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Abstract
Sensitivity-Uncertainty Based Nuclear Criticality Safety Validation

Forrest Brown
Senior R&D Scientist, Monte Carlo Codes, LANL

National Lab Professor, NE Dept., UNM

Whisper is a statistical analysis package developed to support nuclear criticality safety validation. It uses
the sensitivity profile data for an application as computed by MCNP6 along with covariance files for the
nuclear data to determine a baseline upper-subcritical-limit for the application. Whisper and its associated
benchmark files are developed and maintained as part of MCNP6, and will be distributed with all future
releases of MCNP6.
Although sensitivity-uncertainty methods for NCS validation have been under development for 20 years,
continuous-energy Monte Carlo codes such as MCNP could not determine the required adjoint-weighted
tallies for sensitivity profiles. The recent introduction of the iterated fission probability method into MCNP
led to the rapid development of sensitivity analysis capabilities for MCNP6 and the development of
Whisper.
Sensitivity-uncertainty based methods represent the future for NCS validation – making full use of today’s
computer power to codify past approaches based largely on expert judgment. Validation results are
defensible, auditable, and repeatable as needed with different assumptions and process models. The new
methods can supplement, support, and extend traditional validation approaches.

Work supported by: US DOE-NNSA Nuclear Criticality Safety Program
US DOE-NNSA Stockpile Stewardship Program
LANL Nuclear Criticality Safety Division
LANL PF4 Restart

Contributors: Forrest Brown,  Michael Rising,  Jennifer Alwin
Monte Carlo Codes Group, XCP-3
X Computational Physics Division
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Sensitivity-Uncertainty Based Nuclear Criticality Safety Validation

Nuclear Criticality Safety
– Background & Examples

NCS Validation
– Upper Subcritical Limits
– Traditional NCS Validation

Sensitivity-Uncertainty Based NCS Validation
– Overview
– Sensitivity Profiles, Covariance Data, Correlation Coefficients
– MCNP-Whisper Methodology

• Selection of benchmarks

• Bias & bias uncertainty

• USLs & validation

– Examples
Discussion
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Nuclear Criticality Safety
-

Examples of
Experiments & Production
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Nuclear Criticality Safety - Background

• Why do we care about Validation?

– Ensure what NCS determines to be subcritical is actually subcritical
• People make mistakes

• Computer codes & nuclear data have approximations & errors

– Nuclear Criticality safety:
• Focus on avoiding worst-case combination of mistakes, uncertainties, 

approximations, errors, ...

• Rigor & conservatism always

• Never wishful thinking or "close enough“

– How can we be confident in assessing subcriticality?
• Verify that codes work as intended

• Validate  codes + data + methods  against nature (experiments)

• Be conservative, add extra margin for uncertainties & unknowns
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Critical Experiments     (1)
heu-met-therm-003 pu-met-fast-003-00 3

ieu-comp-therm-002-003 mix-comp-therm-002, PNL-33 

Pictures from ICSBEP Handbook

heu-met-inter-006-002
Zeus-2 
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Critical Experiments (2)

Pictures from ICSBEP Handbook

heu-met-fast-011 – poly reflectorheu-met-fast-008 – bare

heu-met-fast-009 – Be reflector heu-met-fast-012 – Al reflector
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Critical Experiments (3)

Pictures from ICSBEP Handbook

pu-met-fast-006

leu-comp-therm-080b

pu-sol-therm-030
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Critical Experiments (4)
pu-met-fast-044,  THOR

THOR components

Pictures from ICSBEP Handbook
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Pyrochemical Processing
• Electrorefining is a batch plutonium metal purification process

– Feed: impure Pu metal ingot, up to 4500 g Pu
– Product: highly purified Pu ring
– Waste: salt, anode heel, crucible

Actinide Research Quarterly 3rd Quarter 2008
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Nuclear Criticality Safety - Importance

• Criticality Safety Evaluations
– Must be performed before any operations or experiments involving 

fissile material
– CSEs must consider normal and all credible abnormal conditions
– Must conservatively account for:

Uncertainties & approximations in:

geometry, materials, isotopics, cross-sections, computer codes, etc.

