert environment or candling of all ZrO₂
 - Metal thickness < DRCLMN
 - Or failure by control function
 - Possible failure based on a cumulative damage function
- **From Failure of BWR fuel canisters (channel box)**
 - Metal thickness < DRCLMN or
 - Temperature > canister oxide melt point
 - Or failure by control function

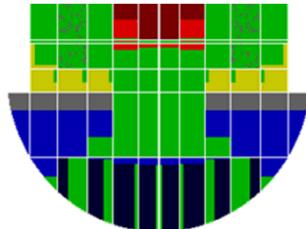

◆ Channel and Bypass

- Debris from failed NS modeling BWR control blade becomes particulate in bypass (PB)
- So does failed SS in a cell with a separate bypass
- All others become particulate in the “channel” (PD)

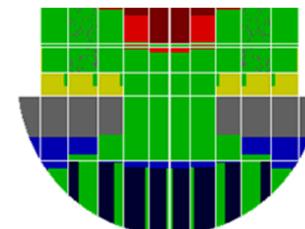
Gravitational Settling of PD and MP components


- **Gravitational Settling occurs at constant velocity (VFALL) for both particulate debris and molten pool**
 - PD displaces MP
- **Each ring is calculated separately, starting at the center (radial spreading occurs later)**
 - Calculation proceeds from the bottom up
 - Determine how far source mass can move in time step
 - Limited by available space and support
 - Moves mass from source to that level and above
 - Moves up to next source cell
 - Distinction between channel and bypass
 - PD stays in channel & PB stays in bypass
 - Relocation to elevation where channel box has failed,
 - PD & PB are mixed
 - Relocation from an elevation where channel box has failed to one where it hasn't
 - PD & PB split based on available cross-sectional area

Displacement of Molten Pool by PD during Gravitational Settling

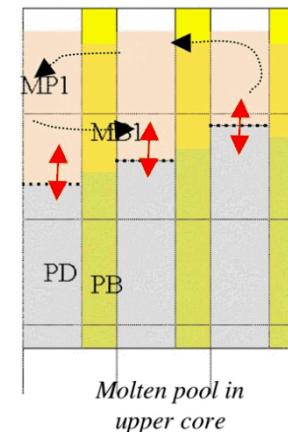
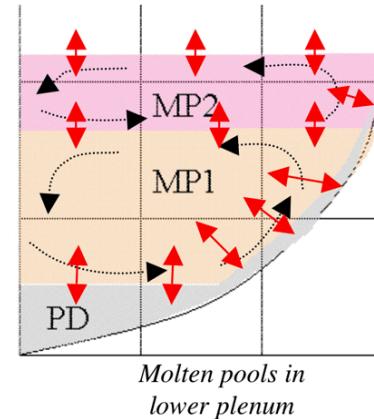


Radial Spreading of Debris & Molten Pool


- **Radial Spread is through gravitational settling**
 - Applies to both particulate debris and molten pools
 - Equalizing debris heights and pool heights for neighboring rings
 - Time constant for spread
 - Molten pool & PD have separate time constants
 - Displacement during radial spread
 - Particulate debris can displace molten pool
 - Oxide molten pool displaces metallic molten pool
 - Must take into account the volume vs elevation relation for cells adjacent to lower head

20040 (sec)

20820 (sec)



21540 (sec)

Sandia
National
Laboratories

MELCOR Core Phenomenon Stratified Molten Pool Model

- Treat molten pools, both in core and lower head
 - Can contain oxidic and metallic materials
 - May be immiscible, and separate by density
 - Same approach in core and lower head
 - Requires distinguishing pool in channel from that in bypass
- Stratified melt pool - Additional material relocation models
 - Downward and radial flow of molten pools
 - Sinking of particulate debris in molten pool
 - Particulate displaces pool
 - Stratification of molten pools by density
 - Denser pool displace less dense
 - Currently oxide pool is assumed denser
 - Partitioning of fission products between metallic and oxidic phases
 - Can affect heat generation and natural convection in core molten debris.

