
Visualizing Large 3D Geodesic Grid Data with Massively Distributed GPUs
Jinrong Xie∗

University of California-Davis, USA
Hongfeng Yu†

University of Nebraska-Lincoln, USA
Kwan-Liu Ma‡

University of California-Davis, USA

ABSTRACT

Geodesic grids become increasingly prevalent in large weather and
climate applications. The deluge amount of simulation data de-
mands efficient and scalable visualization capabilities for scientific
exploration and understanding. Given the unique characteristics of
geodesic grids, no current techniques can scalably visualize scalar
fields defined on a geodesic grid. In this paper, we present a new
parallel ray-casting algorithm for large geodesic grids using mas-
sively distributed GPUs. We construct a spherical quadtree to adap-
tively partition and distribute the data according to the grid reso-
lution of simulation, and ensure a balanced workload assignment
over a large number of processors from different view angles. We
have designed and implemented the entire rendering pipeline based
on the MPI and CUDA architecture, and demonstrated the effec-
tiveness and scalability of our approach using an example of large
application on a supercomputer with thousands of GPUs.

1 INTRODUCTION

Advanced supercomputing techniques and systems allow scientists
to conduct simulations with detailed numerical weather and cli-
mate models. Geodesic grids have become increasingly prevalent
in the development of models [1, 17]. This type of grid can facili-
tate scientists to model the Earth’s surface with higher resolutions
and higher numerical stability, leading to a simulation of an un-
precedented scale. Such a simulation can possibly generate tera- or
peta-bytes of data that are typically time-varying and multivariate.
The sheer size of data requires scalable and interactive visualiza-
tion techniques for agile exploration and timely weather and climate
prediction. Parallel visualization provides a viable solution to ad-
dress the vast amount of simulation data, in that data are partitioned
and distributed among multiple processing units and visualization
calculations are conducted in a divide-and-conquer manner. A par-
allel visualization algorithm with a balanced workload assignment
can achieve scalable performance over a large number of proces-
sors, and make it possible to interactively explore massive data.

Geodesic grids were first introduced by Williamson [24] and
Sadourny et al. [18] for meteorological applications. A geodesic
mesh is constructed by subdividing an icosahedron embedded in a
sphere, where a simple bisection operation is iteratively applied on
the edges to refine the grids [17]. The iteration number of subdi-
vision can be different over different regions of the sphere, such
that more iterations are conducted on the regional areas of inter-
est to generate higher-resolution grids, while lower-resolution grids
are placed for the remainder of the surface. The resulting geodesic
mesh consists of spherical Voronoi polygons, where most of them
are hexagons and the remainder can be pentagons or heptagons.
The spherical polygon mesh is then scaled and duplicated along
the direction perpendicular to the Earth surface but at different al-
titudes to construct a set of spherical layers. These layers together
form a 3D mesh (or cage) used to model oceanic or atmospheric

∗e-mail:jrxie@ucdavis.edu
†e-mail:yu@cse.unl.edu
‡e-mail:ma@cs.ucdavis.edu

Figure 1: An example of spherical geodesic grids covering the ocean of the
Earth surface. The resolutions of Voronoi polygons vary across different re-
gions: higher-resolution grids are used in the regional areas of interest, while
lower-resolution grids are placed for the remainder of the surface. Note that
this example only displays the mesh of the top surface. For a real simulation,
this spherical mesh is scaled and duplicated to construct a set of layers along
the direction perpendicular to the Earth surface, resulting in a 3D mesh.

behavior in 3D. We refer interested readers to Xie’s work [25] for
an overview of grid construction. Figure 1 shows the top surface
of a 3D geodesic mesh used in an ocean basin simulation, where
the mesh is refined in specific regions of interest, lower-resolution
grids are used in other ocean areas, and no grid is placed in the
continental area.

Although extensive research has been carried out on parallel vi-
sualization, several fundamental challenges have prevented a direct
application of current solutions on geodesic grids. First, most paral-
lel visualization solutions rely on data partitioning and distribution
schemes that are designed in Cartesian coordinates, while geodesic
grids are constructed in the spherical coordinate system. The data
representations used in geodesic grids are fundamentally different
from grids in Cartesian coordinates. Existing data partitioning and
distribution schemes cannot be directly applied to handle geodesic
grids. Second, the spherical structure introduces unique visualiza-
tion requirements in that only the scalar fields in front are desired to
be visualized. Given the multiresolution nature of geodesic grids,
the data density of visible regions can vary significantly across dif-
ferent view angles. Thus it is difficult to estimate the rendering cost
using conventional methods for scientific volume data.

