SAND2015- 7833C

Extending LDMS to Enable Performance Monitoring
in Multi-Core Applications

Steven Feldman, Deli Zhang,
University of Central Florida
Orlando, FL
Email: sfeldman@knights.ucf.edu

Abstract—Identifying design patterns that limit the perfor-
mance of multi-core algorithms is a challenging task. There are
many known methods by which threads synchronize their actions
and each method may exhibit different behavior in different use
cases. These use cases may vary in regards to the workload being
executed, number of parallel tasks, dependencies between these
tasks, and the behavior of the system scheduler. Restructuring
algorithms to overcome performance limitations requires intimate
knowledge on how these algorithms behave in hardware. In our
experience, we have found a lack of adequate tools to gain such
knowledge.

To address this, we have enhanced and implemented ad-
ditional sampler modules for OVIS’s Lightweight Distributed
Metric Service (LDMS) [1] to monitor hardware performance
counters. These modules provide an interface by which LDMS
can utilize the PAPI library, Linux perf tools, or RAPL to collect
hardware performance counters of interest. Using these samplers,
we plan to monitor the intra-node behavior, including contention
for node level shared resources, of multi-core applications for
a diverse set of use cases. We are currently exploring how
the values reported are affected by the level of concurrency,
the synchronization methodologies, and progress guarantees. We
hope to use the information to identify ways to restructure the
tested algorithms to increase their performance.

I. INTRODUCTION

Developing high performing multi-core algorithms is a
challenging task. This task is complicated by numerous factors
that may impact the performance of a multi-core application.
These factors include the hardware the application is executed
on, the number of executing threads, memory access patterns,
and how the algorithm is currently being used. To better under-
stand the impact of these factors we are extending existing and
developing new modules for OVIS’s Lightweight Distributed
Metric Service (LDMS) [1]. These modules are designed to
monitor both hardware and software events and by analyzing
the results of experiments, we hope to identify ways to improve
the performance of multi-core algorithms.

The goal of the OVIS project [2] is to enable more effective
use of high performance computational clusters by providing
a greater understanding of how applications use resources.
Use cases of interest include competition for shared resources,
detection of abnormal system conditions, and responding
intelligently to conditions of interest. The Lightweight Dis-
tributed Metric Service (LDMS) [1] module is responsible
for data collection, transport, and storage for consumption by
OVIS, and/or third party analysis, visualization, and response

Damian Dechev, and James Brandt
Sandia National Laboratories
Livermore, CA
Email: brandt@sandia.gov

modules. LDMS contains many sub-modules, referred to as
samplers, which collect data that is of interest.

Our contribution is the enhancement of the perf_event [3]
sampler and implementation of two additional samplers for
the PAPI [4] and RAPL [5] libraries. These libraries provide
access to a variety of hardware performance monitoring units
and power consumption monitors. We have performed prelim-
inary tests using these samplers and have identified patterns
that may explain certain performance behavior of multi-core
applications. With this knowledge, we hope to identify ways
to restructure algorithms to overcome performance limitations.

II. SAMPLER: PERF

Linux’s perf tools, also referred to as perf_event [3], is
a tool that provides access to CPU performance counters,
tracepoints, kprobes, and dynamic tracing. These metrics are
accessed through a generalized abstraction layer that removes
the need to modify code when moving from one architecture
to another architecture that supports similar metrics.

Events can be tracked globally or limited to events trig-
gered by a specified process and they can be further refined to
events that occur on a specified core. Because this tool can be
utilized by root for monitoring of any supported events, it can
be used for global periodic monitoring as a system service. The
monitored information, taken in conjunction with scheduler
and resource manager logs, can provide valuable insight into
how a user application is utilizing node level resources on a
per-core/per-subsystem granularity and how this varies across
the user application’s node allocation.

A. Sampler Enhancement

This sampler implementation enables LDMS to monitor all
hardware and software events supported by the perf_event tool.
While this sampler had already been written, the user interface
for configuration was difficult to use and it lacked the ability
to monitor the uncore counters. Thus our contribution to this
sampler is a simplified script interface for configuration and
extension to the uncore counters.

