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Overview

SNAP vs PARTISN (Geoff)

* Is SNAP a good proxy?

Background Research (Geoff)
Production Code (Josh & Geoff)

« Structural Design & Changes (Josh)

« Kernel Design & Implementation (Geoff)
« Lessons Learned

NuT IMC Proxy (Ben)

FleCSI Update (Ben)

« Design & Lessons Learned

Summary FleCSl:Arbitrary polyhedra
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SNAP Proxy for PARTISN
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PARTISN vs SNAP

* By and large, very similar footprint for a subset of
problems
e Similar array sizes
« Similar function signatures
 Similar iterative structure

« Similar problem sizing parameters
* Why PARTISN and SNAP?
» Continuation of FY14 and FY15 work

SNAP is PARTISN without decades of development accretion and
without the physics. FY14 efforts showed they are very similar in
terms of flops/load. The "kernel" is very similar between the two

codes.
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PARTISN vs SNAP

* There are some structural differences though

 Largely these are around the complexity of OpenMP design
differences between the two at the time of background research

* Recent versions of SNAP have closed the gap in complexity

¢ PARTISN is far more complex in scope than SNAP, as
SNAP is arepresentative subset of PARTISN
* Memory allocation is relatively very simple and collocated in SNAP,
whereas it is quite spread out in PARTISN

» Harder to answer question of what a representative input deck is
for PARTISN in its entirety than for SNAP's kernel

However, PARTISN is more complex, and so the amount of changes
able to be completed with available resources are smaller in scope
than SNAP. The technical decision was made to focus on the interface
layer and the C++ kernel as both of those would offer lasting value to
the production code team. This limited available performance, by
going with (the current version of) Kokkos versus native CUDA, and
by not rewriting the threading section of PARTISN due to lack of man
hours. The constraint, though, enabled the successful resolution of
the L2 completion criteria.



Slide 8

PARTISN vs SNAP

« Experiments in SNAP were relatively simple in scope
 Pull out kernel, rewrite in C++, explore maximum concurrency

e Experiments in PARTISN are far more intensive
* Where to allocate memory?
» How far outside of the kernel can concurrency regions expand?
» Can we embed MPI in a parallel region?

* These questions helped to determine the scope of
our experiments

¢ PARTISN ~ 110k SLOC, SNAP ~ 4k SLOC

In working with SNAP, there was a simple translation of kernel with
generic input argument sets. In working with PARTISN, we worked
backwards from the kernel arguments (both function signature and
implicit via module), to trace memory allocation to its source. In
addition, threaded regions in PARTISN were more complex, and, since
working with a production code, and not a proxy, maintaining the
convergence behaviour of the code was mandatory. With MPI
embedded at the thread-level in PARTISN, and Kokkos not supporting
(currently) multi-threaded access to CUDA-UVM, our choices were to
either allow only single threaded behaviour, and use CUDA-UVM
through Kokkos to prevent memory duplication (UVM is host-backed
GPU memory that can be shared between Fortran and C++), or to
allow multi-threaded access through native CUDA which would have a
good chance of faster computational performance, but would greatly
increase our engineering scope. An even greater chance of
performance increase would have come from broadening the scope of
concurrency explored to the start of the threaded region in PARTISN.
However, this would have required embedding MPI in threaded
regions on the CPU, and/or the GPU, which would in turn greatly
Increase our engineering scope and downselect again from our
limited toolchain options.






Slide 9

Covered to some extent in prior two annotations. We were able to
maintain convergence behaviour between the following three
scenarios: 1) original Fortran version, 2) Fortran with C++ memory
allocations (in CUDA-UVM through Kokkos), and 3) scenario 2 but
running against the Kokkos opt3_sweep kernel. This added more
kernel debugging complexity by requiring numerical results to be the
same. The exercise helped to expose the intricacies and pitfalls in

PARTISN vs SNAP

¢ It should also be noted that, while both PARTISN and
SNAP are written in Fortran, for the purposes of the
prior year L2, SNAP's kernel was rewritten in C++

e Thus, a great deal of the complexity of this year's
efforts were related to interfacing distinct languages,
while maintaining computational results of the host
code

¢ Analogy: replacing a car's engine while it is driving
75 MPH down the highway

translating idiomatic programming logic between distinct
programming languages.
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raton

Outline

* What we are going to talk about today on the topic of
PARTISN and SNAP

» Background Research
* Production Code

 Structural Design and Changes

» Kernel Design and Implementation
* Lessons Learned
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Background Research
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Prior Year L2 work

¢ 2014 — PARTISN vs SNAP comparison with ByFl
» For smaller problems, Flops/Load ratio between 1.6% - 9.1%
 For larger problems, Flops/Load ratio within 1%

¢ 2015 — Kokkos dim3_sweep / Legion SNAP

* Re-implement SNAP iterative structure in Legion to show increase
in concurrency

» Implementation of dim3_sweep in Kokkos to show analogous
speed as Fortran SNAP

Above is a modicum of detail from prior year’s L2s that led to this
years work. First, PARTISN and its proxy SNAP were compared, and
found to be similar at scale, at least in terms of Flops/Load. The next
year, the concurrency of the KBA algorithm was compared to a Legion
implementation of SNAP, and a Kokkos version of SNAP’s hotspot,
the dim3_sweep kernel, was created and studied.
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dim3_sweep CUDA version

e Following on from FY15 work was still necessary to
use CUDA-UVM backend of Kokkos with dim3_sweep
kernel
* Remove dependencies on STL

* Re-implement scheduling data structures in flat arrays
* Reduce shared memory pressure

* Replace math functions with CUDA compatible versions

As a follow on to last year’s FY work, we continued to explore the
dim3_sweep Kokkos kernel version. We made modifications, listed
above, to allow it to function on a CUDA GPU. After running iton a
GPU, it was found to have good amounts of speedup. However, this
was with concurrency levels on the order of launching all energy
groups of an octant sweep simultaneously.
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Language Interoperability

e Standards-based (using ISO_C_BINDING)
» Create a C++ function wrapped in a ‘ extern “C" *
» Create a Fortran interface to call C++ function
» Create a Fortran subroutine to call Fortran interface

» Fortran <-> C++ that should be compiler independent!

We then developed a plan to fulfill the L2 completion criteria, by
assessing how we would port the Kokkos work from SNAP to
PARTISN. This would require some experimentation in programming
language interoperability. We chose to use standards based
interoperability in order to give ourselves the widest choice in
compiler toolchains. All of the compiler toolchains we tested
supported the ISO_C_BINDING interoperability module in Fortran.
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Language Interoperability

* Kokkos allocation for Fortran

« Fortran: pass array name string, and dimensions through interface
to C++ allocation routine

e C++: Allocate Kokkos view using string and dimensions, and return
a raw pointer to memory allocated in Fortran style (LayoutLeft) and
a pointer to Kokkos view

» Fortran: Use c_f_pointer to wrap a Fortran pointer around C++
memory allocation

« In our case — only legal because of use of UVM which is host-
backed device memory

We tested a proof-of-concept experiment by creating code that would,
as above, pass an array name string and dimensions to C++, Kokkos
allocates C++ memory using the dimensions and string in a Fortran
compatible layout, C++ passes pointers to the view object created by
Kokkos and a pointer to the memory allocated as its backing store
back to Fortran, and then Fortran wraps the raw memory pointer in a
Fortran pointer, and uses the C++ allocation as it would a native one.
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Production Code:
Structural Design and Changes
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Memory Allocation

