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• Overview
• SNAP Proxy vs PARTISN
• Background Research
• Production Code

• Structural Design and Changes
• Kernel Design and 

Implementation
• Lessons Learned

• NuT Update
• FleCSI Update
• Summary

 

 

 

  



Slide 4 

 

Los Alamos National Laboratory

09/01/2016  |  4

LA-UR-16-#####

Overview

• SNAP vs PARTISN (Geoff)
• Is SNAP a good proxy?

• Background Research (Geoff)
• Production Code (Josh & Geoff)

• Structural Design & Changes (Josh)
• Kernel Design & Implementation (Geoff)
• Lessons Learned

• NuT IMC Proxy (Ben)
• FleCSI Update (Ben)

• Design & Lessons Learned

• Summary FleCSI:Arbitrary polyhedra
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SNAP Proxy for PARTISN
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PARTISN vs SNAP

• By and large, very similar footprint for a subset of 
problems
• Similar array sizes
• Similar function signatures
• Similar iterative structure
• Similar problem sizing parameters

• Why PARTISN and SNAP?
• Continuation of FY14 and FY15 work

 

 

SNAP is PARTISN without decades of development accretion and 
without the physics. FY14 efforts showed they are very similar in 
terms of flops/load. The "kernel" is very similar between the two 
codes. 
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PARTISN vs SNAP

• There are some structural differences though
• Largely these are around the complexity of OpenMP design 

differences between the two at the time of background research
• Recent versions of SNAP have closed the gap in complexity

• PARTISN is far more complex in scope than SNAP, as 
SNAP is a representative subset of PARTISN
• Memory allocation is relatively very simple and collocated in SNAP, 

whereas it is quite spread out in PARTISN
• Harder to answer question of what a representative input deck is 

for PARTISN in its entirety than for SNAP's kernel

 

 

However, PARTISN is more complex, and so the amount of changes 
able to be completed with available resources are smaller in scope 
than SNAP. The technical decision was made to focus on the interface 
layer and the C++ kernel as both of those would offer lasting value to 
the production code team. This limited available performance, by 
going with (the current version of) Kokkos versus native CUDA, and 
by not rewriting the threading section of PARTISN due to lack of man 
hours. The constraint, though, enabled the successful resolution of 
the L2 completion criteria. 
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PARTISN vs SNAP

• Experiments in SNAP were relatively simple in scope
• Pull out kernel, rewrite in C++, explore maximum concurrency

• Experiments in PARTISN are far more intensive
• Where to allocate memory?
• How far outside of the kernel can concurrency regions expand?
• Can we embed MPI in a parallel region?

• These questions helped to determine the scope of 
our experiments

• PARTISN ~ 110k SLOC, SNAP ~ 4k SLOC

 

 

In working with SNAP, there was a simple translation of kernel with 
generic input argument sets. In working with PARTISN, we worked 
backwards from the kernel arguments (both function signature and 
implicit via module), to trace memory allocation to its source. In 
addition, threaded regions in PARTISN were more complex, and, since 
working with a production code, and not a proxy, maintaining the 
convergence behaviour of the code was mandatory. With MPI 
embedded at the thread-level in PARTISN, and Kokkos not supporting 
(currently) multi-threaded access to CUDA-UVM, our choices were to 
either allow only single threaded behaviour, and use CUDA-UVM 
through Kokkos to prevent memory duplication (UVM is host-backed 
GPU memory that can be shared between Fortran and C++), or to 
allow multi-threaded access through native CUDA which would have a 
good chance of faster computational performance, but would greatly 
increase our engineering scope. An even greater chance of 
performance increase would have come from broadening the scope of 
concurrency explored to the start of the threaded region in PARTISN. 
However, this would have required embedding MPI in threaded 
regions on the CPU, and/or the GPU, which would in turn greatly 
increase our engineering scope and downselect again from our 
limited toolchain options. 
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PARTISN vs SNAP

• It should also be noted that, while both PARTISN and 
SNAP are written in Fortran, for the purposes of the 
prior year L2, SNAP's kernel was rewritten in C++

• Thus, a great deal of the complexity of this year's 
efforts were related to interfacing distinct languages, 
while maintaining computational results of the host 
code

• Analogy: replacing a car's engine while it is driving 
75 MPH down the highway

 

 

Covered to some extent in prior two annotations. We were able to 
maintain convergence behaviour between the following three 
scenarios: 1) original Fortran version, 2) Fortran with C++ memory 
allocations (in CUDA-UVM through Kokkos), and 3) scenario 2 but 
running against the Kokkos opt3_sweep kernel. This added more 
kernel debugging complexity by requiring numerical results to be the 
same. The exercise helped to expose the intricacies and pitfalls in 
translating idiomatic programming logic between distinct 
programming languages. 
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Outline

• What we are going to talk about today on the topic of 
PARTISN and SNAP
• Background Research
• Production Code

• Structural Design and Changes
• Kernel Design and Implementation

• Lessons Learned
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Background Research
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Prior Year L2 work

• 2014 – PARTISN vs SNAP comparison with ByFl
• For smaller problems, Flops/Load ratio between 1.6% - 9.1%
• For larger problems, Flops/Load ratio within 1%

• 2015 – Kokkos dim3_sweep / Legion SNAP
• Re-implement SNAP iterative structure in Legion to show increase 

in concurrency
• Implementation of dim3_sweep in Kokkos to show analogous 

speed as Fortran SNAP

 

 

Above is a modicum of detail from prior year’s L2s that led to this 
years work. First, PARTISN and its proxy SNAP were compared, and 
found to be similar at scale, at least in terms of Flops/Load. The next 
year, the concurrency of the KBA algorithm was compared to a Legion 
implementation of SNAP, and a Kokkos version of SNAP’s hotspot, 
the dim3_sweep kernel, was created and studied. 
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dim3_sweep CUDA version

• Following on from FY15 work was still necessary to 
use CUDA-UVM backend of Kokkos with dim3_sweep 
kernel
• Remove dependencies on STL

• Re-implement scheduling data structures in flat arrays
• Reduce shared memory pressure
• Replace math functions with CUDA compatible versions

 

 

As a follow on to last year’s FY work, we continued to explore the 
dim3_sweep Kokkos kernel version. We made modifications, listed 
above, to allow it to function on a CUDA GPU. After running it on a 
GPU, it was found to have good amounts of speedup. However, this 
was with concurrency levels on the order of launching all energy 
groups of an octant sweep simultaneously. 
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Language Interoperability

• Standards-based (using ISO_C_BINDING)
• Create a C++ function wrapped in a ‘ extern “C” ‘
• Create a Fortran interface to call C++ function
• Create a Fortran subroutine to call Fortran interface
• Fortran <-> C++ that should be compiler independent!