• CSEs must be performed for
– Critical experiments performed at NCERC in Nevada
– Production operations at LANL Plutonium Facility (PF4)

• Purification, glove box operations, machining, etc., etc.

– Production operations at Y-12, other DOE sites, fuel manufacturing 
facilities, enrichment plants, waste processing,  etc.

• International Criticality Safety Benchmark Evaluation Project
– The ICSBEP Handbook has peer-reviewed documentation for over 

4,000 previous criticality safety experiments
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Upper Subcritical Limits
&

Traditional Validation
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Upper Subcritical Limit   (USL)

• For an application:
– A calculated  Keff < 1.0  is NOT sufficient to ensure subcriticality
– Must conservatively account for 

• Bias & uncertainties in the calculational method

• Uncertainties in the physical model (eg, mass, isotopics, geometry, ...)

Keff = 1

USL

Bias =  mean  (Kcalc- Kexp) for a set of experiments that     
are similar to the application

Bias Uncertainty, at 95% or 99% confidence level

Margin of Subcriticality (MOS) = code & data uncertainties 

MOS for Area of Applicability (AOA) = if benchmarks
are not similar enough to application

Must have:     Kcalc + 2σcalc <   USL
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Selection of Benchmarks for Determining USL
• Nuclear Criticality Safety requires 

validation of computational methods

• Validation involves comparing calculation 

vs experiment for many benchmarks 

similar to the application of interest

• Neutron spectra are complex functions 

of geometry, materials, nuclear 

cross-sections, ...

• Simple metrics cannot capture the 

complexity of a fissile system

• The figure shows neutron production 
spectra for 5 Pu systems:

– An application (Case 28)

– 4 benchmarks for Pu systems

• Which of the benchmarks are similar to the application?

• In traditional NCS validation,  the choice of benchmarks that were similar to an 
application was determined by expert judgment

pmf-011,
EALF = 83 keV

pmf-021,
EALF = 780 keV

Case 28.2.1, EALF = 120 keV

jezpu,
EALF = 780 keV

pcm-002,
EALF = 70 eV

ν!FΦ production spectrum 
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Advances in NCS Validation

• During the past 20 years, a powerful set of tools has been 
developed based on sensitivity-uncertainty methods

– From ORNL, the Scale system includes Keno, Tsunami, Tsurfer, & 
other tools

– From LANL, the MCNP6 & Whisper tools are now available
– Other tools have been developed by groups in England, France, 

Germany, Japan, S. Korea, China

• MCNP-WHISPER Methodology for NCS Validation
– MCNP determines sensitivity profiles to characterize the neutronics of 

an application or benchmark,   S( energy, reaction, isotope ),     
S = (dk/k) / (dσ/σ)

– WHISPER uses sensitivity profiles & data covariances to select similar 
benchmarks, determine bias, bias-uncertainty, & margin-of-
subcriticality for setting the Upper-Subcritical-Limit (USL) 
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Comparison of Validation Approaches (Simplified)

Traditional, Simple Traditional, Enhanced Sensitivity-Uncertainty Based

Benchmark
Collection

Expert judgment
1 set to cover all 
applications

Expert judgment,
Several subsets
(metal, solutions, other)

Large collection with sensitivity 
profile data,
Reject outliers, 
Estimate missing uncertainties

Selecting
Benchmarks

Expert judgment, 
Select subset based on 
geometry & materials

Automatically select benchmarks 
with sensitivity profiles closest to
application

Calculational
Margin

Determine bias & 
bias uncertainty

Determine bias & bias 
uncertainty
Possible trending 
within subset

Determine bias & bias uncertainty 
Automatically use weighting based 
on application-specific Ck values

Margin of 
Subcriticality

Expert judgment, 
Very large 

Expert judgment,
Large

Automatically determine margin for 
data uncertainty by GLLS,
Code-expert judgment for code
Expert judgment for additional MOS

Comment

Easy to use
Highly dependent on 
expert judgment
Requires large 
conservative MOS