« Identify memory necessary for kernel operations
« |dentify sites where that memory was allocated
« |ldentify allocation routines used at sites

* Replicate functionality of allocation routines with new
interface

* Test modified code for correctness

From the structural changes side of the house, this was our plan. We
started by identifying the memory that would need to be used by a
GPU kernel. We traced that memory (read: arrays) back to its
allocation sites, and made note of the native routines which allocated
them. With the detective work completed, we replicated the
functionality of the allocation routines with our own (substituting CPU
allocated Fortran memory, for CUDA-UVM allocated by C++). Once the
new allocations were in place, we tested the modified code with the
new memory and the Fortran version of the kernel (opt3_sweep).
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Fortran/C Interface

e Original ALLOCATE call
e ALLOCATE( f_array(dimO0) )
e Fortran interface call example

« call kokkos_allocate_1d(f_array, dim0,c_ptr, C_CHAR_"array
name"//C_NULL_CHAR)

Here is an example of the interface (bottom) and invocation of that
interface (top) for allocating a 1D array. The allocation routine
interface takes the dimensions (single, in this case) and a string of the
array name, and returns a C pointer to the raw allocation (only safe on
GPU memory because it is CPU backed UVM) and a C pointer to the
view (retained to pass back in as a kernel argument later).
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Fortran/C Interface

* kokkos_allocate_1d (implementation, simplified)
SUBROUTINE kokkos_allocate_1d(A,m,v_A,n_A)
USE, INTRINSIC :: ISO_C_BINDING
IMPLICIT NONE
INTEGER (C_INT), INTENT(IN) :: m
REAL (C_DOUBLE), POINTER, DIMENSION(:), INTENT(INOUT) :: A
TYPE (C_PTR), INTENT(OUT) :: v_A
CHARACTER(kind=C_CHAR), INTENT(IN) :: n_A(*)
TYPE (C_PTR) i C_A

CALL f_kokkos_allocate_1d(m,c_A,v_A,n_A)

CALL C_F_POINTER(c_A,A,SHAPE=[m])

END SUBROUTINE kokkos_allocate_1d

The implementation of the 1D allocate routine the pervious function
being called, followed by an intrinsic Fortran subroutine c_f_pointer,
of ISO_C_BINDING interoperability, which causes a Fortran pointer to
be assigned to point to a C pointer (here, the C pointer points to the
CPU side of the UVYM memory allocation) given both pointers and the
array shape. It is important to note that this requires that the C pointer
point to memory which is laid out in the same fashion as would
Fortran lay out a multidimensional array, as Fortran does not have the
same facilities as C with respect to arbitrary layouts of
multidimensional arrays.
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Fortran/C Interface

e f_kokkos_allocate_1d (interface)

SUBROUTINE f_kokkos_allocate_1d(m,c_A,v_A,n_A) BIND(c, NAME="c_kokkos_allocate_1d")
USE, INTRINSIC :: ISO_C_BINDING
IMPLICIT NONE
INTEGER (C_INT), INTENT(IN) :: m
TYPE (C_PTR), INTENT(OUT) :: c_A
TYPE (C_PTR), INTENT(OUT) :: v_A
character(kind=c_char), INTENT(IN) :: n_A(*)
END SUBROUTINE f_kokkos_allocate_1d

The implementation of the 1D allocate routine the pervious function
being called, followed by an intrinsic Fortran subroutine c_f_pointer,
of ISO_C_BINDING interoperability, which causes a Fortran pointer to
be assigned to point to a C pointer (here, the C pointer points to the
CPU side of the UVYM memory allocation) given both pointers and the
array shape. It is important to note that this requires that the C pointer
point to memory which is laid out in the same fashion as would
Fortran lay out a multidimensional array, as Fortran does not have the
same facilities as C with respect to arbitrary layouts of
multidimensional arrays.
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Fortran/C Interface

e Our view type for this example
typedef typename Kokkos::DefaultExecutionSpace device_t;
typedef Kokkos::View< double*, Kokkos::LayoutLeft, device_t > view_1d_t;

¢ c_kokkos_allocate_1d

void c¢_kokkos_allocate_1d( const int* m, double** A,view_1d_t** v_A, const char* a_name ) {
const int mt = std::max(*m,1);
char name[32];
sprintf(name,"%s",a_name);
*v_A = (new view_1d_t(name, mt));

Kokkos::deep_copy(device_t(),**v_A,0.0); // zero out memory

*A = (*v_A)->Kokkos::ptr_on_device(); // apologies

}

Here is the actual C++ allocation routine (1D shown). The variable mt,
an integer, is created so that when a O-length array dimension is
passed from Fortran this routine will not error out (as 0 length
allocations are legal in Fortran but not in C). Next the character array
Is stringified. Then, the string and array length are used to allocate
the view. “deep_copy” is invoked to zero out the allocated memory on
both sides. Finally, the raw pointer to the CPU portion of the UVM
allocation is obtained and stored to be passed back to Fortran for use
with c_f pointer (as mentioned earlier). Not shown is that embedded
in the “view_1d t” type is the specification for memory allocation
location (for this work, CUDA-UVM) and the layout order (LayoutLeft
in Kokkos parlance) which maps to the Fortran memory order.
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Fortran/C Interface

* We feel this approach is amenable to source
translation tools

¢ Why is this important? Easy access to exotic memory
space for legacy codes

Here is the actual C++ allocation routine (1D shown). The variable mt,
an integer, is created so that when a O-length array dimension is
passed from Fortran this routine will not error out (as 0 length
allocations are legal in Fortran but not in C). Next the character array
Is stringified. Then, the string and array length are used to allocate
the view. “deep_copy” is invoked to zero out the allocated memory on
both sides. Finally, the raw pointer to the CPU portion of the UVM
allocation is obtained and stored to be passed back to Fortran for use
with c_f pointer (as mentioned earlier). Not shown is that embedded
in the “view_1d t” type is the specification for memory allocation
location (for this work, CUDA-UVM) and the layout order (LayoutLeft
in Kokkos parlance) which maps to the Fortran memory order.
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Function Signatures

« To improve debugging ability, functor arguments and
initializers were on separate lines

e ~190 lines worth!

 Partial solution to ease debugging of type issues
* Instantiate reduced input argument functor struct
« Populate struct member variables, one per line of code

 This helps to catch obscure template type based errors

A combination of the fact that the were upwards of 90 arguments and
approximately 10 template arguments led us to try to find ways to
structure the kernel invocation in the C interface such that debugging
difficulty was ameliorated somewhat. We had the idea to instantiate
the functor struct using only the scalar values, then to populate the
member Kokkos views one line at atime, after the struct was
instantiated. This allowed us to much more easily catch template type
mismatch errors in the member views.
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Production Code:
Kernel Design and Implementation
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Language Differences

 I[diomatically, C++ counts from zero, and Fortran from
one, so, when looping through a range of integers,
that are used in an expression which selects an array
element, the conditional will need to be changed

e Fortran:

e i={1,2,...8} > i/2+1 -> {1,2,2,3,3,4,4,5}
o C++

e i={0,1,...,7} -> (i+1)/2 -> {0,1,1,2,2,3,3,4}

It is a surprise to no one familiar with HPC that Fortran and C count
differently. Usually this is straightforward when transliterating a piece
of code from one to the other. More complicated is when a sequence
produced by an expression must be changed to be “off by one”.