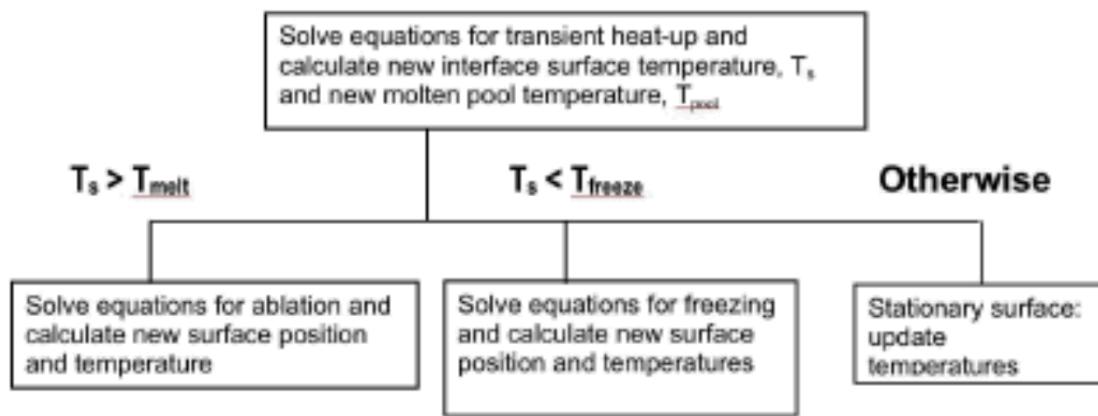
Molten Pool Convective Heat Transfer

Energy Balance on MP1:

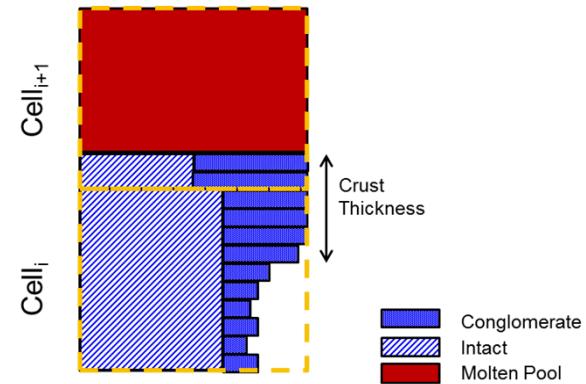
$$\begin{aligned} MC_{P,MP1} \frac{T_{MP1}^n - T_{MP1}^o}{\Delta t} = & \dot{Q}_{MP1,decay} \\ & - \sum_{s \in \text{BEG}} h_{MP1 \rightarrow s} A_s (T_{MP1}^n - T_s) - h_{MP1 \rightarrow MP2} A_{1,2} (T_{MP1}^n - T_{MP2}^n) \\ & - \left(h_{MP1 \rightarrow \text{surf}} A_f (T_{MP1}^n - T_{\text{surf}}) - \sigma \epsilon_{\text{eff}} A_{\text{up}} (T_{MP1}^4 - T_{\text{ambient}}^4) \right). \end{aligned}$$

Energy Balance on MP2:

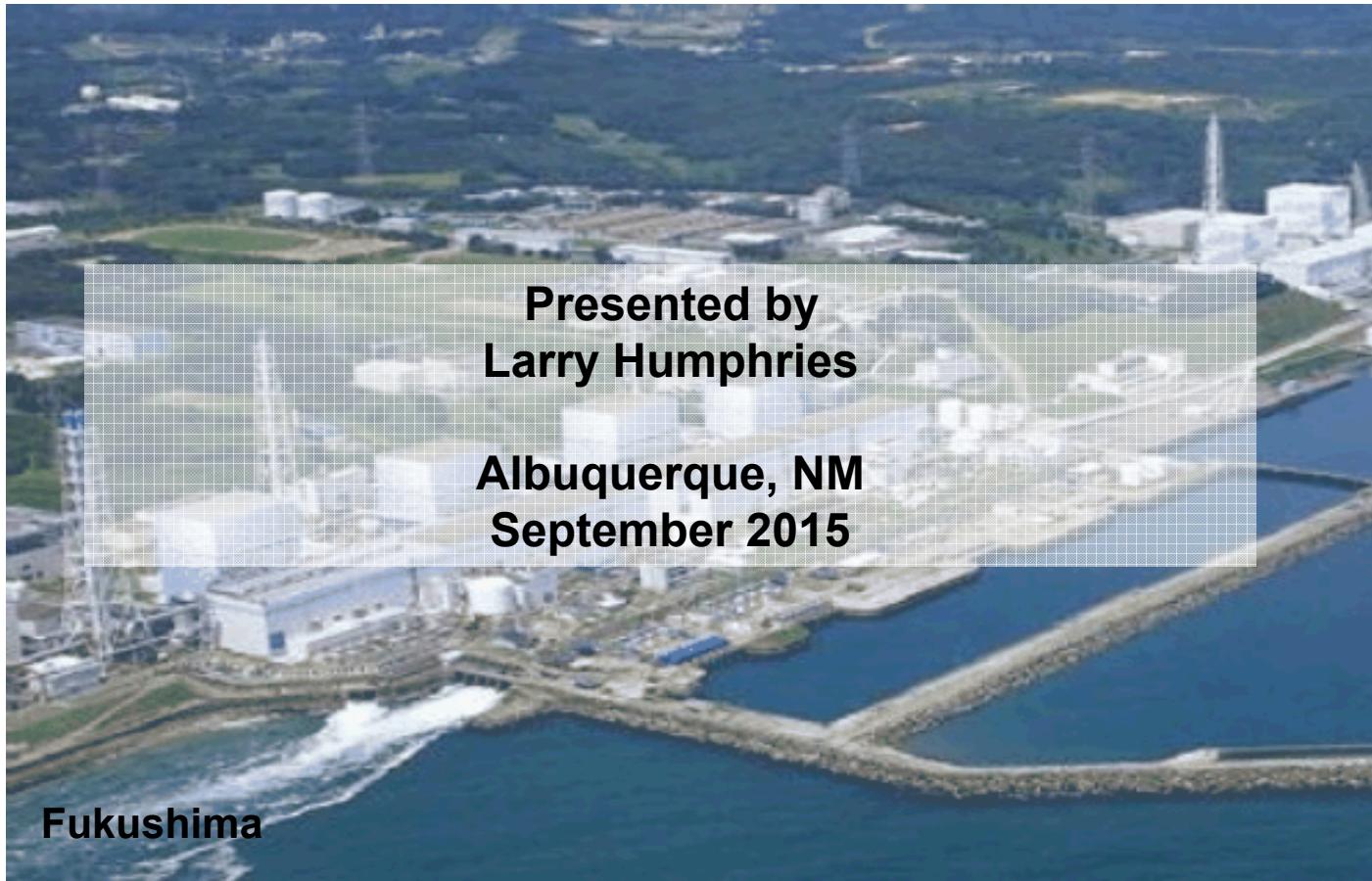
$$\begin{aligned} MC_{P,MP2} \frac{dT_{MP2}^n}{\Delta t} = & \dot{Q}_{MP2,decay} \\ & - \sum_{s \in \text{BEG}} h_{MP2 \rightarrow s} A_s (T_{MP2}^n - T_s) + h_{MP1 \rightarrow MP2} A_{1,2} (T_{MP1}^n - T_{MP2}^n) \\ & - h_{MP2 \rightarrow \text{surf}} A_f (T_{MP2}^n - T_{\text{surf}}) - \sigma \epsilon_{\text{eff}} A_{\text{up}} (T_{MP2}^4 - T_{\text{ambient}}^4) \end{aligned}$$


- Heat Transfer coefficients from empirical Rayleigh coefficients obtained for steady state conditions correlating Ra number with internal heat generation rate
- Correlations adapted to transient conditions based on the average of the decay heat and the boundary heat losses

Sandia
National
Laboratories


Integral Solution to Stefan Problem

- Convective molten pool supported by solid substrate
 - May be PD, lower head, or core support plate
 - Thermal properties vary greatly between phases
 - Temperature gradient in substrate may be highly nonlinear within the dimension of a COR cell
 - Position of the interface may move (Stefan Problem)
- Integral model for transient calculation
 - Does not require many nodes
 - Assumes a shape for the temperature profile (quadratic) in the substrate
 - Integration of the conduction equations over the spatial domain
 - Impose convective boundary condition at interface