In this paper, we introduce a scalable parallel solution to in-
teractively visualize large-scale geodesic grid data using multiple
GPUs. Based on a careful characterization of geodesic grid visual-
ization, we design a new data partitioning and distribution scheme
that employs a spherical quadtree to decompose and index the mul-
tiresolution spherical grids. This spatial data structure enables us
to accurately estimate the rendering load for regions with different
resolutions. Moreover, we use the quadtree structure to scatter the
regions among the processors and ensure that each processor can
be assigned an approximately equal amount of workloads from any
viewing direction. Therefore no processors will be idle during the
rendering, and the maximum parallelism can be achieved. Our im-

3

IEEE Symposium on Large Data Analysis and Visualization 2014
October 9–10, Paris, France
978-1-4799-5215-1/14/$31.00 ©2014 IEEE

(a) (b)

Figure 2: Ray-casting of scalar fields. rt and rb correspond to the boundary
of the view frustum. A and B are the sampling points along a ray ri. (a): For
a general scalar field, both A and B can be visible, and the entire domain (in
green) is involved in the rendering calculation. (b): For a scalar field defined
on a spherical mesh covering the Earth, we only render A in the front region
(in green), while excludes B in the back region (in gray) that is invisible.

plementation of the entire rendering pipeline is based on the MPI
and CUDA architecture and can be directly executed on state-of-
the-art supercomputers. The scalability and effectiveness of our so-
lution have been demonstrated using the full extent of geodesic grid
data from real-world simulations. Great 3D details can be delivered
at an interactive rate to scientists for exploration. In addition, our
approach directly takes the original simulation data as input, and
thus can be readily extended in support of in-situ visualization dur-
ing simulation time.

2 RELATED WORK

While researchers have extensively studied visualization of struc-
tured and unstructured grids, there is a lack of visualization tools
for geodesic grids. In the scientific literature on numerical clima-
tological study, mostly simple polygon renderings are used to vi-
sualize the scalar field defined on the top surface of 3D geodesic
grids [7]. Such a rendering cannot reveal complex 3D interior struc-
tures embedded in grids that are related to detailed ocean processes
and cloud processes in the atmosphere.

It is possible to first convert geodesic grid data into conventional
representations (such as tetrahedral grid) and then apply suitable
algorithms (such as cell-projection [20] or ray-casting [6]) to vi-
sualize 3D scalar fields. However, this solution requires computa-
tion and storage overhead that can be prohibitively high for current
tera/petascale and future exascale simulations. To address this is-
sue, Xie et al. [25] presented a GPU-based ray-casting algorithm
that can directly visualize 3D scalar fields defined on raw geodesic
grids without data transformation. Their approach achieves interac-
tive rendering rates using a single GPU.

When data size is larger than the available memory capacity of
a single machine, a common strategy is to use multiple machines
to perform visualization in parallel. Researchers have developed
plenty of parallel visualization algorithms for large data. One of the
main focuses is to achieve high quality rendering while maintaining
scalable performance with an increasing number of processors. Ma
et al. [10] developed a parallel cell-projection algorithm for 3D un-
structured data from aerodynamics applications. They used a round
robin distribution of data cells to achieve an effective static load bal-
ancing among the processors. Parker et al. [15] conducted ray trac-
ing using shared-memory multiprocessor machines. Their method
enables an interactive isosurface visualization of large volume data
with high parallel efficiency. Leaf et al. [8] developed a parallel vol-
ume rendering algorithm for large-scale Adaptive Mesh Refinement
(AMR) data. They partitioned AMR data into convexly-bounded
chunks and distributed them among multiple GPUs using static load
balancing to perform distributed ray-casting.

Recent efforts have been made to further improve the scalabil-

(a) (b)

Figure 3: (a) shows a regular partitioning scheme along the latitude and lon-
gitude. (b) shows our spherical quadtree based partitioning scheme, which can
achieve load balancing with a smaller number of regions and a lower cost of
parallel image compositing.

ity of parallel visualization to be on par with simulations, thus en-
abling in-situ visualization to address future exascale supercomput-
ing challenges [19]. Researchers have directly integrated visual-
ization [26, 4] into simulation routines to operate on in-memory
simulation data. We also take in-situ visualization into account in
our design, in that our approach can directly process the original
grid data used in simulations and achieve high parallel efficiency
comparable to simulations.

3 CHARACTERIZING GEODESIC GRID VISUALIZATION

A balanced workload assignment is the key to the scalability of
parallel visualization algorithms. Given the unique visualization
requirements from geoscience applications, current methods to es-
timate the workload associated with conventional mesh structures
cannot be applied to geodesic grids.

For conventional mesh structures, the entire domain of a scalar
field is often counted in workload estimation regardless of view an-
gles. This is because during volume rendering of the field users can
adjust transfer functions and assign different opacities to different
regions, which implies that the entire domain can be involved in
the rendering calculation along an arbitrary ray. As shown in Fig-
ure 2(a), along a ray ri for rendering a general scalar field, both the
sampling points A and B can be perceived with a certain config-
uration of transfer function. Therefore, when designing a parallel
visualization algorithm, we may assign the regions containing A
and B to different processors, and all processors can be involved in
rendering from any view angle.