Above is an example of such.
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Language Differences

* Where possible, the counting differences between the
languages can be hidden in a functor constructor
 Fortran: i is used to select an array index
* eg.array_a(i)

e C++: in the constructor of the functor where i_ will be used, an
expression such as i_(i-1) could be written to initialize i_ so that it
points to the same array element as i would in Fortran, e.g .

e inti_;

« functor( constinti):i_(i—1){
» Then array_a(i) in Fortran and array_a(i_) in C++ will be the same
element

We found one way to reduce the opportunity for “off by one” errors,
and that was by subtracting one from the integer parameters in the
C++ kernel in their construction (where relevant). For some integers,
this was unnecessary, such as those used the same way one would a
boolean variable. For others, used in counting expressions,
dimensionality arguments, logical expressions, it was necessary to
painstakingly count the combinations where these modified integers
would be used together to ensure that both sides of the expression
had one subtracted from their elements only once, and not multiple
times, so that the expressions maintained the same articulation of
their computational intent.
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Colons in Fortran

* Replicating the behaviour of the colon in Fortran
which implicitly means “perform this operation on or
using all of the array elements in this dimension”

e e.g. array_a(:,d1,d2) = array_b(d3,d1,:,d4)

¢ In Kokkos, this is a parallel_for
parallel_for(ThreadVectorRange(team_member, L), [&]( const int& II') {

array_a(ll,d1,d2) = array_b(d3,d1,1l,d4);

D

Colons in Fortran mean “all of the array elements in this dimension”.
This can be used in a handful of ways, that are transliterated
distinctly. Above, we show how it can be used on both signs of an
assignment operator, given that the dimensions referred to by the
colons are compatible. To rewrite this type of usage in a parallel
kernel, it is straightforward, simply adding an iterator index in place of
the colon. It is important to note that ordering is not implicit in the
parallel region.
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Colons in Fortran

¢ But a colon in Fortran can also be used to subset an
array that is a subroutine parameter to change its
dimension inside the subroutine

» For example, slicing a 5D array into a 2D array,
e CALL f_subroutine( array_a( :, :, d1, d2, d3) )
* In Kokkos, this is a subview
» subview2d_t s_array_a(array_a, ALL(), ALL(), d1, d2, d3);
* c_subroutine(s_array_a);

Since the colon can be used to subset an array’s dimension(s), it is
idiomatic in Fortran to use this ability when reducing the
dimensionality of an array between execution scopes. For example, a
the driver of a routine might feature a 4D array, where one dimension
IS multiple time values for numerical methods requiring such, and the
other three are spatial dimensions. When passing this 4D array to a
physics routine, multiple time values might not be needed, and so the
array is subsetted upon entry into the subroutine as above. In
rewriting this behaviour in C++ from Fortran, we use a feature of
Kokkos known as the subview. A subview is a full-class view, a
reference counted pointer to memory, that can point to a subset of the
view that is used to create the subview. Here we show the Kokkos
syntax “ALL()” which replicates the functionality of the colon in
Fortran (when it is used to reduce the dimensionality).
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SUM intrinsic

* Sometimes implicit paralleism can hide from you
 Example, a line of Fortran source to be turned into a
parallel_for launch at the vector level:
e array_a(:,d2,d3) = array_a(:,d2,d3) + sum( b*c(:,d4,d5) )

» Perhaps the dimensions referred to by the : will not be of the same
length

¢ A solution:

 Uplift the sum to a parallel_reduce that precedes its usage in the
parallel_for

There is implicit parallelism in the Fortran SUM() intrinsic can be
difficult if it is embedded at the parallelism level of vectors. SUM is
vectorized already, so it must be promoted to outside the vectorized
region, and performed ahead of time.
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Lessons Learned
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Results / Numbers

* Modified PARTISN was not faster than stock PARTISN

¢ However, the modified version did produce exactly
the same convergence numbers

e We tested in phases:
 Original code vs. modified code using only UVM allocation routines
¢ Same numerics, same timing, on a Haswell + K40 node
« Original code vs. code using UVM allocation and GPU kernels
* Same numerics, 60x slowdown, on a Haswell + K40 node

We tested the modified PARTISN code and showed it provide
compatible physical results with the original code. This was a great
engineering success to us. It lets us know it is literally possible to run
PARTISN in a GPU environment. We tested both the modified version
(with C++ backed memory allocations) both with and without the GPU
kernel enabled, and showed success in both cases. In our
experiments, we found the modified version to be much slower than
the original version, because of lack of threaded concurrency, and
greatly reduced kernel launch sizing parameters.
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Not always faster —why?

e Algorithm vs concurrency vs tools

¢ Pre-existing implementation of concurrency in the
form of OpenMP choices limited scope of kernels that
could be launched concurrently from a single thread

e Choice of tools limited the ability to combine CPU
thread parallelism with GPU thread parallelism

* In addition, MPl embedded at the lowest thread levels

We would have needed a larger time and engineering allocation in
order to increase the scope of our efforts to include the entirety of the
threaded region in PARTISN. Had we done this, we would have
expected similar or improved performance in the modified vice native
code. This would have required in-development (but not ready at the
time of work) features in Kokkos, or rewriting the Kokkos portion of
the code in CUDA (which would obviate much of the development
done over the last few years in learning it). Either one of these would
have exposed more available concurrency. It is noted that both
options would also have required embedding MPI in the kernel launch
and also language interoperability with respect to MPI. The calls to
MPI inside were mostly asynchronous, so it would likely have been
possible, but it would have reduced speed without necessary multi-
threaded or GPU MPI support. It should also be noted that GPU
communication improvements are to be expected in future ASC
hardware.
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Algorithm vs concurrency vs tools

* Some options:
» Use Kokkos CUDA UVM to provide access to GPU execution and
host-backed memory to reduce memory pressure
« Use native CUDA so that multiple CPU threads could launch GPU
kernels against the same context
« Engineering hours versus scope complexity

» Native CUDA would have required a much greater manpower
expenditure, but perhaps would have yielded more computational
concurrency

* However, Kokkos CUDA UVM allowed us to perform the language
interoperability and GPU correctness experiments feasibly in time

Described in detail on previous slide.
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Object types

< Am | passing around a pointer?
¢ A pointer to a pointer?
« A pointer to a pointer to a pointer?

« Complicated by views and subviews of those views
existing in the same code regions

Some care had to be taken to ensure the correct level of pointer or
dereferencing was being used at various stages of interface between
Fortran and C++. One great trick we learned was to test the pointer
level of a Kokkos view by calling a member function. If the member
function was linked correctly, then we knew we had the correct level
of “pointerness” to use in a parallel_for construct. Subviews are
pointers to views, and this technique helped with them especially. (A
view is essentially, in some senses, a fancy reference counted pointer
to a memory allocation, with additional state stored in its object.)
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Code Redundancy (i.e. boilerplate)

* Potential for automation with source generation
and/or preprocessing tools

e Transforming a list of Fortran allocate statements
ALLOCATE( array_a(d1,d2,d3), array_b(d1,d2,d4) )

¢ Into the equivalent memory allocation interface
routines

kokkos_allocate_3d(array_a, d1,d2,d3,c_ptr,
C_CHAR_"array_a"//C_NULL_CHAR)
kokkos_allocate_3d(array_a, d1,d2,d4,c_ptr,
C_CHAR_"array_b"//C_NULL_CHAR)