 

 

We then developed a plan to fulfill the L2 completion criteria, by 
assessing how we would port the Kokkos work from SNAP to 
PARTISN. This would require some experimentation in programming 
language interoperability. We chose to use standards based 
interoperability in order to give ourselves the widest choice in 
compiler toolchains. All of the compiler toolchains we tested 
supported the ISO_C_BINDING interoperability module in Fortran. 
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Language Interoperability

• Kokkos allocation for Fortran
• Fortran: pass array name string, and dimensions through interface 

to C++ allocation routine
• C++: Allocate Kokkos view using string and dimensions, and return 

a raw pointer to memory allocated in Fortran style (LayoutLeft) and 
a pointer to Kokkos view

• Fortran: Use c_f_pointer to wrap a Fortran pointer around C++ 
memory allocation

• In our case – only legal because of use of UVM which is host-
backed device memory

 

 

We tested a proof-of-concept experiment by creating code that would, 
as above, pass an array name string and dimensions to C++, Kokkos 
allocates C++ memory using the dimensions and string in a Fortran 
compatible layout,  C++ passes pointers to the view object created by 
Kokkos and a pointer to the memory allocated as its backing store 
back to Fortran, and then Fortran wraps the raw memory pointer in a 
Fortran pointer, and uses the C++ allocation as it would a native one. 
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Production Code:
Structural Design and Changes
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Memory Allocation

• Identify memory necessary for kernel operations
• Identify sites where that memory was allocated
• Identify allocation routines used at sites
• Replicate functionality of allocation routines with new 

interface
• Test modified code for correctness

 

 

From the structural changes side of the house, this was our plan. We 
started by identifying the memory that would need to be used by a 
GPU kernel. We traced that memory (read: arrays) back to its 
allocation sites, and made note of the native routines which allocated 
them. With the detective work completed, we replicated the 
functionality of the allocation routines with our own (substituting CPU 
allocated Fortran memory, for CUDA-UVM allocated by C++). Once the 
new allocations were in place, we tested the modified code with the 
new memory and the Fortran version of the kernel (opt3_sweep). 
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Fortran/C Interface

• Original ALLOCATE call
• ALLOCATE( f_array(dim0) )

• Fortran interface call example
• call kokkos_allocate_1d(f_array, dim0,c_ptr, C_CHAR_”array

name"//C_NULL_CHAR)

 

 

Here is an example of the interface (bottom) and invocation of that 
interface (top) for allocating a 1D array. The allocation routine 
interface takes the dimensions (single, in this case) and a string of the 
array name, and returns a C pointer to the raw allocation (only safe on 
GPU memory because it is CPU backed UVM) and a C pointer to the 
view (retained to pass back in as a kernel argument later). 
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Fortran/C Interface

• kokkos_allocate_1d (implementation, simplified)
SUBROUTINE kokkos_allocate_1d(A,m,v_A,n_A)

USE, INTRINSIC :: ISO_C_BINDING

IMPLICIT NONE

INTEGER (C_INT), INTENT(IN) :: m

REAL (C_DOUBLE), POINTER, DIMENSION(:), INTENT(INOUT) :: A

TYPE (C_PTR), INTENT(OUT) :: v_A

CHARACTER(kind=C_CHAR), INTENT(IN) :: n_A(*)

TYPE (C_PTR) :: c_A

CALL f_kokkos_allocate_1d(m,c_A,v_A,n_A)

CALL C_F_POINTER(c_A,A,SHAPE=[m])

END SUBROUTINE kokkos_allocate_1d

 

 

The implementation of the 1D allocate routine the pervious function 
being called, followed by an intrinsic Fortran subroutine c_f_pointer, 
of ISO_C_BINDING interoperability, which causes a Fortran pointer to 
be assigned to point to a C pointer (here, the C pointer points to the 
CPU side of the UVM memory allocation) given both pointers and the 
array shape. It is important to note that this requires that the C pointer 
point to memory which is laid out in the same fashion as would 
Fortran lay out a multidimensional array, as Fortran does not have the 
same facilities as C with respect to arbitrary layouts of 
multidimensional arrays. 
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Fortran/C Interface

• f_kokkos_allocate_1d (interface)
SUBROUTINE f_kokkos_allocate_1d(m,c_A,v_A,n_A) BIND(c, NAME='c_kokkos_allocate_1d')

USE, INTRINSIC :: ISO_C_BINDING

IMPLICIT NONE

INTEGER (C_INT), INTENT(IN) :: m

TYPE (C_PTR), INTENT(OUT) :: c_A

TYPE (C_PTR), INTENT(OUT) :: v_A

character(kind=c_char), INTENT(IN) :: n_A(*)

END SUBROUTINE f_kokkos_allocate_1d

 

 

The implementation of the 1D allocate routine the pervious function 
being called, followed by an intrinsic Fortran subroutine c_f_pointer, 
of ISO_C_BINDING interoperability, which causes a Fortran pointer to 
be assigned to point to a C pointer (here, the C pointer points to the 
CPU side of the UVM memory allocation) given both pointers and the 
array shape. It is important to note that this requires that the C pointer 
point to memory which is laid out in the same fashion as would 
Fortran lay out a multidimensional array, as Fortran does not have the 
same facilities as C with respect to arbitrary layouts of 
multidimensional arrays. 
 
 

  



Slide 21 

 

Los Alamos National Laboratory

09/01/2016  |  21

LA-UR-16-#####

Fortran/C Interface

• Our view type for this example
typedef typename Kokkos::DefaultExecutionSpace device_t;
typedef Kokkos::View< double*, Kokkos::LayoutLeft, device_t > view_1d_t;

• c_kokkos_allocate_1d
void c_kokkos_allocate_1d( const int* m, double** A,view_1d_t** v_A,const char* a_name ) {

const int mt = std::max(*m,1);

char name[32];

sprintf(name,"%s",a_name);

*v_A = (new view_1d_t(name, mt));

Kokkos::deep_copy(device_t(),**v_A,0.0); // zero out memory

*A = (*v_A)->Kokkos::ptr_on_device(); // apologies

}

 

 

Here is the actual C++ allocation routine (1D shown). The variable mt, 
an integer, is created so that when a 0-length array dimension is 
passed from Fortran this routine will not error out (as 0 length 
allocations are legal in Fortran but not in C). Next the character array 
is stringified. Then, the string and array length are used to allocate 
the view. “deep_copy” is invoked to zero out the allocated memory on 
both sides. Finally, the raw pointer to the CPU portion of the UVM 
allocation is obtained and stored to be passed back to Fortran for use 
with c_f_pointer (as mentioned earlier). Not shown is that embedded 
in the “view_1d_t” type is the specification for memory allocation 
location (for this work, CUDA-UVM) and the layout order (LayoutLeft 
in Kokkos parlance) which maps to the Fortran memory order. 
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Fortran/C Interface

• We feel this approach is amenable to source 
translation tools

• Why is this important? Easy access to exotic memory 
space for legacy codes

 

 

Here is the actual C++ allocation routine (1D shown). The variable mt, 
an integer, is created so that when a 0-length array dimension is 
passed from Fortran this routine will not error out (as 0 length 
allocations are legal in Fortran but not in C). Next the character array 
is stringified. Then, the string and array length are used to allocate 
the view. “deep_copy” is invoked to zero out the allocated memory on 
both sides. Finally, the raw pointer to the CPU portion of the UVM 
allocation is obtained and stored to be passed back to Fortran for use 
with c_f_pointer (as mentioned earlier). Not shown is that embedded 
in the “view_1d_t” type is the specification for memory allocation 
location (for this work, CUDA-UVM) and the layout order (LayoutLeft 
in Kokkos parlance) which maps to the Fortran memory order. 
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Function Signatures

• To improve debugging ability, functor arguments and 
initializers were on separate lines

• ~190 lines worth!
• Partial solution to ease debugging of type issues

• Instantiate reduced input argument functor struct
• Populate struct member variables, one per line of code
• This helps to catch obscure template type based errors

 

 

A combination of the fact that the were upwards of 90 arguments and 
approximately 10 template arguments led us to try to find ways to 
structure the kernel invocation in the C interface such that debugging 
difficulty was ameliorated somewhat. We had the idea to instantiate 
the functor struct using only the scalar values, then to populate the 
member Kokkos views one line at a time, after the struct was 
instantiated. This allowed us to much more easily catch template type 
mismatch errors in the member views. 
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Production Code:
Kernel Design and Implementation
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Language Differences

• Idiomatically, C++ counts from zero, and Fortran from 
one, so, when looping through a range of integers, 
that are used in an expression which selects an array 
element, the conditional will need to be changed
• Fortran:

• i = {1,2,…,8} -> i/2+1 -> {1,2,2,3,3,4,4,5}
• C++

• i = {0,1,...,7} -> (i+1)/2 -> {0,1,1,2,2,3,3,4}

 

 

It is a surprise to no one familiar with HPC that Fortran and C count 
differently. Usually this is straightforward when transliterating a piece 
of code from one to the other. More complicated is when a sequence 
produced by an expression must be changed to be “off by one”. 
Above is an example of such. 
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Language Differences

• Where possible, the counting differences between the 
languages can be hidden in a functor constructor
• Fortran: i is used to select an array index

• e.g. array_a( i )
• C++: in the constructor of the functor where i_ will be used, an 

expression such as i_(i-1) could be written to initialize i_ so that it
points to the same array element as i would in Fortran, e.g .