After loading the perf_event sampler module (Idm-
sctl$ load name=perfevent) and initializing it (ldmsctl$
config name=perfevent action=init component_id=<int>
set=<string>), a user can track a particular event by calling
the configuration option, specifying the event codes, process
id, cpu core id, and lastly an identifying name for the

event (Idmsctl$ config name=perfevent action=add pid=<int>
cpu=<int> type=<int> id=<int> metricname=<string>). If
the developer specifies a cpu core value of —1, it will track
the specified process across all cpu cores and if a pid of —1
is specified,all processes on a single cpu core will be tracked.

The number of events and processes which can be tracked
by this sampler is only limited by the number supported by
the perf_event library, which may vary on the hardware archi-
tecture. Perf_event provides a utility program, perf list, that
displays a list of supported events for the current architecture.

III. SAMPLER: PAPI

The Performance API or PAPI project is aimed at devel-
oping a standard programming interface by which hardware
performance counters are accessed [4]. One of PAPI’s most
significant features is its portability; source code which uses
its interfaces can be run on multiple different architectures
with minimal concern for compatibility. Additionally, PAPI
provides tools to determine the availability and compatibility
of various hardware counter events supported on a particular
system. One of PAPI’s limitations, however, is that it can only
be programmed by a user to collect information related to that
users processes and their children. It does not allow user root
to monitor globally and thus cannot be used to provide system
wide monitoring.

A. Sampler Implementation

Our sampler implementation enables OVIS to monitor
all hardware and software events supported by the PAPI
library. After loading (Idmsctl$ load name=spapi) and ini-
tializing (ldmsctl$ config name=spapi action=init compo-
nent_id=<int> set=<string>) the PAPI sampler module,
a user can track a particular event by calling the con-
figuration option, specifying the event name, process id,
and an identifying name for the event (ldmsctl$ config
name=spapi action=add pid=<pid> event=<string> metric-
name=<string>).

The API to PAPI differs to that of perf_event in two
regards. The first is that it does not require a numerical event
code; instead a user is able to use a string to identify the event
to track. The second is that it does not allow event tracking to
be limited to a specific core.

The number of events and processes which can be tracked
by this sampler is only limited by the number supported
by the PAPI library, which may vary based on architec-
ture. PAPI provides two utility programs, papi_avail and
papi_component_avail, that display a list of supported events
for the current architecture.

PAPI is capable of automatically monitoring all threads of
a forked process, but not of an attached process, which is how
our sampler uses PAPI to monitor an application. To overcome
this, a user can explicitly configure the sampler to track each
child process. For applications that use a large number of
threads or for applications that create and destroy threads, this
is not an applicable solution. We are currently investigating
alternative libraries and tools that may provide a means by
which to overcome this limitation.

IV. SAMPLER: RUNNING AVERAGE POWER LIMIT

Running Average Power Limit or RAPL is an interface
available on Intel Sandy Bridge or newer processors that
provides the ability to monitor, control and receive notifications
on CPU power consumptions.

A. Sampler Implementation

Our implementation relies on PAPI’s RAPL component [6],
which requires root privileges and perf tools 3.14 or newer.
This component reads the RAPL values directly from the
model-specific registers by using the x86-msr driver. It tracks
RAPL measurements on a per CPU socket basis, but not a
per-process basis.

After loading the RAPL sampler module, a user can
track power consumption after an initial configuration (Idm-
sctl$ config name=rapl action=init component_id=<int>
set=<string>).

V. HOW WE PLAN TO USE THE SAMPLERS

Having completed the implementation of the sampler mod-
ules, we have identified the following hardware events that we
believe may provide insights into the behavior of multi-core
algorithm:

e Instructions: all, load, store, branch, failed conditional
instructions...

e Cache behavior: hits, misses, reads, writes, ...
e (Cycles: total, stalled

e Branch miss predictions

e Hardware interrupts

e Power consumption

To facilitate our experimental evaluation we use a synthetic
tester designed to simulate how multi-core applications may
use a concurrent container. During experimental evaluation,
we will test how different use cases, levels of concurrency,
synchronization techniques, and container types affect perfor-
mance.