However, in a geoscience application, scientists typically merely
focus on the scalar field of the front Earth surface towards viewers.
For the phenomena over the other region, they can rotate the sphere
and bring the region to the front for observation. As shown in Fig-
ure 2(b), for spherical geodesic grids covering the Earth surface, we
just render the sample points in the front visible region along a ray
ri. Although it is technically feasible to make A and B visible, a
display of both points can preclude a clear observation and thus is
rarely applied in practice. In this case, if we still simply assign the
regions of A and B to different processors, some processors can be
idle during the rendering if the corresponding regions have been ro-
tated to the back, which may lead to severely unbalanced workloads
among the processors.

In addition, as shown in Figure 1, the mesh existence and density
can vary greatly in a model of the Earth surface. Thus, rendering
workloads can be dramatically different with respect to different
view angles. For example, showing the Pacific Ocean would incur
a larger amount of rendering calculations compared to a display
of the Americas due to a lack of grids in the continental regions.
Such use of unstructured and variable-density grids exacerbates the
issue of workload assignment, in that the amount of grids assigned
to different processors must be carefully balanced with a holistic
consideration of view angles and grid resolution distributions.

4

Figure 4: The major steps of our parallel volume rendering framework.

4 PARALLEL VOLUME RENDERING FRAMEWORK

A parallel rendering framework is typically comprised of the stages
of data partition, distribution, rendering, and image compositing.
Given the characterization of geodesic grid visualization, we have
taken several design considerations into account for the develop-
ment of a framework.

First, there are three basic parallel rendering approaches, namely,
sort-first, sort-middle, and sort-last [13]. Although the rendering
cost of geodesic grids is largely view-dependent, an image-based
workload partition scheme may constantly require communication
between processors to exchange simulation data when changing
views. This communication cost can be prohibitively high for pro-
cessing large climate simulation data. To this end, we choose sort-
last parallel rendering because of its simple workload decomposi-
tion for achieving load balancing and no communication overhead
involved in the rendering stage.

Second, data partition and distribution are conducted before the
rendering stage in sort-last parallel rendering. In order to maximize
the parallelism, it is imperative to keep all the processors busy in
rendering visible regions. However, if a processor is only assigned
one or a few partitions, it will be idle when its regions are facing
away from the viewer. As illustrated in Figure 2(b), one intuitive
idea is to assign the opposite regions along a ray, such as the regions
containing both A and B, to one processor. That is, the processor
will be always busy whenever a user is facing towards either A or
B. But it is possible for the processor to become idle again when
the viewing direction is perpendicular to AB. Thus we need to
design a more sophisticated partition and distribution strategy to
allow each processor to have visible regions to render from any
viewing direction.

Third, besides visible regions, each processor would also be ide-
ally assigned a roughly equal amount of rendering workload from
any viewing direction. The data size of each region depends on its
local mesh resolution. However, the raw mesh of a simulation data
mainly contains the connectivity information rather than the mesh
densities. Thus it requires us to find a way to index the data accord-
ing to the variation of grid resolutions, such that we can quickly
quantify the mesh density and then compute the data size for any
given region. This functionality is vital for us to accurately estimate
the regional rendering cost for load balancing.

These considerations can lead to a design in which we can regu-
larly decompose the spherical surface into a set of patches along the
latitude and longitude lines, as shown in Figure 3(a). The number
of the patches is sufficiently larger than the number of processors,
and then we randomly distribute the patches among the processors.
Hence each processor can be assigned the regions scattered over the
surface, and a portion of regions are visible from a viewing direc-
tion. In addition, by randomization, the amount of data assigned to
each processor can be roughly equal. This design is based on fine-
grained partitioning and randomization, which is commonly used
in distributed computing for load balancing. However, a large num-
ber of decompositions can also increase the number of the partial
images generated by each processor. These partial images of each
processor typically cannot be composited locally, because they cor-
respond to a set of scattered regions whose projections may not be
continuous in depth. Thus a significant overhead will be introduced
in the parallel image compositing stage for merging a large number
of partial images into a final image, and becomes the main perfor-
mance bottleneck of the entire pipeline.

We design our sort-last parallel volume rendering framework for

Figure 5: Ray-casting of a quadrant. Given a quadrant q (in blue), we can
project it onto a 2D screen space. The gray area corresponds to the pixels of
projection. A ray is casted from each pixel to penetrate the grid cells covered
by q, and the color and opacity values of sample points are accumulated along
the ray to generate the final color of the pixel.