More work if trending
Very dependent on 
expert judgment
Subsets & trending may 
permit smaller MOS

Computer-intensive, quantitative
Less reliance on expert judgment
Calculated estimate for most of MOS
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Sensitivity-Uncertainty Based 
NCS Validation

-
Overview
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MCNP-Whisper Methodology for NCS Validation  (1)

• The sensitivity coefficient is the ratio of relative change in 
k-effective to relative change in a system parameter:

• Sk,x(E)  is the sensitivity profile, that includes all isotopes, reactions, & energies 
for a system:

• MCNP6 & Scale/Tsunami Monte Carlo can use the Iterated Fission Probability 
method to compute adjoint-weighted integrals for the sensitivity profiles
– Tally scores are collected in original generation, 

adjoint-weighting is based on the progeny in the asymptotic generation

    

S
k ,x

= dk k

dx x
= −

ψ †, Σ
x
− S

x
−k−1F

x( )ψ
ψ †,k−1Fψ

P - 08 - 10!

Example Sensitivity Coefficient Profile!

Cu-63: !Elastic Scattering Sensitivity!
! !Copper-Reflected Zeus experiment:!

P - 08 - 13!

Example Sensitivity Coefficient Profile!

•  Pu-239: !fission chi(E) sensitivity!
! !OECD/NEA UACSA Benchmark Phase III.1!
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H-1: !elastic scattering cross-section sensitivity!
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U-238: !total cross-section sensitivity!
! !OECD/NEA UACSA Benchmark Phase III.1!
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etc.

fission

fission

Original
Generation

Latent
Generations

Asymptotic
Generation
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MCNP-Whisper Methodology for NCS Validation  (2)
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Example Sensitivity Coefficient Profile!

Cu-63: !Elastic Scattering Sensitivity!
! !Copper-Reflected Zeus experiment:!

P - 08 - 13!
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•  Pu-239: !fission chi(E) sensitivity!
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-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.01  0.1  1  10

ke
ff 

S
en

si
tiv

ity
 / 

Le
th

ar
gy

Neutron Energy (MeV)

TSUNAMI-3D
MCNP6

Figure 3: Comparison of constrained 239Pu fission-� sensitivities for OECD/NEA UACSA
Benchmark Phase III.1

47

P - 08 - 12!

Example Sensitivity Coefficient Profile!

H-1: !elastic scattering cross-section sensitivity!
! !OECD/NEA UACSA Benchmark Phase III.1!

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 1e-10  1e-08  1e-06  0.0001  0.01  1

ke
ff 

S
en

si
tiv

ity
 / 

Le
th

ar
gy

Neutron Energy (MeV)

TSUNAMI-3D
MCNP6
MONK

Figure 2: Comparison of 1H elastic scattering cross-section sensitivities for OECD/NEA
UACSA Benchmark Phase III.1

46

P - 08 - 11!

Example Sensitivity Coefficient Profile!

U-238: !total cross-section sensitivity!
! !OECD/NEA UACSA Benchmark Phase III.1!

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 1e-10  1e-08  1e-06  0.0001  0.01  1

ke
ff 

S
en

si
tiv

ity
 / 

Le
th

ar
gy

Neutron Energy (MeV)

TSUNAMI-3D
MCNP6
MONK

Figure 1: Comparison of 238U total cross-section sensitivities for OECD/NEA UACSA
Benchmark Phase III.1

45
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Application
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Select similar experiments
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determine bias & 
uncertainty & MOS
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SU-based 
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Sensitivity-Uncertainty Based 
NCS Validation

-
Details:

Sensitivity Profiles
Nuclear Data Covariances
Correlation Coefficients
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Sensitivity Profiles
• The sensitivity coefficient is defined as the ratio of relative 

change in k-effective to relative change in a system parameter:

• This may be expressed using perturbation theory:

– Includes both the forward & adjoint neutron fluxes.
– S = scatter operator,  F = fission operator  in integral transport eq
– x subscript implies that the perturbation is just for data x

• Sk,x(E)  is the sensitivity profile,   a function of neutron energy

  
Sk ,x = dk / k

dx / x

    

S
k ,x

= dk / k

dx / x
= −

ψ †, Σ
x
− S

x
−k−1F

x( )ψ
ψ †,k−1Fψ
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Sensitivity Profiles – Adjoint Weighting
• The adjoint transport equation:

• Adjoint fundamental mode has physical meaning:
The importance at a location in phase space is proportional to the 
expected value of a measurement, caused by a neutron introduced into 
a critical system at that location, after infinitely many fission 
generations.