While performing these experiments, we will track several
of the aforementioned hardware and software counters then
compare the reported values from different use cases. Use
cases may differ in a number of ways, such as the number
of executing threads, the types of operations being executed
by each thread, or even the container implementation used.
We also plan to explore the effect of having multiple sets of
threads, each executing operations with different probabilities.

VI. INITIAL INSIGHTS

We have performed some initial experiments to evaluate
the effectiveness of the PAPI sampler. To enable sampling of
multi-threaded applications, we explicitly add the process ids
of each thread created by the application. In these experiments,
we explore how the number of cycles and instructions the
performance of the container to the number of cycles and
instructions consumed by the application.

Change relative to one thread

25
20
15
10

#Threads Change in Work Change in Cycles Change in Stalled | Change in Instructions ||
Stack Hash Map | Stack || Hash Map | Stack || Hash Map | Stack || Hash Map
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 -0.24 0.80 -0.09 0.78 -0.26 0.96 -0.31 0.91
8 -0.57 5.93 0.59 5.90 -0.55 6.37 -0.53 5.58
16 -0.81 10.24 0.62 9.71 -0.81 12.81 -0.83 11.84
32 -0.91 13.37 0.28 11.61 -0.90 14.57 -0.91 13.04
64 -0.90 25.07 -0.02 10.50 -0.90 31.05 -0.90 26.72
Fig. 1: Algorithm Performance Comparison
—— Threads:1 —— T:2 —+— T:8 —— T:16 T:32 —— T:64
1 § 25
[/ § » W
l"”’* —dly 4 ; 15 r_*,—ya——*~A——————**nr\,_—i&——___,_~ii\r4*~\~,4»,—_¢—i
s 3 0\{-“—0‘0—0\0’0—%0—0—0—0—0—0—‘
— i S E——
0 5 10 15 20 © 0 5 10 15 20
Seconds Seconds

Change relative to one thread

Change relative to one thread

(a) Lock-Free Stack

(b) Wait-Free Hash Map

Fig. 2: Relative change in cycles compared to single thread execution.

SR DY — T P

1

5 10

Seconds

(a) Lock-Free Stack

Fig. 3: Relative change in stalled cycles compared to single thread execution.

L&t@e‘#-——w
0 5 10 15 2

Seconds

15

20

(a) Lock-Free Stack

0

Change relative to one thread

e
ONPOOONDO®

Change relative to one thread

10

Seconds

(b) Wait-Free Hash Map

10

Seconds

15 20

(b) Wait-Free Hash Map

Fig. 4: Relative change in instructions compared to single thread execution.

Our test begins by having a main thread construct and
initialize a container. Next, it creates a set of worker threads
and then sleeps for a few seconds. While the main thread
sleeps, we attached LDMS samplers to each thread and set
them to sample every 100ms. Upon waking, the main thread
signals the worker threads to begin execution, after which it
sleeps for 20 seconds, and then when it wakes it signals the end
of execution. Each worker thread executes operations based on
the typical use case of the container being used.

Fig. 1 presents cumulative change in tracked metrics in
each experiment and Fig. 2-4 depicts the values reported by
different hardware metrics throughout the experiment. Each
line is the performance at a specific level of concurrency
relative to single thread execution and each point represents a
2% change in reported value from the previous point.

We see in Fig. 1 that the stack’s performance decreases as
the number of threads accessing it increases and, conversely,
the hashmap’s performance increases as the number of threads
increases. Through manual examination, we attribute the poor
performance of the stack to the contention created by using
a single shared pointer. This is in contrast to the hashmap’s
implementation, which diffuses contention across a region of
memory. This diffusion, creates disjoint parallelism, which we
attribute to the hashmap’s performance scalability.