Figure 6: Rendering of a quadtree constructed from a real simulation data.

geodesic grids to address these issues. We first construct a spherical
quadtree to cover the surface of a geodesic mesh, as shown in Fig-
ure 3(b). The quadtree is refined adaptively according to the count
of regional grid cells. In this way, we can quantify the mesh density
within the region of any quadtree node. We then partition the grids
into the regions corresponding to the leaf nodes of the quadtree,
and distribute them among the processors according to the traversal
order of the leaf nodes. Hence we can not only control the total
number of regions, but also ensure that each processor is assigned
a number of regions scattered across the spherical surface. No pro-
cessors will be idle for any viewing direction, and the rendering
load will be balanced among the processors. After each processor
renders its assigned regions, we use parallel image compositing to
generate the final image. Our approach can lower the number of
partitions and significantly reduce the overhead of parallel image
compositing compared to the conventional fine-grained partition-
ing scheme. Figure 4 shows the major steps of our approach.

4.1 Spherical Quadtree based Grid Partitioning
A quadtree is a commonly used data structure to partition a 2D
space. A typical quadtree is constructed by recursively subdividing
the space into four quadrants or regions until certain criteria are
reached. The concept of quadtrees can be naturally extended to
decompose spherical surfaces [9, 23, 21] in that the decomposition
can be conducted along the latitude and longitude lines instead of
X- and Y-axes in a 2D square space.

We use the quadtree to partition spherical geodesic grids such
that each quadrant or region will be associated with an approxi-
mately equal amount of rendering loads. To achieve this goal, we
first need to estimate the rendering cost of a quadrant q. Without
loss of generality, we use ray-casting to volume render geodesic
grids. As shown in Figure 5, we first project q onto a 2D screen
space, and then cast a ray from each pixel to penetrate the grid cells
covered by q. For each ray, we sample the scalar field and accumu-

5

late the color and opacity values of sampling points to compute the
final color of the pixel. Thus the rendering cost is proportional to
the number of pixels and the number of cells. We note that the num-
ber of pixels depends on the projection and the area of the region.
For a static view, the number of pixels projected from different re-
gions can be different. But if we allow users to interactively view
the spherical surface from any direction, the amortized number of
pixels projected from a region is proportional to the area of the re-
gion, because each region on a sphere has an equal probability to be
viewed. Thus, for a quadrant q, the rendering cost Cq , is estimated
as a linear function of its area Sq and its number of cells Gq:

Cq = kSqGq (1)

where k is a constant, and Sq is computed according to the latitudes
lat1 and lat2 and the longitudes lon1 and lon2 that bound q1.

This cost model guides us in constructing a quadtree. Given a
geodesic mesh, we first use Equation 1 to estimate the total render-
ing cost Ct using the total spherical surface area and the total cell
number. Assume that the number of processors is N and each pro-
cessor will be assigned m quadrants. The average rendering cost
Cavg of each quadrant is computed as

Cavg =
Ct

mN
. (2)

We then start to recursively subdivide the spherical surface to con-
struct the quadtree. We stop subdividing a quadrant if its estimated
rendering cost is smaller than Cavg or the total quadrant number is
larger than mN . In this way, we can construct a quadtree where
each quadrant is associated with a similar rendering cost.

According to the Earth satellite constellation design, three satel-
lites spaced equally around the equator can cover most of the
Earth [2]. If we imagine that a user’s view point is a satellite around
the spherical mesh, this implies that each processor needs to be as-
signed at least 3 quadrants scattering on the surface. Thus from any
viewing direction, a processor can have at least one quadrant that
is visible, which can prevent the processor from becoming idle. In
practice, we find that m = 5 provides us a good performance result.
Figure 6 shows a quadtree constructed from a real simulation data.
We can clearly see that the finer-grained quadrants are generated
to cover the higher-resolution regional areas of interest, while the
coarser-grained quadrants cover the remains of ocean area, which
matches the distribution of grid resolutions in Figure 1.

With our spherical quadtree based partitioning, the shape of the
quadrants can be different across the sphere: they are close to be
rectilinear for regions around the equator, but are triangular for re-
gions around the poles, as shown in Figure 3(b). Our cost model
considers the surface area of quadrants, and the workload estima-
tion is independent of the location and the shape of a quadrant.

4.2 Space-filling Curve based Grid Distribution
It is desired to assign each processor with a set of quadrants that
are as scattered as possible. A straight-forward approach is to ran-
domly assign the quadrants among the processors. However, we
can achieve a more appropriate assignment by leveraging the spatial
locality encoded in a quadtree. If we use the linear quadtree tech-
nique [5] to encode and distinguish quadrants, a pre-order traver-
sal of quadrants leads to the well-known space-filling curve which
groups the spatial nearby quadrants together on the spherical sur-
face. Figure 7 shows an example of spherical surface decomposi-
tion and the corresponding quadtree. The traversal of leaf quadrants
from left to right is equivalent to the zigzag on the spherical surface.
Therefore, a strong spatial locality can be clearly identified for these

1Our implement is similar to the areaquad function of MATLAB to
compute surface area of latitude-longitude quadrangle [12].