• int i_;
• functor( const int i ) : i_( i – 1 ) {}

• Then array_a(i) in Fortran and array_a(i_) in C++ will be the same
element

 

 

We found one way to reduce the opportunity for “off by one” errors, 
and that was by subtracting one from the integer parameters in the 
C++ kernel in their construction (where relevant). For some integers, 
this was unnecessary, such as those used the same way one would a 
boolean variable. For others, used in counting expressions, 
dimensionality arguments, logical expressions, it was necessary to 
painstakingly count the combinations where these modified integers 
would be used together to ensure that both sides of the expression 
had one subtracted from their elements only once, and not multiple 
times, so that the expressions maintained the same articulation of 
their computational intent. 
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Colons in Fortran

• Replicating the behaviour of the colon in Fortran 
which implicitly means “perform this operation on or 
using all of the array elements in this dimension”
• e.g. array_a(:,d1,d2) = array_b(d3,d1,:,d4)

• In Kokkos, this is a parallel_for
parallel_for(ThreadVectorRange( team_member, L ), [&]( const int& ll ) {

array_a(ll,d1,d2) = array_b(d3,d1,ll,d4);

});

 

 

Colons in Fortran mean “all of the array elements in this dimension”. 
This can be used in a handful of ways, that are transliterated 
distinctly. Above, we show how it can be used on both signs of an 
assignment operator, given that the dimensions referred to by the 
colons are compatible. To rewrite this type of usage in a parallel 
kernel, it is straightforward, simply adding an iterator index in place of 
the colon. It is important to note that ordering is not implicit in the 
parallel region. 
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Colons in Fortran

• But a colon in Fortran can also be used to subset an 
array that is a subroutine parameter to change its 
dimension inside the subroutine
• For example, slicing a 5D array into a 2D array,
• CALL f_subroutine( array_a( :, :, d1, d2, d3) )

• In Kokkos, this is a subview
• subview2d_t s_array_a( array_a, ALL(), ALL(), d1, d2, d3 );
• c_subroutine( s_array_a );

 

 

Since the colon can be used to subset an array’s dimension(s), it is 
idiomatic in Fortran to use this ability when reducing the 
dimensionality of an array between execution scopes. For example, a 
the driver of a routine might feature a 4D array, where one dimension 
is multiple time values for numerical methods requiring such, and the 
other three are spatial dimensions. When passing this 4D array to a 
physics routine, multiple time values might not be needed, and so the 
array is subsetted upon entry into the subroutine as above. In 
rewriting this behaviour in C++ from Fortran, we use a feature of 
Kokkos known as the subview. A subview is a full-class view, a 
reference counted pointer to memory, that can point to a subset of the 
view that is used to create the subview. Here we show the Kokkos 
syntax “ALL()” which replicates the functionality of the colon in 
Fortran (when it is used to reduce the dimensionality). 
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SUM intrinsic

• Sometimes implicit paralleism can hide from you
• Example, a line of Fortran source to be turned into a 

parallel_for launch at the vector level:
• array_a(:,d2,d3) = array_a(:,d2,d3) + sum( b*c(:,d4,d5) )
• Perhaps the dimensions referred to by the : will not be of the same

length

• A solution:
• Uplift the sum to a parallel_reduce that precedes its usage in the 

parallel_for

 

 

There is implicit parallelism in the Fortran SUM() intrinsic can be 
difficult if it is embedded at the parallelism level of vectors. SUM is 
vectorized already, so it must be promoted to outside the vectorized 
region, and performed ahead of time. 
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Lessons Learned
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Results / Numbers

• Modified PARTISN was not faster than stock PARTISN
• However, the modified version did produce exactly 

the same convergence numbers
• We tested in phases:

• Original code vs. modified code using only UVM allocation routines
• Same numerics, same timing, on a Haswell + K40 node

• Original code vs. code using UVM allocation and GPU kernels
• Same numerics, 60x slowdown, on a Haswell + K40 node

 

 

We tested the modified PARTISN code and showed it provide 
compatible physical results with the original code. This was a great 
engineering success to us. It lets us know it is literally possible to run 
PARTISN in a GPU environment. We tested both the modified version 
(with C++ backed memory allocations) both with and without the GPU 
kernel enabled, and showed success in both cases. In our 
experiments, we found the modified version to be much slower than 
the original version, because of lack of threaded concurrency, and 
greatly reduced kernel launch sizing parameters. 
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Not always faster – why?

• Algorithm vs concurrency vs tools
• Pre-existing implementation of concurrency in the 

form of OpenMP choices limited scope of kernels that 
could be launched concurrently from a single thread

• Choice of tools limited the ability to combine CPU 
thread parallelism with GPU thread parallelism

• In addition, MPI embedded at the lowest thread levels

 

 

We would have needed a larger time and engineering allocation in 
order to increase the scope of our efforts to include the entirety of the 
threaded region in PARTISN. Had we done this, we would have 
expected similar or improved performance in the modified vice native 
code. This would have required in-development (but not ready at the 
time of work) features in Kokkos, or rewriting the Kokkos portion of 
the code in CUDA (which would obviate much of the development 
done over the last few years in learning it). Either one of these would 
have exposed more available concurrency. It is noted that both 
options would also have required embedding MPI in the kernel launch 
and also language interoperability with respect to MPI. The calls to 
MPI inside were mostly asynchronous, so it would likely have been 
possible, but it would have reduced speed without necessary multi-
threaded or GPU MPI support. It should also be noted that GPU 
communication improvements are to be expected in future ASC 
hardware. 
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Algorithm vs concurrency vs tools

• Some options:
• Use Kokkos CUDA UVM to provide access to GPU execution and 

host-backed memory to reduce memory pressure
• Use native CUDA so that multiple CPU threads could launch GPU 

kernels against the same context

• Engineering hours versus scope complexity
• Native CUDA would have required a much greater manpower 

expenditure, but perhaps would have yielded more computational 
concurrency

• However, Kokkos CUDA UVM allowed us to perform the language 
interoperability and GPU correctness experiments feasibly in time

 

 

Described in detail on previous slide. 
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Object types

• Am I passing around a pointer?
• A pointer to a pointer?
• A pointer to a pointer to a pointer?
• Complicated by views and subviews of those views 

existing in the same code regions

 

 

Some care had to be taken to ensure the correct level of pointer or 
dereferencing was being used at various stages of interface between 
Fortran and C++. One great trick we learned was to test the pointer 
level of a Kokkos view by calling a member function. If the member 
function was linked correctly, then we knew we had the correct level 
of “pointerness” to use in a parallel_for construct. Subviews are 
pointers to views, and this technique helped with them especially. (A 
view is essentially, in some senses, a fancy reference counted pointer 
to a memory allocation, with additional state stored in its object.) 
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Code Redundancy (i.e. boilerplate)