We felt many of the array allocations could have been created with
automated tools. Scripts and or parsers could have been written to
separate the above representative ALLOCATE statement into
component allocation routines. While not necessary in our
experiment, such would be invaluable to a production team.
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Toolchain

¢ PARTISN: GCC or Intel

e CUDA: 7.50r 8.0RC

¢ Kokkos: functors or lambdas

« Kokkos with lambdas provides a more natural
translation of Fortran to C++

* Lambdas are an experimental feature of CUDA, added
in 7.5 and more fleshed out in 8.0 Release Candidate

*« CUDA 8.0 RC supports Intel, but experimental
features are restricted to GCC only

One of the trickier aspects of this work was in matching up
production code team desires with experimental team desires, with
the toolchain between the two groups. The production team prefers
the Intel compiler, but was willing to revive GCC support for us. The
experimental team (us) preferred rewriting kernel sections as
lambdas, instead of functors, because we feel this preserves, to the
greatest extent possible, the look and feel of the code. (This improves
maintainability, if the work is picked up by the production team.)
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Toolchain

* PARTISN prefers Intel compilers, but can be compiled
with GNU (but not versions of GNU that CUDA 7.5
allowed

¢ So we ended with GNU (because lambdas + CUDA )

¢ CUDA 8.0 RC (because GNU 5.x)

« Potentially the intersection of disjoint sets!

e Largely solved with time, experimentation with
different toolset permutations, and friendly system
admins willing to install package sets

Lambdas in CUDA are an experimental feature in CUDA 7.5, and still
experimental in CUDA 8.0 Release Candidate (current as of time of
work), added at the behest of the SNL Kokkos developers by NVIDIA.
In 7.5, nvcc (the CUDA compiler) only worked with GNU compilers
(and only less than major version 5), while in 8.0 it works with Intel
(and others) as well. However, experimental features (which we
needed for lambdas) were only available in GCC. In addition, we
required nested lambdas (to write the kernel in the most future-proof
fashion, were we able to expose greater concurrency in the kernel and
surrounding regions of PARTISN code), and this mandated the 8.0 RC
of CUDA
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boraton

Toolchain

CUDA

Non-empty?

PARTISN Compilers

We were pleased to find a minimum of one combination of toolchain
selections which supported our endeavours. We have every reason to
believe that the number of choices will expand with time, as NVIDIA

has shown willingness to increase compiler support in nvcc from 7.5
to 8.0.
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Toolchain

* The sum of the requirements could potentially be the
intersection of disjoint sets!

¢ Rewriting all of the lambdas as functors would have
allowed Intel, but would have greatly added to the
engineering time, and reduced the readability of the
new code with respect to the native version

e Largely solved with time, experimentation with

different toolset permutations, and friendly system
admins willing to install package sets.

We were pleased to find a minimum of one combination of toolchain
selections which supported our endeavours. We have every reason to
believe that the number of choices will expand with time, as NVIDIA

has shown willingness to increase compiler support in nvcc from 7.5
to 8.0.
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Fortran Shenanigans

* To save memory, but maintain subroutine signature,
setting e.g. a 5D array to have zero length in one
dimension, if that dimension is not needed in
computation, due to input deck logic

« If, however, this array is passed in the C++ kernel
signature, it is necessary to allocate it in a different
fashion

¢ In this area, SNAP was easy, and PARTISN was hard

In supporting many different physics solvers and modes, PARTISN
has a fairly complex set of memory allocation sites. There are places
where an array, if not needed by a particular physics mode, is
allocated with zero length dimensions. This preserves array
dimensionality, for subroutine arguments, but reduces memory
allocation demands for efficiency. This is perfectly correct idiomatic
Fortran, but it presents difficulty in transliterating because the same
idiom is not present in C++ (the least reasons of which is that C++
does not have multi-dimensional array as a first-class data type). To
work around this, we identified areas where this mattered for our work
(certainly not exhaustive of all areas) and modified them to produce
arrays with length one in dimensions instead of zero. Then, as in the
native PARTISN code, we ignored those shortened arrays
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Potential Improvements

« We feel that the greatest improvement would come
from having the modified PARTISN launch kernels
with the same concurrency as the SNAP experiments.

e This would require either of:

 Using future features in Kokkos to allow multi-threaded access to a
CUDA context allocated as a backing store for GPU memory
allocations and kernel launches.

» Rewriting all of the Kokkos portions in CUDA, and continuing to use
OpenMP surrounding it. CUDA allows multi-threaded access to a
GPU context without penalty.

e Hard line: some improvements require rewrite

As described elsewhere and above, we feel we could achieve similar
results in PARTISN, given time and effort. In the scope of the L2,
though, we were greatly pleased to show a) that our interoperability
experiments were feasible b) that the modified code produced a
correct result, and finally ¢) how to continue down the road for
performance. We consider all of this to be useful feedback and or a
roadmap for the production team, if they are so interested in
continuing with this work.
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Thank you!

* We would like to acknowledge the efforts of the
production code team in CCS-2, specifically Joe Zerr,
Randy Baker, and Rob Lawrie, that supported us with
time, meetings, and feedback on our design and
implementation, at all stages of our process.

e They fielded all of our questions about the structure
of their code very kindly.

¢ |t was especially important to have their support at
the stage of debugging the numerical output for
correctness.
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NuT Update
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Nation:

NuT: proxy for on-node IMC issues

¢ NuT uses Monte Carlo to simulate thermal Neutrino (v) Transport
« Similar on-node computational challenges for IMC: ubiquitous branching,
thread divergence, write conflicts
e 2016 progress:
* OMP version—thread over particles, issues with OMP 4+ for GPU
* Naive CUDA version—each CUDA thread pushes a particle
« poor performance—thread divergence, poor data coalescence
« SKDEP: SIMD Support for Kernels with Divergent Execution Paths)
« Data structures for grouping particles by event
+ Wait-free CUDA implementation in progress
e 2017 goal:
« apply NuT/SKDEP lessons to Jayenne production IMC code
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FleCSI Update
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What is FleCSI?

FleCSl is a C++ programming system for
developing multi-physics simulation codes...

¢ Runtime abstraction layer...

« High-level user interface, mid-level static
specialization, low-level building blocks, tasking
and fine-grained threading back-ends

¢ Programming model...
* Control, execution, and data models
e Useful data structure support... s
« Mesh, N-Tree (N=3 — Octree), and KD-Tree FoCS 200 e

FleCSl, the Flexible Computational Science Infrastructure (FleCSl) is a
C++ framework to aid in the development of application interfaces
and tools for creating and maintaining multi-physics simulation
codes. The primary structure of FleCSl is hierarchical, exposing
low-level, mid-level, and high-level interfaces that are appropriate
for different sets of users. The normal use pattern for FleCSl is that
a computer or computational scientist creates a specialization layer
for an application using the low-level FleCSl interface. This mid-
level layer provides the high-level interface that the end user
actually uses to develop their physics simulation.

FleCSlI provides control, execution, and data models that are
consistent with modern task-based and functional models.

FleCSl also provides support for several important data structures
and algorithms that can be statically customized as part of the
creation of the mid-level interface. Examples of these include mesh
and tree topology types.
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boratory

Why is FIeCSI? (Why are we using this
design? and How does this work satisfy L27?)