• Using the Iterated Fission Probability method, MCNP6 can 
compute adjoint-weighted integrals of any quantity.

   

−Ω ⋅∇ψ †(r,Ω, E)+ Σtψ
†(r,Ω, E) =

d ′E d ′Ω∫∫ Σs(r, ′Ω ⋅Ω, E → ′E )ψ †(r, ′Ω , ′E )

+ 1
keff

d ′E d ′Ω χ(E → ′E )ν∫∫ Σ f (r, E)ψ †(r, ′Ω , ′E )
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Example – Need for Adjoint-Weighting
• MCNP can compute lifetimes (prompt removal times) with non-

importance weighted tallies:
unweighted adjoint-weighted

• Example:   Importance weighting is necessary in systems with thick 
reflectors. Unweighted lifetimes are often very much larger than effective 
lifetimes (adjoint-weighted)

Neutrons in the reflector 
unlikely to cause fission, 
not very important

Important neutrons 
are often short-lived

Net Effect: Not weighting by 
importance overvalues 
long-lived neutrons, leading 
to lifetimes much too long.

  
Λrem =

1, 1
vψ

1, Fψ
Λeff =

ψ †, 1
vψ

ψ †, Fψ
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Sensitivity Profiles – Adjoint Weighting
• MCNP breaks active cycles into consecutive blocks:

– Tally scores are collected in original generation, 
& progenitor neutrons tagged

– All subsequent progeny within the latent generations remember 
their progenitor

– Importance is the population of progeny from each progenitor in the 
asymptotic generation

– (Score)*(importance)  is tallied for adjoint-weighted results

T1

T2

T3

fission

fission

Original
Generation

Latent
Generations

Asymptotic
Generation

R1

neutron production 
track-length estimators

R2

R3
progenitor 1

progenitor 2
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P - 08 - 11!

Example Sensitivity Coefficient Profile!

U-238: !total cross-section sensitivity!
! !OECD/NEA UACSA Benchmark Phase III.1!
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Figure 1: Comparison of 238U total cross-section sensitivities for OECD/NEA UACSA
Benchmark Phase III.1
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P - 08 - 12!

Example Sensitivity Coefficient Profile!

H-1: !elastic scattering cross-section sensitivity!
! !OECD/NEA UACSA Benchmark Phase III.1!
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Figure 2: Comparison of 1H elastic scattering cross-section sensitivities for OECD/NEA
UACSA Benchmark Phase III.1
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P - 08 - 13!

Example Sensitivity Coefficient Profile!

•  Pu-239: !fission chi(E) sensitivity!
! !OECD/NEA UACSA Benchmark Phase III.1!
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Figure 3: Comparison of constrained 239Pu fission-� sensitivities for OECD/NEA UACSA
Benchmark Phase III.1
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P - 08 - 10!

Example Sensitivity Coefficient Profile!

Cu-63: !Elastic Scattering Sensitivity!
! !Copper-Reflected Zeus experiment:!

Sensitivity Profiles - Examples
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Sensitivity Profiles  - Vectors
• For each isotope, the sensitivity coefficients for a specific problem 

are stored consistent with the layout of the covariance data
– Recall that the sensitivity of Keff to a particular reaction type & energy 

bin is:

where  x  is the cross-section for a 
particular  isotope, reaction (MT), & energy bins

• For a particular application problem, A, the sensitivity profiles for 
all isotopes are combined into one sensitivity vector SA

The sensitivity profile  SA( E, MT, iso ) completely
characterizes the neutronics of an application

size of SA =    (44 E bins)  x  (12 reactions)  x  (number of isotopes)