• Potential for automation with source generation 
and/or preprocessing tools

• Transforming a list of Fortran allocate statements
ALLOCATE( array_a(d1,d2,d3), array_b(d1,d2,d4) )

• Into the equivalent memory allocation interface 
routines
kokkos_allocate_3d(array_a, d1,d2,d3,c_ptr, 
C_CHAR_”array_a"//C_NULL_CHAR)
kokkos_allocate_3d(array_a, d1,d2,d4,c_ptr, 
C_CHAR_”array_b"//C_NULL_CHAR)

 

 

We felt many of the array allocations could have been created with 
automated tools. Scripts and or parsers could have been written to 
separate the above representative ALLOCATE statement into 
component allocation routines. While not necessary in our 
experiment, such would be invaluable to a production team. 
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Toolchain

• PARTISN: GCC or Intel
• CUDA: 7.5 or 8.0 RC
• Kokkos: functors or lambdas
• Kokkos with lambdas provides a more natural 

translation of Fortran to C++
• Lambdas are an experimental feature of CUDA, added 

in 7.5 and more fleshed out in 8.0 Release Candidate
• CUDA 8.0 RC supports Intel, but experimental 

features are restricted to GCC only

 

 

One of the trickier aspects of this work was in matching up 
production code team desires with experimental team desires, with 
the toolchain between the two groups. The production team prefers 
the Intel compiler, but was willing to revive GCC support for us.  The 
experimental team (us) preferred rewriting kernel sections as 
lambdas, instead of functors, because we feel this preserves, to the 
greatest extent possible, the look and feel of the code. (This improves 
maintainability, if the work is picked up by the production team.) 
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Toolchain
• PARTISN prefers Intel compilers, but can be compiled 

with GNU (but not versions of GNU that CUDA 7.5 
allowed

• So we ended with GNU (because lambdas +  CUDA )
• CUDA 8.0 RC (because GNU 5.x)
• Potentially the intersection of disjoint sets!
• Largely solved with time, experimentation with 

different toolset permutations, and friendly system 
admins willing to install package sets

 

 

Lambdas in CUDA are an experimental feature in CUDA 7.5, and still 
experimental in CUDA 8.0 Release Candidate (current as of time of 
work), added at the behest of the SNL Kokkos developers by NVIDIA. 
In 7.5, nvcc (the CUDA compiler) only worked with GNU compilers 
(and only less than major version 5), while in 8.0 it works with Intel 
(and others) as well. However, experimental features (which we 
needed for lambdas) were only available in GCC. In addition, we 
required nested lambdas (to write the kernel in the most future-proof 
fashion, were we able to expose greater concurrency in the kernel and 
surrounding regions of PARTISN code), and this mandated the 8.0 RC 
of CUDA 
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Toolchain

CUDA

CompilersPARTISN

Non-empty?

 

 

We were pleased to find a minimum of one combination of toolchain 
selections which supported our endeavours. We have every reason to 
believe that the number of choices will expand with time, as NVIDIA 
has shown willingness to increase compiler support in nvcc from 7.5 
to 8.0. 
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Toolchain

• The sum of the requirements could potentially be the 
intersection of disjoint sets!

• Rewriting all of the lambdas as functors would have 
allowed Intel, but would have greatly added to the 
engineering time, and reduced the readability of the 
new code with respect to the native version

• Largely solved with time, experimentation with 
different toolset permutations, and friendly system 
admins willing to install package sets.

 

 

We were pleased to find a minimum of one combination of toolchain 
selections which supported our endeavours. We have every reason to 
believe that the number of choices will expand with time, as NVIDIA 
has shown willingness to increase compiler support in nvcc from 7.5 
to 8.0. 
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Fortran Shenanigans

• To save memory, but maintain subroutine signature, 
setting e.g. a 5D array to have zero length in one 
dimension, if that dimension is not needed in 
computation, due to input deck logic

• If, however, this array is passed in the C++ kernel 
signature, it is necessary to allocate it in a different 
fashion

• In this area, SNAP was easy, and PARTISN was hard

 

 

In supporting many different physics solvers and modes, PARTISN 
has a fairly complex set of memory allocation sites. There are places 
where an array, if not needed by a particular physics mode, is 
allocated with zero length dimensions. This preserves array 
dimensionality, for subroutine arguments, but reduces memory 
allocation demands for efficiency. This is perfectly correct idiomatic 
Fortran, but it presents difficulty in transliterating because the same 
idiom is not present in C++ (the least reasons of which is that C++ 
does not have multi-dimensional array as a first-class data type). To 
work around this, we identified areas where this mattered for our work 
(certainly not exhaustive of all areas) and modified them to produce 
arrays with length one in dimensions instead of zero. Then, as in the 
native PARTISN code, we ignored those shortened arrays 
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Potential Improvements

• We feel that the greatest improvement would come 
from having the modified PARTISN launch kernels 
with the same concurrency as the SNAP experiments.

• This would require either of:
• Using future features in Kokkos to allow multi-threaded access to a 

CUDA context allocated as a backing store for GPU memory 
allocations and kernel launches.

• Rewriting all of the Kokkos portions in CUDA, and continuing to use 
OpenMP surrounding it. CUDA allows multi-threaded access to a 
GPU context without penalty.

• Hard line: some improvements require rewrite
 

 

As described elsewhere and above, we feel we could achieve similar 
results in PARTISN, given time and effort. In the scope of the L2, 
though, we were greatly pleased to show a) that our interoperability 
experiments were feasible b) that the modified code produced a 
correct result, and finally c) how to continue down the road for 
performance. We consider all of this to be useful feedback and or a 
roadmap for the production team, if they are so interested in 
continuing with this work. 
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Thank you!

• We would like to acknowledge the efforts of the 
production code team in CCS-2, specifically Joe Zerr, 
Randy Baker, and Rob Lawrie, that supported us with 
time, meetings, and feedback on our design and 
implementation, at all stages of our process.

• They fielded all of our questions about the structure 
of their code very kindly.

• It was especially important to have their support at 
the stage of debugging the numerical output for 
correctness.
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NuT Update
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NuT: proxy for on-node IMC issues

• NuT uses Monte Carlo to simulate thermal Neutrino (ν) Transport
• Similar on-node computational challenges for IMC: ubiquitous branching, 

thread divergence, write conflicts
• 2016 progress:

• OMP version—thread over particles, issues with OMP 4+ for GPU
• Naïve CUDA version—each CUDA thread pushes a particle

• poor performance—thread divergence, poor data coalescence
• SKDEP: SIMD Support for Kernels with Divergent Execution Paths)

• Data structures for grouping particles by event
• Wait-free CUDA implementation in progress

• 2017 goal:
• apply NuT/SKDEP lessons to Jayenne production IMC code
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FleCSI Update
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What is FleCSI?
FleCSI is a C++ programming system for 
developing multi-physics simulation codes…

• Runtime abstraction layer…
• High-level user interface, mid-level static 

specialization, low-level building blocks, tasking 
and fine-grained threading back-ends

• Programming model…
• Control, execution, and data models

• Useful data structure support...
• Mesh, N-Tree (N=3 → Octree), and KD-Tree

FleCSI: Pure 3D Lagrangian Sedov

FleCSI: 2D/3D Eulerian Sod

 

 

FleCSI, the Flexible Computational Science Infrastructure (FleCSI) is a 
C++ framework to aid in the development of application interfaces 
and tools for creating and maintaining multi-physics simulation 
codes. The primary structure of FleCSI is hierarchical, exposing 
low-level, mid-level, and high-level interfaces that are appropriate 
for different sets of users. The normal use pattern for FleCSI is that 
a computer or computational scientist creates a specialization layer 
for an application using the low-level FleCSI interface. This mid-
level layer provides the high-level interface that the end user 
actually uses to develop their physics simulation. 