* FY15 Work
* FleCsl task abstraction influenced by SNAP-Legion investigation

« FleCSl kernel abstraction influenced by SNAP-Kokkos work
¢ Co-Design Summer School

* FleCSl is also the result of tasking runtime research done in the FY14 and FY15 summer
schools (HPX, CnC, Charm++)

* Task+X
« Hierarchical model identified through FY15 investigations
+ Combination of task-based and data-parallel runtimes ala Legion + Kokkos

¢ FleCSl has been selected as the framework for LANL's Next-Generation Codes
Project (ATDM-CDA)

* FleCSlI's primary purpose is to support ATDM-CDA!

« Cautiously optimistic: we are meeting our goals...

The design of the FleCSI framework was directly motivated by
experiments and lessons-learned from previous co-design
milestones. In particular, work on the SNAP and Pennant proxy
applications established the viability of the Legion and Kokkos
programming models for handling distributed-memory parallelism
and data-parallelism, respectively.

The hierarchical runtime approach developed through our FY15
investigations make up the foundation of the FleCSI task-based
programming model. Technical lessons from these early
experiments are also being used to improve the Legion interface
and capabilities (contract with Nvidia and collaboration and support
of Stanford), and to make it compatible with various node-level
runtimes. LANL’s support of Nvidia and Stanford is designed to
harden Legion for production use, and to address specific design
and performance issues identified during the FY15 milestone work.
Particular areas identified for improvement and enhancements
include, parallel scalability, an improved mapping interface, and
support for new processor types (e.g., Kokkos processor type: work
performed at LANL in collaboration with Stanford).

Our work on understanding and using fine-grained data-parallel
programming models (through work on SNAP with Kokkos) is



critical to the design of FleCSI’s kernel interface. Participation by
the Kokkos team (and several LANL contibutors) on the C++17
standards committee has helped to push changes to the C++
standard library that will dramatically improve our ability to achieve
portable performance across the diverse architecture landscape of
the future.

FleCSl is directly supporting production code development through
LANL’s ATDM project (currently called ‘NGC’ for Next-Generation
Codes). Results from work on the co-design FY16 milestone give us
restrained confidence that we can realize many or all of the primary
goals of the FleCSI project: separation of concerns, performance
portability, code sustainability, scalability and resilience. Our
investigations into modern programming models were fundamental
to the design and development of the FleCSI framework.
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How does FleCSI work?

Low-Level (FleCSI Core Capability)

+ FleCSl provides a templated, low-level interface that can be specialized for a particular class of physics
packages and application needs

Specialization

+ A specialization provides application developers with a high-level interface that is customized to their
nomenclature and data structure requirements

Task Abstraction (FleCSI Runtime Abstraction)

+ Using the FleCSl task abstraction layer and some compile-time techniques, the application developer is given a
programming system that is transparently distributed-memory parallel

Kernel Abstraction (FleCSI Runtime Abstraction)

+ Using the FleCSI kernel abstraction layer with compile-time techniques, application developers are given a
programming system that is transparently fine-grained, data-parallel

Data Abstraction (FleCSI Core + Runtime)

+ FleCsl provides a data model that integrates with the task and kernel abstractions to provide easy registration
and access to various data types with automatic dependency tracking
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Where does FleCSl sit in the software
stack?

interface that requires syntax FleCSI Compilation Tool
and semantics

Provi_dgs high-level, domain- usetiRtac e
specific
not available in C++

Application Interface

FleCsl Libraries &
Specialization Operators

FleCSI Core

Data & Execution Model Runtime Interface &
Implementations

Third-Party:

. Interfaces
System Utilities

This slide gives a visual depiction of where the core FleCSl library sits
in the software stack. Notice that FleCSl itself may directly interface
other third-party interfaces. There is a well-defined interface to low-
level runtime drivers and system utilities. A FleCSI specialization
will likely interface libraries that are either third-party or that have
been written with the FleCSI programming model.

Application developers use the FleCSI specialization layer to generate
an application interface. We are looking at ways to include static
optimization between the user interface and the application layer.
An example of this approach would be to generate source for the
application layer based on the user inputs. This would allow better
performance tuning by exposing more information to the compiler.
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When will FleCSI be ready?

* Specializations
« 2D/3D ALE: FleCSALE open-source project
« Octree: Smoothed-particle hydrodynamics (SPH)
< Serial and Legion task abstraction
back-ends
« Execution model development is complete

« Data model development for Legion is in progress,
Serial is complete...

* ParMETIS partitioning
« Primary partitioning done, working on ghost closure Corner
* MPI+Legion Interoperability

commit 0906f9b16de2dfch864891cc908a9409281748bf

Author: Ben Bergen ben.bergen@gmail.com
Date: Wed Sep 2 17:23:54 2015 -0600
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When will FleCSI be ready?

These deliverables are tied to ATDM-CDA...

* End of Calendar Year 2016
« Cercion on FleCSlI: Simple multi-physics proxy application

« Hydrodynamics with strength of materials
* Cell-centered ALE hydrodynamics
* Using Preston-Tonks-Wallace (PTW) strength model

» Sparse material representations (possibly...)
» High-level goal: develop FleCSI control model and setup
* FleCSALE (open source)
« Add basic multi-material capability using sparse material representations
« High-level goal: develop FleCSI data model for Legion back-end

They address deficiencies in our current proxy applications...
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When will FleCSI be ready?

These deliverables are tied to ATDM-CDA...

« End of Fiscal Year 2017 (L2 Milestone)
* FleCSALE
* More complete multi-physics problem
« Full multi-material support

« Distributed-memory using MPI+Legion backend
* ParMetis input mesh partitioning (MPI)

« Legion backend for hydrodynamics, strength, and HE solvers

» Kokkos node-level runtime (possibly...)
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FleCSl was developed as part of the ATDM ASD project. It represents
the collaborative efforts of many people across many disciplines.

Many people have made significant

contributions to FleCSl...

Nick Moss (CCS-7)
Topology types, sparse data, design
Marc Charest (XCP-1)
Mesh specialization, data structures, design
Irina Demeshko (CCS-7)
Legion backend, MPI/Legion interoperabilit, design
Li-Ta (Ollie) Lo (CCS-7)
Partitioning interface, design
John Wohlbier (formerly CCS-2)
Mesh specialization, 110
Josh Payne (CCS-7)
Execution model, design
Christoph Junghans (CCS-7)
Build system, continuous integration, Docker packaging
Gary Dilts (CCS-2)

Tree specialization, data structures, design

Christopher Malone (CCS-2)

Remap implementation, design
David Daniel (CCS-7)

Requirements, design

Nathaniel Morgan (XCP-8)

Requirements

Vince Chiravalle (A-2)
Requirements. Multiblock unstructured meshes

Joe Schmidt (XTD-NTA)
Requirements

Chris Sewell (CCS-7)
Requirements, design

Rao Garimella (T-7)

Requirements, design
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FleCSI Data Model
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What is the FleCSI data interface?

Hi g h-Level 4|— register_data(m, "pressure", 3, double, dense, cells);

User Interface

Data Manager

Storage Types

Runtime

The FleCSI data model provides a high-level interface that can be
used to register and access data that are associated with a
data_client_t and an index space. The user interface does not
expose any metaprogramming or templates, and is intended to
allow very clean looking implementations of the physics methods
being described.
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What is the FleCSI data interface?