(a)

(b)

Figure 7: The spatial decomposition of a spherical surface and its corre-
sponding quadtree. A pre-order traversal of quadrants is equivalent to the
space-filling curve on the spherical surface. (a) shows that we evenly assign
the quadrants among three processors from left to right in the quadtree, and
the distribution of their regions is contiguous along the space-filling curve. In
this case, each processor’s regions may not be always visible from different
viewing directions. (b) shows that we assign the quadrants among three pro-
cessors in round robin, and the neighboring regions are largely assigned to
different processors. In this case, a portion of a processor’s regions can be
visible from any viewing direction.

quadrants. This property of quadtree has been widely used in the
optimization of data layout. For example, the grid cells can be lin-
earized and saved in persistent storage according to the space-filling
curve obtained by quadtree. This storage pattern can guarantee con-
tiguous reads/writes, and improve I/O performance [3].

If we assign the processors along the space-filling curve for par-
allel visualization, each processor will be responsible for contigu-
ous regions on the surface. Figure 7(a) illustrates such an assign-
ment for three processors distinguished in different colors. How-
ever, the regions assigned to a processor can be occluded from cer-
tain view points. For example, as shown in Figure 7(a), the green
regions cannot be perceived if the viewer is around the north pole,
and the processor PE2 will become idle.

We note that the spatial locality becomes the best along the
space-filling curve of the decomposition. On the other hand, we
may achieve the worst locality using the space-filling curve in the
opposite way to favor visualization workload assignment. Instead
of a contiguous assignment, we distribute the quadrants among the
processors in round robin along the space-filling curve. Given a
sufficient number of processors, this distribution can guarantee that
the neighboring regions are assigned to different processors. As
shown in Figure 7(b), the regions of each processor scatter across
the spherical surface, and a processor always has a portion of re-
gions that are visible from any viewing direction. Thus, we can
keep all processors busy in rendering. In addition, each proces-
sor is still assigned an equal number of quadrants, and each quad-
rant corresponds to a nearly equal amount of rendering cost. This
assignment enables our solution to achieve load balancing during
users’ interactive exploration.

6

4.3 Ray-Casting of Local Geodesic Grids
After we partition and distribute geodesic grids among the proces-
sors, each processor starts to render its local regions, where the
GPU-based ray-casting algorithm developed by Xie et al. [25] is
employed in this stage.

The algorithm is tailored to process geodesic grids with mini-
mal overhead. First, we directly use the original Voronoi polygo-
nal mesh of simulations in rendering without any intermediate grid
transformation. In particular, a set of table-based representations
are deployed to manage the mesh in GPU memory for efficient data
access. Then, during the process of ray-casting, we leverage the
properties of geodesic grids and march rays using the 2D connec-
tivity information of the outer layer. Hence, we do not need to re-
construct full 3D connectivity information, and can further reduce
memory and computing overhead. To achieve high quality render-
ing, an analytic solution has been designed to reconstruct the signal
within a geodesic grid cell for scalar value interpolation, gradient
estimation, and ray integration. The accuracy of the analytic scalar
and gradient interpolation is comparable to the results achieved by
central difference numerical computations in simulations.

Each processor iterates through its assigned quadrants and ren-
ders the grid cells of each quadrant into a partial image using Xie’s
algorithm. The rendered results feature high image quality, less
memory overhead, and higher computing performance. In addition,
no communication is needed in this stage, and thus local grid ren-
dering can scale well given our partitioning and distribution scheme
for load balancing.

4.4 Parallel Image Compositing
The partial images rendered by each processor need to be compos-
ited (i.e. back-to-front alpha blending) to generate the final image.
The parallel image compositing stage requires inter-processor com-
munication, and can become expensive when the number of partial
images increases. The most representative parallel image composit-
ing algorithms include direct send [14] and binary swap [11]. Di-
rect send is simple and easy to implement; however in the worst
case it needs to exchange N(N − 1) messages among N com-
positing processors, introducing link contention due to its nature
of all-to-all communication pattern. Binary swap uses a binary
tree style compositing process and reduces the number of messages
from N(N − 1) to Nlog(N). However, to achieve the best perfor-
mance, binary swap needs the number of processors to be an exact
power-of-two.

Yu et al. [27] presented the 2-3 swap image compositing algo-
rithm that combines the advantages of direct send and binary swap.
On one hand, 2-3 swap can be as flexible as direct send in that it
can use any number of processors. On the other hand, 2-3 swap
involves the number of messages bounded by O(Nlog(N)), which
is as efficient as binary swap. Peterka [16] presented the Radix-
k algorithm that also unifies direct-send and binary swap and has
the similar complexity as 2-3 swap. However, it is non-trivial to
configure Radix-k for achieving optimal performance [22].