Using Fig. 2 we see that the hashmap cycle usage varies
significantly more than the stacks usage, especially at higher
thread levels. However, they both exhibit roughly the same
relative change in cycles compared to single thread execution.

Even though the containers consume relatively the same
number of cycles, we see in Fig. 4 that, on average, the
hashmap’s relative increase in instructions is twice that of the
stack’s increase. Fig. 3 reveals that this discrepancy maybe
caused by stalled cycles. We see that the stack increases in
stalled cycles much faster than the hashmap. But this increase
does not appear to explain all of the performance differences.

When the number of threads increase from 1 to 64, the
number of operations completed decrease by 90%. If we divide
the number instructions and cycles by the number of operation,
we see an increase in instructions per operation and cycles per
instruction. On average it takes 3,000 instructions and 3,100
cycles to perform one operation with one thread and with 64
threads, it increases to 260,000 and 696,000, respectively.

Unlike the stack, the performance of the hashmap increases
with the number of threads. Increasing the number of threads
form 1 to 64, leads to a factor of 26 increase in number
of operations completed. Interestingly, the total number of
instructions and cycles only increased by a factor of 15 and
21, respectively. This surprising reduction means that the the
average number of instructions and cycles needed to execute
an operation was reduced by 42.3% and 32.4%. We are unsure
as to the cause of this decrease, but will be investigating this
behavior further.

VII. FUTURE WORK

We are in the initial stages of our research and are
currently exploring different methodologies and technologies.
A priority of ours is to identify suitable multi-core applications
to augment our synthetic testing. At the same time, we are

expanding our synthetic tests to gather data form a wider
variety of use cases. Our initial insights are promising, but
more work needs to be done to determine how this information
can be applied to improve the design and implementation of
multi-core algorithms.

In addition to the samplers that we have already imple-
mented, we plan to implement additional samplers to provide
access to more hardware monitors. We are currently exploring
the applicability of the powerAPI [7] library to overcome some
limitations in the RAPL library.

ACKNOWLEDGMENT

Our enhancement of OVIS is funded by National Sci-
ence Foundation grants NSF ACI-1440530 and NSF CCF-
1218100. OVIS is a project of Sandia National Laboratories,
Albuquerque NM, 87123 and collaborative partner Open Grid
Computing, Austin TX., SAND 2006-2519W. Sandia National
Laboratories is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.

REFERENCES

[1] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop,
A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan,
M. Showerman, J. Stevenson, N. Taerat, and T. Tucker, “The
lightweight distributed metric service: A scalable infrastructure
for continuous monitoring of large scale computing systems and
applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 154-165. [Online].
Available: http://dx.doi.org/10.1109/SC.2014.18

[2] J. M. Brandt, B. J. Debusschere, A. C. Gentile, J. R. Mayo, P. P.
Pébay, D. Thompson, and M. H. Wong, “Ovis-2: A robust distributed
architecture for scalable ras,” in Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on. 1EEE, 2008,
pp. 1-8.

[3] V. M. Weaver, “Linux perf_event features and overhead,” in The 2nd
International Workshop on Performance Analysis of Workload Optimized
Systems, FastPath, 2013, p. 80.

[4] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A portable pro-
gramming interface for performance evaluation on modern processors,”
International Journal of High Performance Computing Applications,
vol. 14, no. 3, pp. 189-204, 2000.

[S] V. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek,
D. Terpstra, and S. Moore, “Measuring energy and power with papi,”
in Parallel Processing Workshops (ICPPW), 2012 41st International
Conference on, Sept 2012, pp. 262-268.

[6] H. McCraw, J. Ralph, A. Danalis, and J. Dongarra, “Power moni-
toring with papi for extreme scale architectures and dataflow-based
programming models,” in Cluster Computing (CLUSTER), 2014 IEEE
International Conference on, Sept 2014, pp. 385-391.

[71 A. Bourdon, A. Noureddine, R. Rouvoy, and L. Seinturier, “Powerapi:
A software library to monitor the energy consumed at the processlevel,”
ERCIM News, vol. 2013, no. 92, 2013.