  
S

k ,x
= Δk k

Δx x
= x

k

dk

dx
MT à

44 energy bins

Isotopes à 44 energy bins

Reactions, MT
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Cross-section Covariance Data 
• For a particular isotope & particular reaction (MT), the nuclear data 

uncertainties are a G x G matrix, where G = number of energy 
groups = 44

– Each diagonal is the variance
of the cross-section for a 
particular energy bin

– Off-diagonal elements are the 
shared variance between the data 
for pairs  of  energy bins

44 energy bins à

ß
44

 e
ne

rg
y 

bi
ns

Evaluated Nuclear Data Covariances ... NUCLEAR DATA SHEETS D.L. Smith

FIG. 9: A typical NJOY-generated plot of ENDF/B-VII.0
data downloaded from the National Nuclear Data Center,
BNL, USA.

such adjustments are not guaranteed to extend much be-
yond the immediate “neighborhood” of those systems ex-
plicitly considered. This limitation has been dealt with
in a practical way by examining many different types of
benchmark facilities, with the intent of “bracketing” non-
benchmark systems of interest in the process.

Covariance data, on the other hand, provide an oppor-
tunity for nuclear analysts to estimate the dispersion at-
tributable to nuclear data uncertainties to be anticipated
in nuclear system calculations. So, in practice these two
approaches to nuclear data quality assurance (QA) tend
to complement but not necessarily supplant each other
in assessing the suitability of evaluated nuclear data li-
braries for use in specific applications.

CSEWG has undertaken to formulate and adopt a set
of quality assurance (QA) requirements that must be sat-
isfied for covariance information to be included in the
ENDF/B-VII.1 library. The enforcement of these QA
requirements is intended to enhance the stature of this
library, and to further encourage its widespread use in
nuclear applications that require evaluated uncertainty
information.

Unfortunately, there is little precedence upon which to
base the establishment of QA requirements for covari-
ances, but there is no shortage of conflicting opinions

on the subject ranging from the idealistic to the prag-
matic. Therefore, the development of these QA require-
ments for ENDF/B-VII.1 involved a process of discus-
sions within the CSEWG community that extended over
nearly two years. Extensive exchanges of communica-
tions took place between interested and informed indi-
viduals within both the evaluator and nuclear data user
communities under the auspices of the CSEWG Covari-
ance Committee. Many compromises had to be reached
to reconcile conflicting technical and pragmatic consider-
ations.

A major source of disagreement involves the idea of
“retrofitting” existing evaluations that were known to
perform well in C/E data testing, but for which no prior
covariance information had been available. In the end,
as a compromise it was decided to allow this approach to
be followed in a number of instances for various reasons.
Foremost among these is the fact that the use of evalua-
tions based solely on procedures that simultaneously gen-
erate both estimated central values and covariances from
the statistical analysis of model-calculated and experi-
mental input data often do not lead to C/E data testing
results that are sufficiently close to unity to be acceptable
to the applied data users.

The varied structures of ENDF/B nuclear data files re-
flect a practical need to accommodate the complexity of
fundamental nuclear processes. This applies for the rep-
resentation of covariance data as well as for other evalu-
ated nuclear parameters. For this reason it was decided to
adopt a flexible approach in specifying QA requirements
for ENDF/B-VII.1 covariances, and to focus on provid-
ing guidelines rather than attempting to lay down rigid
rules and specifications in minute detail. Insistence on
establishing QA requirements which are overly stringent
would have led to unacceptable delays in releasing the
ENDF/B-VII.1 library and, quite likely, to pressures on
CSEWG by both data evaluators and data users to soften
or even ignore the requirements in many instances. This,
it was believed, would have seriously undermined the in-
tent of establishing this QA process and putting it into
effect.

Although it might appear that the QA document that
emerged from this process is rather vague, it neverthe-
less does establish requirements that CSEWG considers
to be reasonable as well as achievable under the current
circumstances. These requirements insure that the most
glaring technical issues that could compromise the quality
of this library are addressed and resolved to the benefit of
the user community. It is understood that this QA doc-
ument is an evolving entity that will undergo revisions
prior to future releases of ENDF/B, hopefully without
the need for significant backtracking. Furthermore, it is
anticipated that these future QA requirements will be
consist with developing evaluation methodology and user
covariance data needs.