We use 2-3 swap in this work for parallel image compositing.
This algorithm has been used in several large-scale parallel render-
ing applications, and demonstrated its great flexibility and scala-
bility over ten thousands of processors [26]. As we discussed in
Section 4.1, each processor can be assigned m quadrants, and the
total number of partial images is mN for N processors. Because
of the spatial discontinuity of the quadrants assigned to each pro-
cessor, these partial images are not necessarily contiguous in depth
on a processor, and cannot be blended locally before being sent to
the other processors. Therefore, one message is required for one
partial image in the worst case, and the total number of messages is
bounded by O(mNlog(mN)). Compared to the fine-grained parti-
tioning and distribution scheme discussed in Section 4, our scheme
can minimize the value of m by leveraging spherical quadtrees, and

GCRM MPAS
resolution 28km 15∼75km
cells 655362 253746
vertices 1310720 517338
edges 1966080 771377
layers 60 40
time steps 40 12

Table 1: The GCRM and MPAS data sets used in our evaluation. Both data
sets contain multiple variables.

significantly reduce the image compositing cost.

4.5 Implementation
We have employed MPI and CUDA to implement our framework
on heterogeneous supercomputers where each node contains both
CPUs and GPUs. Given a spherical geodesic grid data set, we first
let each processor read the whole mesh information from storage.
Because only the connectivity information of the 2D outer layer
is stored in the original Voronoi polygonal mesh, the cost of this
I/O operation is marginal. Then each processor independently con-
structs a quadtree using CPUs. The maximum depth of the quadtree
depends on the processor number and the grid cell number. The de-
composition of quadrants is conducted along the latitude and lon-
gitude lines of the sphere. Each processor generates an identical
quadtree for the same configurations. Given the total processor
number and its rank, each processor independently traverses the
tree and finds the set of quadrants that it needs to be responsible for.

The grid cells are organized in the leaf quadrants according to
the spatial decomposition of the quadtree. For the grid cells cross-
ing the boundaries of the leaf quadrants, we duplicate them in the
relevant quadrants for interpolating scalar values along the bound-
aries. During the ray-casting of a quadrant, we terminate a ray if we
step out of the boundary of the quadrant rather than the boundary
of the cells. In this way, we can generate the partial images aligned
with the quadrants to facilitate image compositing. After each pro-
cessor determines its own set of cells, all processors collectively
fetch the simulation data from storage using MPI-IO.

Different from Xie’s work [25], we do not use OpenGL to ren-
der the visible surface of the Voronoi polygonal mesh in this work.
Instead, we implement the projection, clipping, and rasterization
stages in CUDA for off-screen rendering. Thus, our implement can
be executed in an environment without any OpenGL or graphics
support. The ray-casting of local grids is implemented using the
same method as Xie’s [25], where ray marching, interpolation, gra-
dient estimation, and ray integration are entirely conducted in GPU
memory using CUDA. After each processor generates its local par-
tial images, these images are first transferred from GPU memory to
CPU memory. Then we use the 2-3 swap algorithm to composite
the partial images from all processors into the final image, where
the communication of 2-3 swap is implemented using MPI and the
image blending is performed using CPUs.

We put our CUDA code in a special header file by exploiting the
similarity between C/C++ code and CUDA code. We can choose
our code to be complied into a CPU or GPU executable according
to the availability of GPUs in a system. Thus our implementation is
more generic and highly compatible to both homogeneous systems
and heterogeneous systems.

5 RESULTS

We have evaluated our framework using two data sets, where one
is generated from the Global Cloud Resolving Model (GCRM) and
the other is from the Model for Prediction Across Scales (MPAS).
Both GCRM and MPAS are developed based on geodesic grids
where mesh density varies over the Earth according to the distri-
bution of regions of interest. However, GCRM is mainly used to

7

Figure 8: The timing results of the GCRM data set. We measured the timing
of the rasterization, ray-casting, and image compositing operations with the
number of GPUs ranging from 4 to 1024 and the output image resolutions
of 10242 (top), 20482 (middle), and 40962 (bottom). The timing results are
plotted in a logarithmic scale.

model cloud processes in atmosphere, and a GCRM mesh covers
the entire sphere. MPAS is mainly used to model ocean processes
such that the continental areas are not covered in a MPAS mesh. In
general, compared to a GCRM mesh, a MPAS mesh exhibits more
variation in grid resolutions over the sphere. Table 1 lists the de-
tailed information of the GCRM and MPAS data sets.

We performed our experimental study on Titan, a Cray XK7 sys-
tem at Oak Ridge National Laboratory. The system contains 18,688
compute nodes, and each node has a conventional 16-core AMD
Opteron CPU and an NVIDIA Tesla K20 GPU accelerator with a
total 38GB of memory. The compute nodes are connected through
a Cray Gemini interconnect.

We conducted a strong scaling test on our approach with an in-
creasing number of GPUs from 4 to 1024. We rendered the data sets
using 3 different image sizes, including 10242, 20482, and 40962,
and from 10 different viewing directions that are evenly distributed
across the sphere. For each viewing direction, we measured the
timing results of the major operations, including rasterization, ray-
casting, and parallel image composting. The timing results are then
averaged over the viewing directions.