High-LeveI reglsterﬁ{m pressure 3, double, dense cells);
User Interface topology /
versions storage
Data Manager identifier type
type
Storage Types index
space
Runtime

The elements of the high-level interface are used by lower leves of
FleCSl to select how the data should be registered.

topology: the data_client_t instance with which the registered data
will be associated.

identifier: a string identifier that will be hashed to create a unique
size tid.

versions: FleCSI supports multiple state versions under a single
identifier. This is useful for new and old state, or for predictor-
corrector methods.

type: the intrinsic or user-defined type of the data to be registered.

storage type: a hint to the framework that tells how the user intends
to access the data.

index space: an index space that is either defined by the user, or that
is defined by the framework itself, e.g., a mesh topology.
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What is the FleCSI data interface?

Specialization

template<size_t ST, typename T, size_t NS,
typename ... Args>

decltype(auto) register_data(

_|—> data_client_t & data_client,

Data Manager const const_string_t & key,

size_t versions=1,

Storage Types PSS . ETER)

User Interface

Runtime

The specialization layer may add new backend support and storage
types that modify what the default implementation does to register
data. If this level of the framework is not specialized, the data
registration falls through to a particular backend that determines
how each storage type should be handled.
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What is the FleCSI data interface?

storage

type type

Specialization
template<size_t ST, typename T, size_t NS,

typename ... Args>
decltype(auto) register_data(

User Interface

_I—» data_client_t & data_client, «——— topology

Data Manager const const_string_t & key, «——— identifier
size_t versions=1, +«——— versions
Storage Types Args && ... args)

Runtime

This level of the data model uses some of the high-level inputs to
apply static specialization to the low-level types. In this case,

storage type and type are passed as template parameters to select
specific low-level implementations.
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What is the FleCSI data interface?

Low-Level

User Interface

Data Manager

template<typename T, size_t NS, typename ... Args>
static handle_t<T> register_data(
data_client_t & data_client,

Storage Types

Runtime data_store_t & data_store, const const_string_t & key,
size_t versions, size_t index_space, Args && ... args)

The low-level interface, having been specialized on type and storage
type, makes use of the backend interface to actually register the
data.
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What is the FleCSI data interface?

Low-Level

User Interface

Mapped to specific
Data Manager storage type

template<typename T, size_t NS, typename ... Args>
static handle_t<T> register_data(
data_client_t & data_client,

Storage Types

Runtime data_store_t & data_store, const const_string_t & key,
size_t versions, size_t index_space, Args && ... args)

This concept is covered in the previous two slides annotations.
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What is the FleCSI data interface?

Backend

User Interface

Data Manager

Storage Types

Runtime —|-
FieldSpace fs = runtime->create_field_space(ctx);

The particular runtime backend is selected by a data policy. At this
level, FIeCSl uses the specific low-level runtime interface to register
the data.
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What is the FleCSI data interface?

Backend

User Interface

Data Manager

Storage Types

Runtime Storage type uses Legion runtime
to create appropriate field space(s)

FieldSpace fs = runtime->create_field_space(ctx);

This example shows the Legion backend. Data registration translates
into the creation of a field space. In the following slides, we will
show more details about how the data model and execution models
are tied together.
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What is the FleCSI data interface?

Exam p|e J— register_data(m, "pressure”, 3, double, dense, cells);

User Interface

Data Manager

Dense
Storage Types

Runtime —|-
FieldSpace fs = runtime->create_field_space(ctx);

From top to bottom, the selection of a storage type, type, and data
policy determine how data are registered for a particular
combination of attributes.
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What storage types do we support?

* Dense: One dimensional, contiguous array
» Use Case: Physics state data
* Global: Single data instance (there’s only one...)
» Use Case: Simulation state data
* Local: One dimensional, contiguous array
» Use Case: Scratch data
« Sparse: Dense index space, sparse population
» Use Case: Material data, execution-dependent data, sparse matrices
e Tuple: Combination of other storage types
« Use Case: Provide struct-like support for cleaner task definitions

This slide simply spells out the various storage types that we
currently support. Additional types may be added. As stated earlier,
these storage types are used by FleCSI to determine how data
should be stored and accessible. The actual data may be of any
type that satisfies certain constraints, primarily that the data can be
serialized, and that they do not directly reference addresses in a
particular address space.
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FleCSI Distributed-Memory
Partitioning
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How does FleCSI handle distributed
memory?

FleCSl uses conventional techniques to generate initial partitionings
of mesh and tree entities. Selecting a particular entity type (in this
case the mesh cells), FleCSI generates a primary partition of the
cells into disjoint collections using ParMetis.
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How does FleCSI handle distributed

memory:
00000000000000000000000000000
'. [¢) [eYeXe] 0000 o 6] primary 1
[ . [eXe) [eXe) (oY) ) ) @ primary 2
i '\ at e ee ee eee ee primary 3
.
~ :
L kY
L
Mesh

The mesh is partitioned by
entities in one of the topological
dimensions, e.g., cells.

FleCSl uses conventional techniques to generate initial partitionings
of mesh and tree entities. Selecting a particular entity type (in this
case the mesh cells), FleCSI generates a primary partition of the

cells into disjoint collections using ParMetis.
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How does FleCSI handle distributed

memaory:
o000 0QCQCQCQCQCQCOQCQCOCOCOQC0QCQCQCOQC0QCQRQOQC0RROQ00
'. [¢) [eYeXe] 0000 o 6] primary 1
[ . [eXe) [eXe) (oY) ) ) @ primary 2
i '\ at [] ee ee eee ee primary 3
- \_ "
L3 . e . .
ol The primary partitioning splits the
b topology into contiguous sets of cells.
Mesh

The mesh is partitioned by
entities in one of the topological
dimensions, e.g., cells.

FleCSl uses conventional techniques to generate initial partitionings
of mesh and tree entities. Selecting a particular entity type (in this
case the mesh cells), FleCSI generates a primary partition of the

cells into disjoint collections using ParMetis.
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How does FleCSI handle distributed
memory?

123456 7891011121314 1516 1718 1920 21 22 23 24 25 26 27 28 29
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[oXe) [eXeXe] (¢} 6] exclusive 1
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BY .. J|" AN o o o shared 1

. B o oo hared 2

sty l ._T { shared :

o 00 o share

Mesh

e e e ] ghost 1

Using a strategy defined by the
specialization, the dependency ee o e ghost 2
closure of the mesh is formed, ° PY P ghost 3
creating several sets of indices

(index spaces).

A FleCSl dependency closure creates several index spaces on each
rank that provide a complete set of dependency information for that
rank. The index spaces (local, shared, and ghost) contain
topological indices that correspond to owned data, owned and
shared data, and dependent data, respectively. The mesh
partitioning image on the left shows each rank with its respective
index spaces shaded to indicate local (dark), shared (light), and
ghost (gray) indices. The logic used to define the dependency
closure is part of the particular mesh specialization being used. The
low-level FleCSl topology types support storage and manipulation
of several dependency closures per specialization.
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How does FleCSI handle distributed

memaory: e
00000000000000000000000000000
1 oo 000 €] @  exclusive 1
e [eYe) ¢} o o exclusive 2
ee ee ee exclusive 3
.-- — — — shared 1
N Exclusive: | own them, and nobody else | shared 2
b cares about them shared 3

Shared: | own them, and some other

Mesh
es people care about them ghost 1
Using a strategy defined by the | Ghost: | don’t own them, but | care
specialization, the dependency bout th ghost 2
closure of the mesh is formed, aboutthem ghost 3

creating several sets of indices
(index spaces).