 
FleCSI provides control, execution, and data models that are 

consistent with modern task-based and functional models. 
 
FleCSI also provides support for several important data structures 

and algorithms that can be statically customized as part of the 
creation of the mid-level interface. Examples of these include mesh 
and tree topology types. 
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Why is FleCSI? (Why are we using this 
design? and How does this work satisfy L2?)
• FY15 Work

• FleCSI task abstraction influenced by SNAP-Legion investigation
• FleCSI kernel abstraction influenced by SNAP-Kokkos work

• Co-Design Summer School
• FleCSI is also the result of tasking runtime research done in the FY14 and FY15 summer 

schools (HPX, CnC, Charm++)

• Task+X
• Hierarchical model identified through FY15 investigations
• Combination of task-based and data-parallel runtimes ala Legion + Kokkos

• FleCSI has been selected as the framework for LANL’s Next-Generation Codes 
Project (ATDM-CDA)
• FleCSI’s primary purpose is to support ATDM-CDA!
• Cautiously optimistic: we are meeting our goals…

 

 

The design of the FleCSI framework was directly motivated by 
experiments and lessons-learned from previous co-design 
milestones. In particular, work on the SNAP and Pennant proxy 
applications established the viability of the Legion and Kokkos 
programming models for handling distributed-memory parallelism 
and data-parallelism, respectively. 

 
The hierarchical runtime approach developed through our FY15 

investigations make up the foundation of the FleCSI task-based 
programming model. Technical lessons from these early 
experiments are also being used to improve the Legion interface 
and capabilities (contract with Nvidia and collaboration and support 
of Stanford), and to make it compatible with various node-level 
runtimes. LANL’s support of Nvidia and Stanford is designed to 
harden Legion for production use, and to address specific design 
and performance issues identified during the FY15 milestone work. 
Particular areas identified for improvement and enhancements 
include, parallel scalability, an improved mapping interface, and 
support for new processor types (e.g., Kokkos processor type: work 
performed at LANL in collaboration with Stanford). 

 
Our work on understanding and using fine-grained data-parallel 

programming models (through work on SNAP with Kokkos) is 



critical to the design of FleCSI’s kernel interface. Participation by 
the Kokkos team (and several LANL contibutors) on the C++17 
standards committee has helped to push changes to the C++ 
standard library that will dramatically improve our ability to achieve 
portable performance across the diverse architecture landscape of 
the future. 

 
FleCSI is directly supporting production code development through 

LANL’s ATDM project (currently called ‘NGC’ for Next-Generation 
Codes). Results from work on the co-design FY16 milestone give us 
restrained confidence that we can realize many or all of the primary 
goals of the FleCSI project: separation of concerns, performance 
portability, code sustainability, scalability and resilience. Our 
investigations into modern programming models were fundamental 
to the design and development of the FleCSI framework. 
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How does FleCSI work?

• Low-Level (FleCSI Core Capability)
• FleCSI provides a templated, low-level interface that can be specialized for a particular class of physics 

packages and application needs

• Specialization
• A specialization provides application developers with a high-level interface that is customized to their 

nomenclature and data structure requirements

• Task Abstraction (FleCSI Runtime Abstraction)
• Using the FleCSI task abstraction layer and some compile-time techniques, the application developer is given a 

programming system that is transparently distributed-memory parallel

• Kernel Abstraction (FleCSI Runtime Abstraction)
• Using the FleCSI kernel abstraction layer with compile-time techniques, application developers are given a 

programming system that is transparently fine-grained, data-parallel

• Data Abstraction (FleCSI Core + Runtime)
• FleCSI provides a data model that integrates with the task and kernel abstractions to provide easy registration 

and access to various data types with automatic dependency tracking
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Where does FleCSI sit in the software 
stack?

User Interface

FleCSI Compilation Tool

Application Interface

Libraries &
Operators

FleCSI
Specialization

FleCSI Core

Runtime Interface &
System Utilities

Third-Party
Interfaces

Provides high-level, domain-
specific
interface that requires syntax 
and semantics
not available in C++

Data & Execution Model 
Implementations

 

 

This slide gives a visual depiction of where the core FleCSI library sits 
in the software stack. Notice that FleCSI itself may directly interface 
other third-party interfaces. There is a well-defined interface to low-
level runtime drivers and system utilities. A FleCSI specialization 
will likely interface libraries that are either third-party or that have 
been written with the FleCSI programming model. 

 
Application developers use the FleCSI specialization layer to generate 

an application interface. We are looking at ways to include static 
optimization between the user interface and the application layer. 
An example of this approach would be to generate source for the 
application layer based on the user inputs. This would allow better 
performance tuning by exposing more information to the compiler. 
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When will FleCSI be ready?

• Specializations
• 2D/3D ALE: FleCSALE open-source project
• Octree: Smoothed-particle hydrodynamics (SPH)

• Serial and Legion task abstraction 
back-ends
• Execution model development is complete
• Data model development for Legion is in progress, 

Serial is complete…

• ParMETIS partitioning
• Primary partitioning done, working on ghost closure

• MPI+Legion Interoperability

Wedge

Corner

commit 0906f9b16de2dfcb864891cc908a9409281748bf
Author: Ben Bergen ben.bergen@gmail.com
Date:   Wed Sep 2 17:23:54 2015 -0600
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When will FleCSI be ready?

• End of Calendar Year 2016
• Cercion on FleCSI: Simple multi-physics proxy application

• Hydrodynamics with strength of materials
• Cell-centered ALE hydrodynamics
• Using Preston-Tonks-Wallace (PTW) strength model

• Sparse material representations (possibly…)
• High-level goal: develop FleCSI control model and setup

• FleCSALE (open source)
• Add basic multi-material capability using sparse material representations
• High-level goal: develop FleCSI data model for Legion back-end

These deliverables are tied to ATDM-CDA…

They address deficiencies in our current proxy applications…
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When will FleCSI be ready?

• End of Fiscal Year 2017 (L2 Milestone)
• FleCSALE

• More complete multi-physics problem
• Full multi-material support
• Distributed-memory using MPI+Legion backend

• ParMetis input mesh partitioning (MPI)
• Legion backend for hydrodynamics, strength, and HE solvers

• Kokkos node-level runtime (possibly…)

These deliverables are tied to ATDM-CDA…
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Many people have made significant 
contributions to FleCSI…

Nick Moss (CCS-7)

Topology types, sparse data, design

Marc Charest (XCP-1)

Mesh specialization, data structures, design

Irina Demeshko (CCS-7)

Legion backend, MPI/Legion interoperability, design

Li-Ta (Ollie) Lo (CCS-7)

Partitioning interface, design

John Wohlbier (formerly CCS-2)

Mesh specialization, I/O

Josh Payne (CCS-7)

Execution model, design

Christoph Junghans (CCS-7)

Build system, continuous integration, Docker packaging

Gary Dilts (CCS-2)

Tree specialization, data structures, design

Christopher Malone (CCS-2)

Remap implementation, design

David Daniel (CCS-7)

Requirements, design

Nathaniel Morgan (XCP-8)

Requirements

Vince Chiravalle (A-2)

Requirements

Joe Schmidt (XTD-NTA)

Requirements

Chris Sewell (CCS-7)

Requirements, design

Rao Garimella (T-7)

Requirements, design

Wes Even (CCS-2)

Requirements, design

Multiblock unstructured meshes

Mixed triangles and quads

 

 