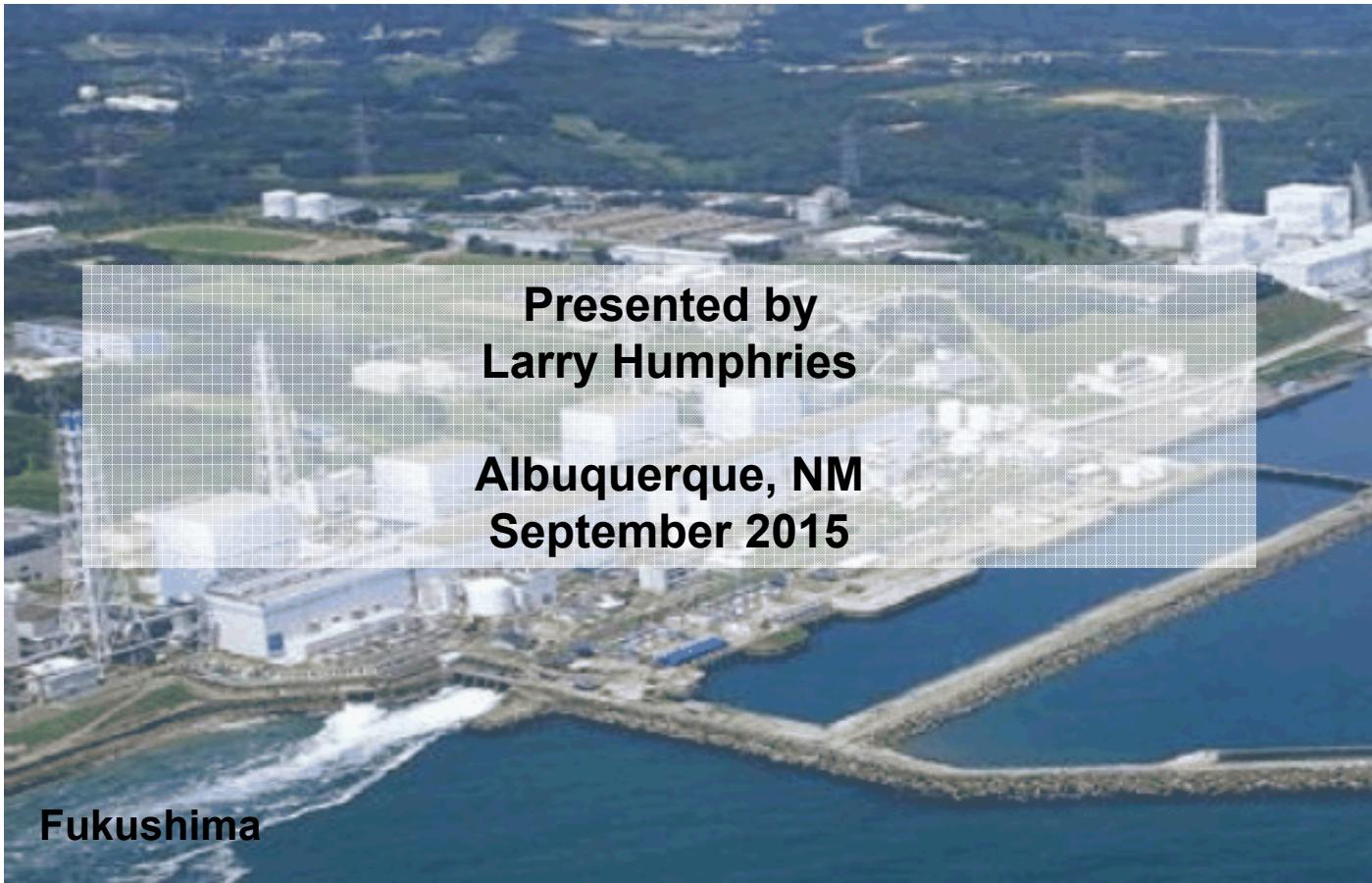


MELCOR Crust

- **There is no separate component to model crust**
 - Crust is represented as PD component
 - No distinct temperature for crust
 - Crust thickness is inferred from sub-grid model
- **Blockage associated with ‘crust’ obstructs downward relocation of molten pool**
- **Radial Crust**
 - Crust calculated for cells adjacent to lower head
 - intact PD is always available to spreading routine
 - Fraction of conglomerate associated with crust is frozen to lower head
 - No radial crust modeled for molten pool in upper core
 - Time constant for radial spreading of molten pool component into fuel rod region is 10 times longer than elsewhere