This slide simply attempts to clarify the concepts of local, shared, and
ghost.
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[PSy TR ———
How does FleCSI handle distributed
memory? o
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Mesh
Multiple partitionings and ® ® ® . ghost 1
partition closure strategies can ee o e ghost 2
be employed within the same ° PY P ghost 3
specialization.

FleCSI supports multiple partitionings and closure strategies per
specialization, e.g., a specialization might partition with respect to
cells and with respect to vertices, forming two independent partition

schemes and closures.
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How does FleCSI handle distributed
memory? B
OOéOCOOOOéOOdOdéOdOObOdOBOOOb

[oXe) [eXeXe] (¢} 6] exclusive 1
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.
ey l

Mesh

e e ] ghost 1

On each SPMD task (rank), the
closure forms a set of virtual
index spaces that represent a
complete set of dependency
data.

Each task or rank has a full set of its local, shared, and ghost data.
The indices of these data make up a virutal index space. In the
following slides, several subsets of this virtual index space are
shown. Users can use these subset index spaces to iterate through
particular logical subsets of the mesh or tree entities. In this case,
the union of the index spaces on this slide create a virtual index
space of mesh cells. The user can iterate over all of the cells, only
the cells that are local to the rank or task, the local and shared cells,
or the ghost cells. This provides flexibility to the user, and
maintains a clean code interface.
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How does FleCSI handle distributed

123456 7891011121314 1516 1718 19 20 21 22 23 24 25 26 27 28 29
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The virtual index spaces can be
iterated using foreach semantics.

Virtual index space animation.

exclusive 1
shared 1
ghost 1
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How does FleCSI handle distributed

memory: T O TP
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Mesh

The virtual index spaces can be
iterated using foreach semantics.

Virtual index space animation.

Showing iteration over all cells in the virtual index space.
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How does FleCSI handle distributed

memory: T O TP
00000000000000000000000000000
ee [eYee} 9] @  exclusive 1
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ves o
foreach(auto c: mesh.cells(local)) { // traverse cells in the
/I union of exclusive and
Mesh /I shared @

The virtual index spaces can be
iterated using foreach semantics.

Virtual index space animation.

Showing iteration over the local and shared indices of the virutal

index space.
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How does FleCSI handle distributed

memaory: e e
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foreach(auto c: mesh.cells(ghost)) { // traverse cells in the ghost set ®

Mesh

The virtual index spaces can be
iterated using foreach semantics.

Virtual index space animation.

Showing iteration over the ghost indices of the virutal index space.
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How does FleCSI handle distributed

memaory: e e
00000000000000000000000000000
[oXe) [eXeXe] (¢} 6] exclusive 1
° o o shared 1
] ] ] <] ghost 1

9

L] i
LSk l
ves o
foreach(auto c: mesh.cells(local)) {
foreach(auto i: c.materials()) {

auto m = get_accessor(“materials”, material_t, cells, sparse, rw);

Mesh mfi] = 1.0;
i for

This provides a clean interface } /i for
for complex data access and } /I scope
execution that handles
dependency updates using
permissions specified for the
Legion task and logical regions.

This slide illustrates the utility of our approach and demonstrates that
the user can develop very clean code that is semantically serial on a

distributed-memory system.
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How does FleCSl use Legion for dependency

updates?
123456 7891011121314 1516 1718 1020 21 22 23 24 25 26 27 28 29
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* f »

e mesh type:
P l partition_t partitioning[N] partition[0]:

IndexSpace exclusive 1
Mesh IndexSpace shared 1
IndexSpace ghost 1

The local mesh stores the
partition information as several
index spaces using an
IndexPartition

(a Legion C++ type).

The Legion backend to FleCSl uses Legion IndexSpace and
IndexPartition data structures to store the index spaces for a virtual
index space. These are stored with the Legion runtime context
(FleCSl data structure) in a generalized partition representation.
Each partition data object holds the information for the local,
shared, and ghost index spaces. FleCSl uses this information to
create logical regions that are stored as part of the context.
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How do the topology and data
models work together for Legion?

Topology

Index
Space(s)

Logical Field Data
Region Space(s) Manager

When a user registers data, the data manager creates and appropriate
set of field spaces for the virtual index space that has been
specified by the user. The topology instance (a data_client_t), e.q.,
the mesh, provides the index partition and index space information.
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How do the topology and data
models work together for Legion?

When a user registers data, the data manager and
Topology topology cooperate to create several logical regions...
register_data(“pressure”, double, cells, dense);
} I scope

Index
Space(s) The Legion backend will use exclusive 1, shared 1, and

ghost 1 with new field spaces of type double to create
‘ three new logical regions.

Logical Field Data
Region Space(s) Manager

Together, the index spaces and field spaces are used to create a
logical region. The logical region is stored by the FleCSI context,
and is available for tasks to use transparent to the user.
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How do the topology and data
models work together for Legion?

FleCSl tasks operate transparently on Legion logical
Topology regions using compile-time data handles that are
available through the FleCSl interface:
{

auto r = get_handle(“density”, double, cells, local, dense, ro);
Index auto e = get_handle(“internal energy”, double, cells, local, dense, ro);

Space(s) auto p = get_handle(“pressure”, double, cells, local, dense, rw);
auto p = execute_task(eos, I, €);
} /I scope
Logical Field Data
Region Space(s) Manager

Users implement their tasks using data handles that, internally, are
connected to the correct index space and field space of a logical
region. Using some static metaprogramming techniques, these data
are mapped and transformed into accessors. The accessors act like
C language arrays, e.g., arg[i] = 1.0, so that the user can directly
read or mutate the data. Permissions are granted through the
handle interface, i.e., the user specifies the required permissions
when they request a handle to data.
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FleCSI Lessons Learned
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Lessons Learned: Times where we
failed...

« Communication between disciplines is difficult
« falscher Freunde: words in two languages that look or sound
similar, but differ significantly in meaning.
« Example: data structure vs. data structure

» Computer Science (term of art): a data structure is a particular
way of organizing data in memory so that it can be used efficiently.

* Applied Mathematics: a data structure (mesh) is a definition of a
mesh topology entity, e.g., cell, side, or corner that is required to
define the method.

Developing a shared understanding of
terminology helps to improve communication




Slide 85

Lessons Learned: Times where we

failed...

However...

People must be allowed to explain concepts
in the way that they understand them.

No one is more right. The goal is to arrive at
a shared vocabulary to describe the
challenges and solutions...
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Summary
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Summary

« We are improving our existing proxy applications to
better reflect production code patterns

¢ We are developing better proxy applications that
expose realistic data flows and dependencies

« Updating existing production codes to use modern
programming techniques is challenging!
* May make sense to refactor some codes

* Clean-sheet efforts show promise...

* Will these be legacy in 30 years?
« Better software development practices will mitigate risk
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FleCSI Control & Execution Models
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The FleCSl execution/control model is a reflection of
how we (LANL) think about multi-physics...

¢ “main” function (serial/MPI)
* Top-level task (Legion)

» Time evolution control
Package * Associates packages

S

Driver

Task

Kernel

FleCSl has an intuitive execution model, which includes a control
layer (control model is under development), a task layer, and a
kernel layer. There is additional support for defining functions that
may be called from within a task or kernel. In the simple case, a
function call is trivially executed directly. However, in some cases
(think virtual function support) more steps are need to insure that a
function call is valid in any address space in which it may be
executed.

Driver Layer: This is where the top-level control logic of the
simulation lives.
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The FleCSl execution/control model is a reflection of
how we (LANL) think about multi-physics...