FleCSI was developed as part of the ATDM ASD project. It represents 
the collaborative efforts of many people across many disciplines. 
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FleCSI Data Model
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What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

register_data(m, "pressure", 3, double, dense, cells);High-Level

 

 

The FleCSI data model provides a high-level interface that can be 
used to register and access data that are associated with a 
data_client_t and an index space. The user interface does not 
expose any metaprogramming or templates, and is intended to 
allow very clean looking implementations of the physics methods 
being described. 
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What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

register_data(m, "pressure", 3, double, dense, cells);

topology

identifier
versions

type

storage
type

index
space

High-Level

 

 

The elements of the high-level interface are used by lower leves of 
FleCSI to select how the data should be registered. 

 
topology: the data_client_t instance with which the registered data 

will be associated. 
 
identifier: a string identifier that will be hashed to create a unique 

size_t id. 
 
versions: FleCSI supports multiple state versions under a single 

identifier. This is useful for new and old state, or for predictor-
corrector methods. 

 
type: the intrinsic or user-defined type of the data to be registered. 
 
storage type: a hint to the framework that tells how the user intends 

to access the data. 
 
index space: an index space that is either defined by the user, or that 

is defined by the framework itself, e.g., a mesh topology. 
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What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

template<size_t ST, typename T, size_t NS, 
typename ... Args>
decltype(auto) register_data(
data_client_t & data_client,
const const_string_t & key,
size_t versions=1,
Args && ... args)

Specialization

 

 

The specialization layer may add new backend support and storage 
types that modify what the default implementation does to register 
data. If this level of the framework is not specialized, the data 
registration falls through to a particular backend that determines 
how each storage type should be handled. 
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What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

template<size_t ST, typename T, size_t NS, 
typename ... Args>
decltype(auto) register_data(
data_client_t & data_client,
const const_string_t & key,
size_t versions=1,
Args && ... args)

storage
type type

topology
identifier
versions

Specialization

 

 

This level of the data model uses some of the high-level inputs to 
apply static specialization to the low-level types. In this case, 
storage type and type are passed as template parameters to select 
specific low-level implementations. 

 
 

  



Slide 60 

 

Los Alamos National Laboratory

09/01/2016  |  60

LA-UR-16-#####

What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

template<typename T, size_t NS, typename ... Args>  
static handle_t<T> register_data(

data_client_t & data_client,
data_store_t & data_store, const const_string_t & key, 
size_t versions, size_t index_space, Args && ... args)

Low-Level

 

 

The low-level interface, having been specialized on type and storage 
type, makes use of the backend interface to actually register the 
data. 
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What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

template<typename T, size_t NS, typename ... Args>  
static handle_t<T> register_data(

data_client_t & data_client,
data_store_t & data_store, const const_string_t & key, 
size_t versions, size_t index_space, Args && ... args)

Mapped to specific
storage type

Low-Level

 

 

This concept is covered in the previous two slides annotations. 
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What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

FieldSpace fs = runtime->create_field_space(ctx);

Backend

 

 

The particular runtime backend is selected by a data policy. At this 
level, FleCSI uses the specific low-level runtime interface to register 
the data. 
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What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

FieldSpace fs = runtime->create_field_space(ctx);

Storage type uses Legion runtime
to create appropriate field space(s)

Backend

 

 

This example shows the Legion backend. Data registration translates 
into the creation of a field space. In the following slides, we will 
show more details about how the data model and execution models 
are tied together. 
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What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

register_data(m, "pressure", 3, double, dense, cells);

FieldSpace fs = runtime->create_field_space(ctx);

Dense
Storage

Example

 

 

From top to bottom, the selection of a storage type, type, and data 
policy determine how data are registered for a particular 
combination of attributes. 
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What storage types do we support?

• Dense: One dimensional, contiguous array
• Use Case: Physics state data

• Global: Single data instance (there’s only one…)
• Use Case: Simulation state data

• Local: One dimensional, contiguous array
• Use Case: Scratch data

• Sparse: Dense index space, sparse population
• Use Case: Material data, execution-dependent data, sparse matrices

• Tuple: Combination of other storage types
• Use Case: Provide struct-like support for cleaner task definitions

 

 

This slide simply spells out the various storage types that we 
currently support. Additional types may be added. As stated earlier, 
these storage types are used by FleCSI to determine how data 
should be stored and accessible. The actual data may be of any 
type that satisfies certain constraints, primarily that the data can be 
serialized, and that they do not directly reference addresses in a 
particular address space. 

 
 

  



Slide 66 

 

Los Alamos National Laboratory

09/01/2016  |  66

LA-UR-16-#####

FleCSI Distributed-Memory 
Partitioning
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How does FleCSI handle distributed 
memory?

Mesh

 

 

FleCSI uses conventional techniques to generate initial partitionings 
of mesh and tree entities. Selecting a particular entity type (in this 
case the mesh cells), FleCSI generates a primary partition of the 
cells into disjoint collections using ParMetis. 
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

primary 1
primary 2
primary 3

The mesh is partitioned by 
entities in one of the topological 
dimensions, e.g., cells.

 

 

FleCSI uses conventional techniques to generate initial partitionings 
of mesh and tree entities. Selecting a particular entity type (in this 
case the mesh cells), FleCSI generates a primary partition of the 
cells into disjoint collections using ParMetis. 

 
 

  



Slide 69 

 

Los Alamos National Laboratory

09/01/2016  |  69

LA-UR-16-#####

How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

primary 1
primary 2
primary 3

The mesh is partitioned by 
entities in one of the topological 
dimensions, e.g., cells.

The primary partitioning splits the 
topology into contiguous sets of cells.

 

 

FleCSI uses conventional techniques to generate initial partitionings 
of mesh and tree entities. Selecting a particular entity type (in this 
case the mesh cells), FleCSI generates a primary partition of the 
cells into disjoint collections using ParMetis. 
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

exclusive 1
exclusive 2
exclusive 3

shared 1
shared 2
shared 3

ghost 1
ghost 2
ghost 3

Using a strategy defined by the 
specialization, the dependency 
closure of the mesh is formed, 
creating several sets of indices
(index spaces).

 

 

A FleCSI dependency closure creates several index spaces on each 
rank that provide a complete set of dependency information for that 
rank. The index spaces (local, shared, and ghost) contain 
topological indices that correspond to owned data, owned and 
shared data, and dependent data, respectively. The mesh 
partitioning image on the left shows each rank with its respective 
index spaces shaded to indicate local (dark), shared (light), and 
ghost (gray) indices. The logic used to define the dependency 
closure is part of the particular mesh specialization being used. The 
low-level FleCSI topology types support storage and manipulation 
of several dependency closures per specialization. 
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

exclusive 1
exclusive 2
exclusive 3

shared 1
shared 2
shared 3

ghost 1
ghost 2
ghost 3

Using a strategy defined by the 
specialization, the dependency 
closure of the mesh is formed, 
creating several sets of indices
(index spaces).

Exclusive: I own them, and nobody else 
cares about them
Shared: I own them, and some other 
people care about them
Ghost: I don’t own them, but I care 
about them

 

 

This slide simply attempts to clarify the concepts of local, shared, and 
ghost. 
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

exclusive 1
exclusive 2
exclusive 3

shared 1
shared 2
shared 3

ghost 1
ghost 2
ghost 3

Multiple partitionings and 
partition closure strategies can 
be employed within the same 
specialization.

 

 

FleCSI supports multiple partitionings and closure strategies per 
specialization, e.g., a specialization might partition with respect to 
cells and with respect to vertices, forming two independent partition 
schemes and closures. 
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

exclusive 1

shared 1

ghost 1On each SPMD task (rank), the 
closure forms a set of virtual 
index spaces that represent a 
complete set of dependency 
data.