Figure 8 shows the timing results for rendering the GCRM data
set. The rasteraization time is nearly negligible for all three image
resolutions. Our CUDA-based implementation of rasterization can
render millions of polygons interactively. For the GCRM data, our
rasterization approach achieves a rate of 30 frames per second for
20482 images and a rate of 10 frames per second for 40962 images
using 4 GPUs. The performance is comparable to an implementa-

Figure 9: The timing results of the MPAS data set. We measured the timing
of the rasterization, ray-casting, and image compositing operations with the
number of GPUs ranging from 4 to 1024 and the output image resolutions
of 10242 (top), 20482 (middle), and 40962 (bottom). The timing results are
plotted in a logarithmic scale.

tion using the native OpenGL on similar GPUs. We can see that the
ray-casting time dominates the overall time for a smaller number of
GPUs, which constantly decreases with the increasing number of
GPUs. The measured timing results are close to the ideal speedup
time. For a high resolution image of 40962, our approach achieves
a parallel efficiency of 85% from 4 GPUs to 64 GPUs, and a parallel
efficiency of 50% from 4 GPUs to 1024 GPUs.

The compositing time is nearly constant with the increasing
number of processors because of its logarithmic complexity. As
shown in Figure 8, when the processor number is less than 64,
as expected, the compositing time can be hidden by overlapping
ray-casting and image compositing. However, when the proces-
sor number is larger than 64, the compositing time starts to domi-
nate the overall time. Most existing parallel visualization solutions
for supercomputers use CPU-based rendering algorithms, and thus
the rendering time is longer than the image compositing time un-
til a large number of processors are used. In our new GPU-based
parallel visualization framework, the rendering time can be signif-
icantly reduced by leveraging GPUs available on supercomputers,
while compositing is still conducted using CPUs and MPI. Thus,
the curve of composting time can quickly intersect with the curve
of rendering time even for a smaller number of processors. We aim
to develop optimization techniques for image compositing in sup-
port of parallel GPU-based rendering in the future.

Figure 9 shows the timing results for rendering the MPAS data
set that features a high variation of mesh density. Even for this
data set, our approach demonstrates a similar performance trend

8

Figure 11: The visualization results of the GCRM data set. The top row of images show the whole global atmosphere vorticity variable over three time steps. The
bottom row of images show the close-up views of regions of interest.

Figure 10: The ray-casting time for each GPU using the MPAS data set and
different data distribution schemes. The output image resolution is 20482.
The blue and red curves correspond to the contiguous data assignment (Fig-
ure 7(a)) and our round robin data assignment (Figure 7(b)), respectively.

as for the GCRM data. The ray-casting time is still close to the
ideal speedup time. Figure 10 shows the ray-casting time for each
GPU when 128 GPUs are used in rendering of the MPAS data set
with an output image resolution of 20482. The time is averaged
over the 10 viewing directions. The difference ratio, defined as
(max time−min time)/max time, is 32.5% for the red curve
and 98.6% for the blue curve. This clearly shows that the workloads
are well-balanced among the GPUs from different view directions
using our data partitioning and distribution scheme. Figures 11
and 12 show the overviews and zoom-in views of the GCRM and
MPAS data sets for three selected time steps. Our high-resolution
parallel visualization solution delivers high-quality results that en-
able scientists to interactively explore fine details of the volume
data. A supplementary video demonstrating an interactive explo-
ration of each time-varying data set using our renderer is provided

at http://youtu.be/1bspVTsGSY8.

6 CONCLUSIONS

We have introduced a scalable solution for visualizing large-scale
3D geodesic grid data using massively distributed GPUs on state-
of-the-art supercomputers. Based on a careful characterization of
geodesic grids, we use spherical quadtrees to partition and dis-
tribute geodesic data. Our design achieves a balanced workload
across processors, and makes it practical to interactively visualize
large geodesic grid data. Our visualization framework directly takes
the original mesh as input, and thus is ready to be integrated with
simulations. In the future, we plan to experiment with other data
partitioning and distribution schemes, including the ones deployed
by the simulations, to enable in-situ visualization. We also would
like to develop optimization methods to further reduce the image
composting cost.

7 ACKNOWLEDGMENTS

This research has been sponsored in part by the National Science
Foundation through grants DRL-1323214 and IIS-1255237, and
Department of Energy through grants DE-FC02-06ER25777, DE-
CS0005334, and DE-FC02-12ER26072 with program managers
Lucy Nowell and Ceren Susut-Bennett.

REFERENCES

[1] C. Chen, J. Bin, and F. Xiao. A global multimoment constrained finite-
volume scheme for advection transport on the hexagonal geodesic
grid. Monthly Weather Review, (140):941–955, 2012.

[2] A. C. Clarke. Extra-terrestrial relays: Can rocket stations give world-
wide radio coverage? Wireless World, page 306, October 1945.

[3] J. Daily, K. Schuchardt, and B. Palmer. Efficient extraction of regional
subsets from massive climate datasets using parallel IO. In American
Geophysical Union, Fall Meeting 2010, pages IN41A–1360, 2010.