Driver
* Namespace for managing or
Package “l associating tasks
Task
Kernel

The package layer is simply a namespace to allow users to logically
group different tasks that have a common purpose.
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Driver

Package

Task

The FleCSl execution/control model is a reflection of
how we (LANL) think about multi-physics...

Kernel

FleCSl tasks have controlled side effects, i.e., those, about which the
runtime can reason. Within a task, a developer or user can assume
that execution is happening in a single address space.

The task abstraction in FleCSl is based on previous co-design
research on task-based runtime models, e.g., Legion, STAPL,
Charm++, and OCR (Intel). FleCSI’s task layer was also influenced
by discussions between LANL, Intel and Stanford (Tim Mattson of
Intel organized a discussion group to investigate this topic. Ben
Bergen and David Daniel both participated in these discussions.
Ben Bergen, Pat McCormick, et. al participated in discussions with
Stanford and Intel on requirements and design for task-based

v

e Pure Function

« Controlled side effects
* Inputs define output

* Implements logical

components of method

runtimes at Intel’s Hillsboro location.
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The FleCSl execution/control model is a reflection of
how we (LANL) think about multi-physics...

Driver

Package

Task

* Fine-grained, data-parallel functions,
e.g., foreach

* Use on-node runtimes:
Kokkos, Thrust, C++17

Kernel

v

A FleCSl kernel is a fine-grained, data-parallel unit of execution. Our
current implementation strategy is to use Kokkos until the C++17
standard is available. Kernels execute in a relaxed consistency
mode, although some operations may depend on sequential
consistency when it is possible to reason about and expect that the
underlying hardware supports sequential consistency.

The FleCSl kernel abstraction is based on experience with Kokkos,
OpenCL and CUDA, although it is most similar to the Kokkos model.
C++17 will directly support many of the interface requirements of
the FleCSI kernel model (Thanks to the Kokkos team for their efforts
on the C++17 committee!). Our experience with the Kokkos
programming model during the FY15 milestone was extremely
influential in the design of the FleCSI kernel abstraction.
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Sparse Data Representations
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jonal Laborator

Managing sparse data representations
presents some challenges...

offsets n
values
indices

Initial Distribution Matrix Representation
[ material 1 I:- mi m2
) -
B material 2 At 0 Vi
cl v2
Compressed Storage
c2 v3
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Managing sparse data representations
presents some challenges...

Evolved Distribution Matrix Representation
[ material 1 I:[- mi m2
B material 2 At — linear advection co vi

cl vn v2

Compressed Storage
c2 v3
[T

offsets n
values —_— Mutated Structure!!!
indices nn —_—
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Nation:

How does FleCSI handle sparse data?

offsets

indices|0|2|3|l|4| |

values|1|2|3|4|5| |

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC ‘09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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s National Laboratory

How does FleCSI handle sparse data?

N/

lofz]afs]e] |

[2]2]s]a]s] |

Code block to mutate sparse structure —

{

m = get_mutator(A, 3);
m[o][1] = 6;

} /I scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC ‘09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

LAUR-16-###
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How does FleCSI handle sparse data?

Constructor inserts space for new values —  m = get_mutator(A, 3);
m[o][1] = 6;
} /I scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC ‘09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

1
A=|0
0

0 2 0
0 0 3
4 0 0

0
0
5

User specifies
maximum total
slots

Constructor inserts space for new values —  m = get_mutator(A, 3);
m[o][1] = 6;
} /I scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC ‘09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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LAUR-16-###

s National Laboratory

How does FleCSI handle sparse data?

m = get_mutator(A, 3);

Intuitive interface to set non-zeros —  m[0][1] = 6;
} /I scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC ‘09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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mos National oy

How does FleCSI handle sparse data?

m = get_mutator(A, 3);
Intuitive interface to set non-zeros —  m[0][1] = 6;

(logically, m has a 5x3 dense structure like A) }// scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC ‘09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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mos National oy

How does FleCSI handle sparse data?

kS
Il
—
(==l
~cB
S oN
o wo
wul o O
nos

Column order is preserved, single-slot shift,
only slot end is incremented

{

m = get_mutator(A, 3);
Intuitive interface to set non-zeros —  m[0][1] = 6;

} /I scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC ‘09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

‘ A=10 0 0 3 0
04005

Lofalafs] [ [a]a] |

[fefzfa] [ [afs] |

{

m = get_mutator(A, 3);
What if we need more than 3 non-zeros? —  m[0][1] = 6;

} /I scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC ‘09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

e
‘ A=10 0 0 3 0
04005

Lofalafs] [ [a]a] |

[fefzfa] [ [afs] |

{

m = get_mutator(A, 3);
What if we need more than 3 non-zeros? —  m[0][3] = 7;

} /I scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC ‘09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

.spare map

((0,4),7) [1 6 2 D 0]

‘ A=(0 0 0 3 0
04 0 0 5

Lofalafs] [ [a]a] |

[fefzfa] [ [afs] |

{

m = get_mutator(A, 3);
What if we need more than 3 non-zeros? —  m[0][3] = 7;

} /I scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC ‘09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

m = get_mutator(A, 3);
m[o][3] = 7;
Destructor recompresses data —  }// scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC ‘09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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boratory

How does FleCSI handle sparse data?

The time complexity for inserting n non-zeros is 0(n)
for direct insertion and 0(n log(n)) for indirect insertion.

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC ‘09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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boratory

How does FleCSI handle sparse data?

The memory complexity depends on the application,
but can be quite efficient if good estimates are known.

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC ‘09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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boratory

How does FleCSI handle sparse data?

Implementation will support ELL-like dense number of
materials format, i.e., all rows have space for m non-zeros

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC ‘09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

We will also support nested sparsity through the use of
data handles.

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC ‘09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

We will also support nested sparsity through the use of
data handles.

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC ‘09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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Summary
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Completion Criteria

e Improvements from proxy applications from each lab
have been identified and evaluated for applicability in
IC or ATDM codes

e FY15 Kokkos/SNAP experiments evaluated and
ported to PARTISN in FY16.

Kokkos was shown to be effective in FY15 in implementing a C++
version of SNAP's kernel. This same methodology was applied to a
production IC code, PARTISN. This was a much more complex
endeavour than in FY15 for many reasons; a C++ kernel embedded in
Fortran, overloading Fortran memory allocations, general language
interoperability, and a fully fleshed out production code versus a
simplified proxy code.
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Completion Criteria

e Labs have reported the lessons learned—both
successes and failures—in regards to evaluation of
performance improvements implemented into
application codes, including how the proxy
applications are representative of the application
codes and where they could be improved.

¢ PARTISN Kokkos explored and evaluated FY16.
Lessons learned and potential improvements
reported in this presentation.

Lessons learned are Legion. In no particular order: Interoperability
between Fortran and C++ was really not that hard, and a useful
engineering effort. Tracking down all necessary memory allocations
for a kernel in a production code is pretty hard. Modifying a
production code to work for more than a handful of use cases is also
pretty hard. Figuring out the toolchain that will allow a successful
implementation of design decisions is quite hard, if making use of
"bleeding edge" design choices. In terms of performance, production
code concurrency architecture can be a virtual showstopper; being
too complex to easily rewrite and test in a short period of time, or
depending on tool features which do not exist yet. Ultimately, while
the tools used in this work were not successful in speeding up the
production code, they helped to identify how work would be done,
and provide requirements to tools.