 

 

Each task or rank has a full set of its local, shared, and ghost data. 
The indices of these data make up a virutal index space. In the 
following slides, several subsets of this virtual index space are 
shown. Users can use these subset index spaces to iterate through 
particular logical subsets of the mesh or tree entities. In this case, 
the union of the index spaces on this slide create a virtual index 
space of mesh cells. The user can iterate over all of the cells, only 
the cells that are local to the rank or task, the local and shared cells, 
or the ghost cells. This provides flexibility to the user, and 
maintains a clean code interface. 
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

exclusive 1
shared 1
ghost 1

The virtual index spaces can be 
iterated using foreach semantics.

{
auto m = get_accessor(“materials”, material_t, cells, sparse, rw);

foreach(auto c: mesh.cells()) {
foreach(auto i: c.materials()) {

m[i] = 1.0;
} // for

} // for
} // scope

 

 

Virtual index space animation. 
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

exclusive 1
shared 1
ghost 1

{
auto m = get_accessor(“materials”, material_t, cells, sparse, rw);

foreach(auto c: mesh.cells()) { // traverse all cells (union of sets    )
foreach(auto i: c.materials()) {

m[i] = 1.0;
} // for

} // for
} // scope

The virtual index spaces can be 
iterated using foreach semantics.

 

 

Virtual index space animation. 
 
Showing iteration over all cells in the virtual index space. 
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

exclusive 1
shared 1
ghost 1

{
auto m = get_accessor(“materials”, material_t, cells, sparse, rw);

foreach(auto c: mesh.cells(local)) { // traverse cells in the
foreach(auto i: c.materials()) {       // union of exclusive and

m[i] = 1.0;                                   // shared
} // for

} // for
} // scope

The virtual index spaces can be 
iterated using foreach semantics.

 

 

Virtual index space animation. 
 
Showing iteration over the local and shared indices of the virutal 

index space. 
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

exclusive 1
shared 1
ghost 1

{
auto m = get_accessor(“materials”, material_t, cells, sparse, rw);

foreach(auto c: mesh.cells(ghost)) { // traverse cells in the ghost set
foreach(auto i: c.materials()) {

m[i] = 1.0;
} // for

} // for
} // scope

The virtual index spaces can be 
iterated using foreach semantics.

 

 

Virtual index space animation. 
 
Showing iteration over the ghost indices of the virutal index space. 
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

exclusive 1
shared 1
ghost 1

{
auto m = get_accessor(“materials”, material_t, cells, sparse, rw);

foreach(auto c: mesh.cells(local)) {
foreach(auto i: c.materials()) {

m[i] = 1.0;
} // for

} // for
} // scope

This provides a clean interface 
for complex data access and 
execution that handles 
dependency updates using 
permissions specified for the 
Legion task and logical regions.

 

 

This slide illustrates the utility of our approach and demonstrates that 
the user can develop very clean code that is semantically serial on a 
distributed-memory system. 
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How does FleCSI use Legion for dependency 
updates?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

exclusive 1
shared 1
ghost 1

The local mesh stores the 
partition information as several 
index spaces using an 
IndexPartition
(a Legion C++ type).

mesh type:
partition_t partitioning[N] partition[0]:

IndexSpace exclusive 1
IndexSpace shared 1
IndexSpace ghost 1

 

 

The Legion backend to FleCSI uses Legion IndexSpace and 
IndexPartition data structures to store the index spaces for a virtual 
index space. These are stored with the Legion runtime context 
(FleCSI data structure) in a generalized partition representation. 
Each partition data object holds the information for the local, 
shared, and ghost index spaces. FleCSI uses this information to 
create logical regions that are stored as part of the context. 
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How do the topology and data 
models work together for Legion?

Topology

Index
Space(s)

Data
Manager

Field
Space(s)

Logical
Region

 

 

When a user registers data, the data manager creates and appropriate 
set of field spaces for the virtual index space that has been 
specified by the user. The topology instance (a data_client_t), e.g., 
the mesh, provides the index partition and index space information. 
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How do the topology and data 
models work together for Legion?

Topology

Index
Space(s)

Data
Manager

Field
Space(s)

Logical
Region

When a user registers data, the data manager and 
topology cooperate to create several logical regions…

{
register_data(“pressure”, double, cells, dense);
} // scope

The Legion backend will use exclusive 1, shared 1, and 
ghost 1 with new field spaces of type double to create 
three new logical regions.

 

 

Together, the index spaces and field spaces are used to create a 
logical region. The logical region is stored by the FleCSI context, 
and is available for tasks to use transparent to the user. 
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How do the topology and data 
models work together for Legion?

Topology

Index
Space(s)

Data
Manager

Field
Space(s)

Logical
Region

FleCSI tasks operate transparently on Legion logical 
regions using compile-time data handles that are 
available through the FleCSI interface:

{
auto r = get_handle(“density”, double, cells, local, dense, ro);
auto e = get_handle(“internal energy”, double, cells, local, dense, ro);
auto p = get_handle(“pressure”, double, cells, local, dense, rw);

auto p = execute_task(eos, r, e);
} // scope

 

 

Users implement their tasks using data handles that, internally, are 
connected to the correct index space and field space of a logical 
region. Using some static metaprogramming techniques, these data 
are mapped and transformed into accessors. The accessors act like 
C language arrays, e.g., arg[i] = 1.0, so that the user can directly 
read or mutate the data. Permissions are granted through the 
handle interface, i.e., the user specifies the required permissions 
when they request a handle to data. 
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FleCSI Lessons Learned
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Lessons Learned: Times where we 
failed…
• Communication between disciplines is difficult

• falscher Freunde: words in two languages that look or sound 
similar, but differ significantly in meaning.

• Example: data structure vs. data structure
• Computer Science (term of art): a data structure is a particular 

way of organizing data in memory so that it can be used efficiently.
• Applied Mathematics: a data structure (mesh) is a definition of a 

mesh topology entity, e.g., cell, side, or corner that is required to 
define the method.

Developing a shared understanding of 
terminology helps to improve communication
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Lessons Learned: Times where we 
failed…

However…

People must be allowed to explain concepts 
in the way that they understand them.

No one is more right. The goal is to arrive at 
a shared vocabulary to describe the 
challenges and solutions…
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Summary
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Summary

• We are improving our existing proxy applications to 
better reflect production code patterns

• We are developing better proxy applications that 
expose realistic data flows and dependencies

• Updating existing production codes to use modern 
programming techniques is challenging!
• May make sense to refactor some codes

• Clean-sheet efforts show promise...
• Will these be legacy in 30 years?
• Better software development practices will mitigate risk
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FleCSI Control & Execution Models
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The FleCSI execution/control model is a reflection of 
how we (LANL) think about multi-physics…

• “main” function (serial/MPI)
• Top-level task (Legion)
• Time evolution control
• Associates packages

Driver

Package

Task

Kernel

 

 

FleCSI has an intuitive execution model, which includes a control 
layer (control model is under development), a task layer, and a 
kernel layer. There is additional support for defining functions that 
may be called from within a task or kernel. In the simple case, a 
function call is trivially executed directly. However, in some cases 
(think virtual function support) more steps are need to insure that a 
function call is valid in any address space in which it may be 
executed. 

 
Driver Layer: This is where the top-level control logic of the 

simulation lives. 
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The FleCSI execution/control model is a reflection of 
how we (LANL) think about multi-physics…

• Namespace for managing or 
associating tasks

Driver

Package

Task

Kernel

 

 

The package layer is simply a namespace to allow users to logically 
group different tasks that have a common purpose. 
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The FleCSI execution/control model is a reflection of 
how we (LANL) think about multi-physics…

• Pure Function
• Controlled side effects
• Inputs define output

• Implements logical 
components of method

Driver

Package

Task

Kernel

 

 

FleCSI tasks have controlled side effects, i.e., those, about which the 
runtime can reason. Within a task, a developer or user can assume 
that execution is happening in a single address space. 