MELCOR Modeling Experience in Reflood Conditions

Interface of COR Package with Other Packages


- CVH Package
 - Materials in COR can relocate, displacing CVH Volume
 - Changes in displaced volume are tracked separately by CVH and COR
 - Initial COR/CVH fluid volumes defined independently
 - MELCOR checks for consistency
 - Core components “see” local temperature CVH temperature
 - Several COR cells can be associated with a single CVH volume
 - MELCOR’s predictor, dT/dz model
 - Uses inlet temperature, assumes steady gas flow, accounts for cross-flow
- FL Package
 - Blockages in COR can obstruct flow (next slide)
- HS Package
 - MELCOR allows addition of debris from melting steel heat structures.
 - Melting steel is added as particulate debris in the outer radial ring at the appropriate elevation
 - Heat structures “see” local temperature inferred by dT/dz model
 - Calculation includes effects of radial boundary heat structures in the outer ring of the core

MELCOR Core Phenomenon

Core Fluid Flow Blockage Modeling

- **Destruction of original structures, formation of debris will alter flow resistances in core**
 - Debris bed resistance different from rod bundle resistance
 - Ergun equation is used for debris bed
 - New core blockage enhancement factor (multiplier on porosity for resistance calculation)
 - As a core cell becomes completely filled, flow resistance will approach infinity
 - Initial (intact) resistance used until then
 - Small area correction for possible conglomerate debris or changes in clad expansion from oxidation
 - Failure of BWR canisters or PWR shroud opens path between channel and bypass volumes
- **Model connects open area and resistance in a flow path to state of core in specified cells**
 - Flow can be axial or radial
 - For BWR, can restrict to channel or bypass region only
 - Can open path on failure of BWR channel box

MELCOR Lower Plenum Processes

MELCOR Core Phenomenon

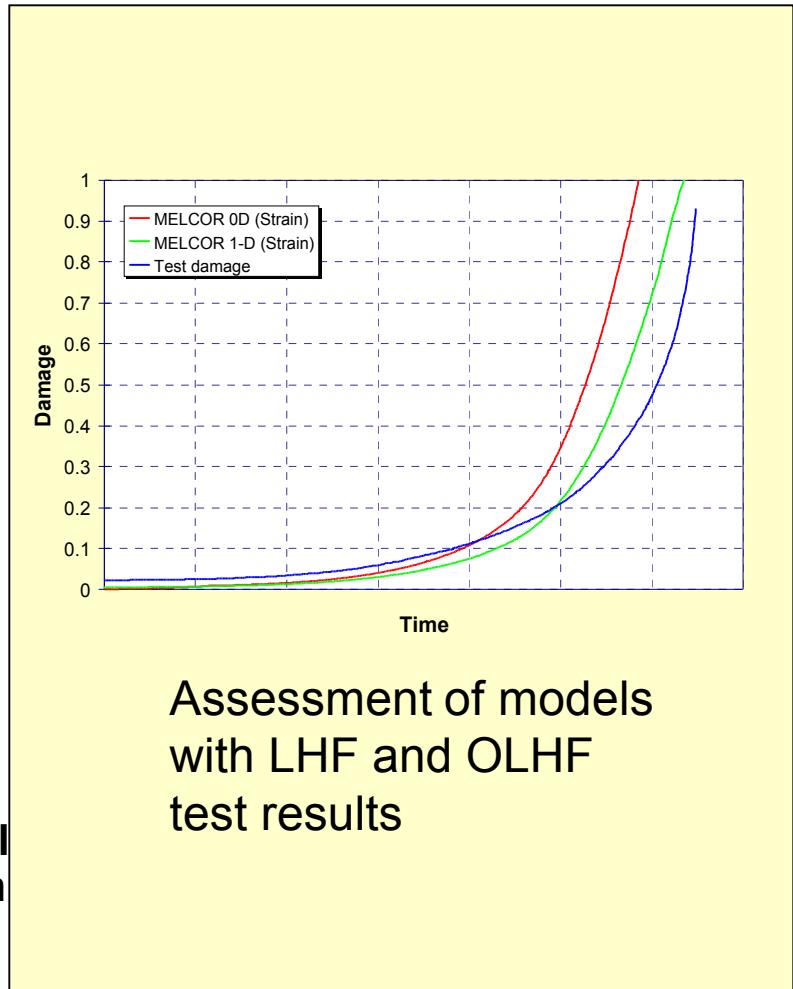
Falling Debris Quench Model, Sequence of Events