9

Figure 12: The visualization results of the MPAS data set. The top row of images show the whole global ocean vorticity variable over three time steps. The bottom
row of images show the close-up views of regions of interest.

[4] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion, B. Geve-
cik, M. Rasquin, and K. Jansen. The paraview coprocessing library:
A scalable, general purpose in situ visualization library. In Proc. of
IEEE Symposium on Large Data Analysis and Visualization (LDAV),
pages 89 –96, October 2011.

[5] I. Gargantini. An effective way to represent quadtrees. Commun.
ACM, 25(12):905–910, Dec. 1982.

[6] M. P. Garrity. Raytracing irregular volume data. In Proceedings of
VVS, pages 35–40, 1990.

[7] P. Lauritzen, C. Jablonowski, M. Taylor, and R. Nair. Numerical Tech-
niques for Global Atmospheric Models. Springer, 2011.

[8] N. Leaf, V. Vishwanath, J. Insley, M. Hereld, M. Papka, and K.-L.
Ma. Efficient parallel volume rendering of large-scale adaptive mesh
refinement data. In Proceedings of the IEEE Symposium on Large-
Scale Data Analysis and Visualization, 2013.

[9] F. D. Libera and F. Gosen. Using b-trees to solve geographic range
queries. The Computer Journal, 29(2):176–180, 1986.

[10] K.-L. Ma and T. Crockett. A scalable parallel cell-projection volume
rendering algorithm for three-dimensional unstructured data. In Paral-
lel Rendering, 1997. PRS 97. Proceedings. IEEE Symposium on, pages
95–104, 119–20, Oct 1997.

[11] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. Parallel vol-
ume rendering using binary-swap compositing. IEEE Comput. Graph.
Appl., 14(4):59–68, July 1994.

[12] MATLAB. MATLAB R2014a Documentation, 2014.
[13] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classifica-

tion of parallel rendering. IEEE Comput. Graph. Appl., 14(4):23–32,
July 1994.

[14] U. Neumann. Communication costs for parallel volume-rendering al-
gorithms. IEEE Comput. Graph. Appl., 14(4):49–58, July 1994.

[15] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and P. Shirley.
Interactive ray tracing for volume visualization. IEEE Transactions
on Visualization and Computer Graphics, 5(3):238–250, July 1999.

[16] T. Peterka, D. Goodell, R. Ross, H.-W. Shen, and R. Thakur. A con-
figurable algorithm for parallel image-compositing applications. In

Proceedings of the Conference on High Performance Computing Net-
working, Storage and Analysis, SC ’09, pages 4:1–4:10, 2009.

[17] D. A. Randall, T. D. Ringler, R. P. Heikes, P. Jones, and J. Baumgard-
ner. Climate modeling with spherical geodesic grids. Computing in
Science & Engineering, 4(5):32–41, 2002.

[18] R. Sadourny, A. Arakawa, and Y. Mlntz. Integration of the nondiver-
gent barotropic vorticity equation with an icosahedral-hexagonal grid
for the sphere. Monthly Weather Review, (96):351–356, 1968.

[19] J. Shalf, S. Dosanjh, and J. Morrison. Exascale computing technol-
ogy challenges. In Proceedings of the 9th international conference
on High performance computing for computational science, VEC-
PAR’10, pages 1–25, 2011.

[20] P. Shirley and A. Tuchman. A polygonal approximation to direct
scalar volume rendering. In Proceedings of VVS, pages 63–70, 1990.

[21] W. Tobler and Z.-t. Chen. A quadtree for global information storage.
Geographical Analysis, 18(4):360–371, 1986.

[22] P. Wang, Z. Cheng, R. Martin, H. Liu, X. Cai, and S. Li. Numa-
aware image compositing on multi-gpu platform. The Visual Com-
puter, 29(6-8):639–649, 2013.

[23] Z. Wartell, W. Ribarsky, and L. Hodges. Efficient ray intersection for
visualization and navigation of global terrain using spheroidal height-
augmented quadtrees. In Data Visualization ’99, Eurographics, pages
213–223, 1999.

[24] D. L. Williamson. Integration of the barotropic vorticity equation on
a spherical geodesic grid. Tellus, (20):642–653, 1968.

[25] J. Xie, H. Yu, and K.-L. Ma. Interactive ray casting of geodesic grids.
In Proceedings of the 15th Eurographics Conference on Visualization,
EuroVis ’13, pages 481–490, 2013.

[26] H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K.-L. Ma. In situ
visualization for large-scale combustion simulations. IEEE Computer
Graphics and Applications, 30(3):45–57, 2010.

[27] H. Yu, C. Wang, and K.-L. Ma. Massively parallel volume ren-
dering using 2-3 swap image compositing. In Proceedings of the
2008 ACM/IEEE Conference on Supercomputing, SC ’08, pages 48:1–
48:11, 2008.

10