 
The task abstraction in FleCSI is based on previous co-design 

research on task-based runtime models, e.g., Legion, STAPL, 
Charm++, and OCR (Intel). FleCSI’s task layer was also influenced 
by discussions between LANL, Intel and Stanford (Tim Mattson of 
Intel organized a discussion group to investigate this topic. Ben 
Bergen and David Daniel both participated in these discussions. 
Ben Bergen, Pat McCormick, et. al participated in discussions with 
Stanford and Intel on requirements and design for task-based 
runtimes at Intel’s Hillsboro location. 
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The FleCSI execution/control model is a reflection of 
how we (LANL) think about multi-physics…

Driver

Package

Task

Kernel

• Fine-grained, data-parallel functions, 
e.g., foreach

• Use on-node runtimes:
Kokkos, Thrust, C++17

 

 

A FleCSI kernel is a fine-grained, data-parallel unit of execution. Our 
current implementation strategy is to use Kokkos until the C++17 
standard is available. Kernels execute in a relaxed consistency 
mode, although some operations may depend on sequential 
consistency when it is possible to reason about and expect that the 
underlying hardware supports sequential consistency. 

 
The FleCSI kernel abstraction is based on experience with Kokkos, 

OpenCL and CUDA, although it is most similar to the Kokkos model. 
C++17 will directly support many of the interface requirements of 
the FleCSI kernel model (Thanks to the Kokkos team for their efforts 
on the C++17 committee!). Our experience with the Kokkos 
programming model during the FY15 milestone was extremely 
influential in the design of the FleCSI kernel abstraction. 
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Sparse Data Representations
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Managing sparse data representations 
presents some challenges…

material 1

material 2

Initial Distribution Matrix Representation

0 1 2 3

v1 v2 v3

0 1 1

offsets

values

indices

Compressed Storage

Δ𝑡

m1 m2

c0 v1

c1 v2

c2 v3
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material 1

material 2

Evolved Distribution

m1 m2

c0 v1

c1 vn v2

c2 v3

Matrix Representation

0 1 3 4

v1 vn v2

0 0 1

offsets

values

indices

Compressed Storage

Δ𝑡

v3

1

linear advection

++ ++

Mutated Structure!!!

Managing sparse data representations 
presents some challenges…
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,2] [2,3] [3,5]

0 2 3 1 4

1 2 3 4 5

𝐴 =
1 0 2 0 0
0 0 0 3 0
0 4 0 0 5

offsets

indices

values
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,2] [2,3] [3,5]

0 2 3 1 4

1 2 3 4 5

𝐴 =
1 0 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

Code block to mutate sparse structure
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,2] [3,4] [6,8]

0 2 3 1 4

1 2 3 4 5

𝐴 =
1 0 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

Constructor inserts space for new values
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,2] [3,4] [6,8]

0 2 3 1 4

1 2 3 4 5

𝐴 =
1 0 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

Constructor inserts space for new values

User specifies 
maximum total 

slots
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,3] [3,4] [6,8]

0 1 2 3 1 4

1 6 2 3 4 5

++

=

=

→

→

𝐴 =
1 6 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

Intuitive interface to set non-zeros

 

 

 

  



Slide 101 

 

Los Alamos National Laboratory

09/01/2016  |  101

LA-UR-16-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,3] [3,4] [6,8]

0 1 2 3 1 4

1 6 2 3 4 5

++

=

=

→

→

𝐴 =
1 6 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

Intuitive interface to set non-zeros
(logically, m has a 5x3 dense structure like A)
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,3] [3,4] [6,8]

0 1 2 3 1 4

1 6 2 3 4 5

++

=

=

→

→

𝐴 =
1 6 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

Intuitive interface to set non-zeros

Column order is preserved, single-slot shift, 
only slot end is incremented
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

𝐴 =
1 6 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

What if we need more than 3 non-zeros?

[0,3] [3,4] [6,8]

0 1 2 3 1 4

1 6 2 3 4 5
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][3] = 7;
} // scope

What if we need more than 3 non-zeros?

[0,3] [3,4] [6,8]

0 1 2 3 1 4

1 6 2 3 4 5
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][3] = 7;
} // scope

What if we need more than 3 non-zeros?

[0,3] [3,4] [6,8]

0 1 2 3 1 4

1 6 2 3 4 5

spare map
((0,4),7)
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,4] [4,5] [5,7]

0 1 2 3

1 6 2 7

3 1 4

3 4 5

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][3] = 7;
} // scopeDestructor recompresses data
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

The time complexity for inserting 𝑛 non-zeros is O 𝑛
for direct insertion and O 𝑛 𝑙𝑜𝑔 𝑛 for indirect insertion.

[0,4] [4,5] [5,7]

0 1 2 3

1 6 2 7

3 1 4

3 4 5

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

The memory complexity depends on the application, 
but can be quite efficient if good estimates are known.

[0,4] [4,5] [5,7]

0 1 2 3

1 6 2 7

3 1 4

3 4 5

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

Implementation will support ELL-like dense number of 
materials format, i.e., all rows have space for m non-zeros

[0,4] [4,5] [5,7]

0 1 2 3

1 6 2 7

3 1 4

3 4 5

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

We will also support nested sparsity through the use of 
data handles.

[0,4] [4,5] [5,7]

0 1 2 3

1 6 2 7

3 1 4

3 4 5

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5

 

 

 

  



Slide 111 

 

Los Alamos National Laboratory

09/01/2016  |  111

LA-UR-16-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,4] [4,5] [5,7]

0 1 2 3

1 6 2 7

3 1 4

3 4 5

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5

We will also support nested sparsity through the use of 
data handles.
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Summary
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Completion Criteria

• Improvements from proxy applications from each lab 
have been identified and evaluated for applicability in 
IC or ATDM codes

• FY15 Kokkos/SNAP experiments evaluated and 
ported to PARTISN in FY16.

 

 

Kokkos was shown to be effective in FY15 in implementing a C++ 
version of SNAP's kernel. This same methodology was applied to a 
production IC code, PARTISN. This was a much more complex 
endeavour than in FY15 for many reasons; a C++ kernel embedded in 
Fortran, overloading Fortran memory allocations, general language 
interoperability, and a fully fleshed out production code versus a 
simplified proxy code. 
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Completion Criteria

• Labs have reported the lessons learned—both 
successes and failures—in regards to evaluation of 
performance improvements implemented into 
application codes, including how the proxy 
applications are representative of the application 
codes and where they could be improved. 

• PARTISN Kokkos explored and evaluated FY16. 
Lessons learned and potential improvements 
reported in this presentation.

 

 

Lessons learned are Legion. In no particular order: Interoperability 
between Fortran and C++ was really not that hard, and a useful 
engineering effort. Tracking down all necessary memory allocations 
for a kernel in a production code is pretty hard. Modifying a 
production code to work for more than a handful of use cases is also 
pretty hard. Figuring out the toolchain that will allow a successful 
implementation of design decisions is quite hard, if making use of 
"bleeding edge" design choices. In terms of performance, production 
code concurrency architecture can be a virtual showstopper; being 
too complex to easily rewrite and test in a short period of time, or 
depending on tool features which do not exist yet. Ultimately, while 
the tools used in this work were not successful in speeding up the 
production code, they helped to identify how work would be done, 
and provide requirements to tools. 
 
 

 