- ◆ **Core Support Failure**
 - Debris falls into lower plenum
 - Falls with user defined velocity, VFALL
 - Candling, spreading, and dissolution deactivated
- ◆ **Debris reaches pool**
 - Surface area inferred from DHYPD
 - Constant heat transfer coefficient (HTC) from input
- ◆ **Leading edge of debris reaches lower head**
 - Decay factor applied to HTC
 - ★ Spreading time constant
 - ★ Significant continued relocation delays decay
 - Candling, spreading, and dissolution activated
- ◆ **Stationary Debris bed**
 - Decay factor < 0.01
 - Limited by dryout (Lipinski zero- dimensional model)
 - Currently disabled in best practices

Lower Head Failure Criteria

- Creep-rupture failure of a lower head ring occurs

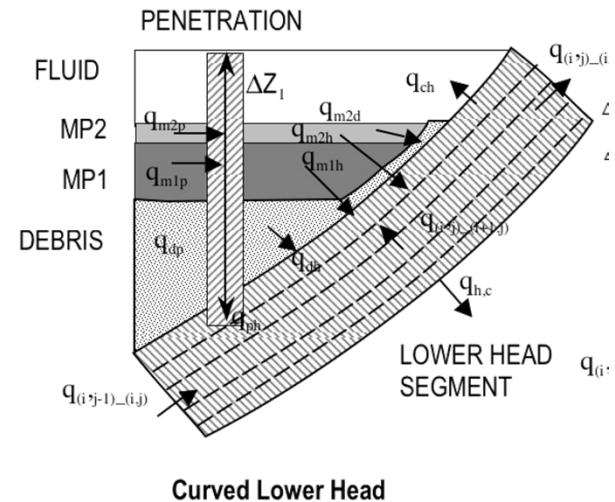
$$t_R = 10^{\left(\frac{P_{LM}}{T} - c\right)}$$


$$P_{LM} = \min[a_1 \log_{10}(\sigma_e) + b_1, a_2 \log_{10}(\sigma_e) + b_2]$$

Temperature dependent failure

- Failure Temperature, TPFAIL, set on COR_LHF card
- Overpressure from the falling-debris quench model
 - Default failure criterion is 20 MPa
 - Redefine on record COR_LP, but not greater than P_{crit}
 - Temperature of inner node exceeds defined failure, TFAIL
 - Input on record COR_LHF (default 1273.15 K)
 - Penetration failure

MELCOR Lower Head Failure Models


- Failure based on Robinson's Rule, i.e., lifetime rule from Larson-Miller parameter
- Two models are available in MELCOR:
 - Zero-Dimensional Model
 - Default Model
 - One-Dimensional Model
 - Selected by setting sensitivity coefficient SC1600(1) = 1
 - Recommended Model
 - Part of thickness can be non-load-bearing (e.g., insulation)
 - NINSLH (from record COR00000) outer meshes, with default 0, will be excluded from the calculation

MELCOR Core Modeling

Modeling of Lower Head Penetrations (2)

- Each “penetration” represents the aggregate of all like penetrations in a single segment
 - Can have up to three distinct types in a single segment
 - Allows for instrumentation tubes, control rod guide tubes, and drain plugs
 - Can have a maximum of 19 distinct penetrations
- Failure defined by failure temperature or LOGICAL control function
 - Initial hole size, discharge coefficient for debris defined
 - Discharge rate calculated from Bernoulli equation
 - Ejection of debris may be delayed. During debris ejection, ablation increases hole size (Pilch and Tarbell)
 - Ablated material is *not* added to debris

MELCOR Core Modeling

Vessel Failure Consequences (2)

- Failure of penetration or lower head provides path for debris to reach cavity
 - Threshold imposed to avoid problems in CAV package
 - No ejection until 5000 kg debris in lowest core cell (or molten material fills more than 10% of its volume)
- Ejected debris is “handed off” to Transfer Process (TP) package
 - Input must specify number of appropriate transfer process
 - ! COR_TP defines transfer process to receive debris
 - ! NTPCOR is name of ‘IN’ transfer process or NO
 - COR_TP NTPCOR
 - NTPCOR=0 is allowed, even though it is not an acceptable transfer process number
 - Calculation will be terminated if ejection is predicted
 - MELGEN will issue a warning to this effect