The present QA document addresses the following is-
sues that impact upon the quality of an evaluated covari-
ance file: i) technical and mathematical requirements; ii)

3049
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Cross-section Covariance Data 
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Cross-section Covariance Data 

• The covariance matrices for all isotopes can be combined, 
including off-diagonal blocks that relate uncertainties in one iso-
MT-E with a different iso-MT-E

– Each diagonal element of Cxx
is the variance of the cross-section 
for a particular isotope, MT, 
& energy bin

– Off-diagonal elements of Cxx
are the shared variance between  
pairs  of  Iso-MT-E   &   Iso'-MT’-E’

– Very sparse (lots of zeros), 
block-structured matrix

(Off-diagonal I-I' blocks 
would generally be zero)

size of Cxx =   [ (44 E bins) x (12 reactions) x (number of isotopes) ]2 ~ (25k)2

Isotopes à

ß
Is

ot
op

es

Cxx = 

Reactions, MT 44x44
energy bins
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Correlation Coefficient  

• Correlation coefficient
– Pearson product-moment correlation coefficient,  r or ρ
– A measure of the linear correlation between variables  X  &  Y

ρ = +1 total positive correlation

ρ =  -1 total negative correlation

ρ =   0 no correlation

Y

X

7/20/15, 2:03 PMPearson product-moment correlation coefficient - Wikipedia, the free encyclopedia

Page 1 of 17https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

Examples of scatter diagrams with different values of correlation
coefficient (ρ)

Several sets of (x, y) points, with the correlation coefficient of x and y
for each set. Note that the correlation reflects the non-linearity and
direction of a linear relationship (top row), but not the slope of that
relationship (middle), nor many aspects of nonlinear relationships
(bottom). N.B.: the figure in the center has a slope of 0 but in that case
the correlation coefficient is undefined because the variance of Y is
zero.

Pearson product-moment correlation coefficient
From Wikipedia, the free encyclopedia

In statistics, the Pearson product-moment correlation coefficient (/ˈpɪərsɨn/) (sometimes referred to as the PPMCC
or PCC or Pearson's r) is a measure of the linear correlation (dependence) between two variables X and Y, giving a
value between +1 and −1 inclusive, where 1 is total positive correlation, 0 is no correlation, and −1 is total negative
correlation. It is widely used in the sciences as a measure of the degree of linear dependence between two variables. It
was developed by Karl Pearson from a related idea introduced by Francis Galton in the 1880s.[1][2][3] Early work on
the distribution of the sample correlation coefficient was carried out by Anil Kumar Gain[4] and R. A. Fisher[5][6] from
the University of Cambridge.

Contents
1 Definition

1.1 For a population
1.2 For a sample

2 Mathematical properties
3 Interpretation

3.1 Geometric interpretation
3.2 Interpretation of the size of a
correlation

4 Inference
4.1 Using a permutation test
4.2 Using a bootstrap
4.3 Testing using Student's t-
distribution
4.4 Using the exact distribution
4.5 Using the Fisher transformation

5 Pearson's correlation and least squares
regression analysis
6 Sensitivity to the data distribution

6.1 Existence
6.2 Sample size
6.3 Robustness

7 Variants
7.1 Adjusted correlation coefficient
7.2 Weighted correlation coefficient
7.3 Reflective correlation coefficient
7.4 Scaled correlation coefficient
7.5 Pearson’s distance

8 Heavy noise conditions
9 Removing correlation
10 See also
11 References
12 External links

ρ =  -1 -1  <  ρ <  0 

0 <  ρ <  +1 ρ =  +1 ρ = 0 
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Variance in Keff & Correlation Between Problems

• Given: Application A, Sensitivity SA computed by MCNP
Benchmark B, Sensitivity SB computed by MCNP

• Variance in Keff due to nuclear data uncertainties:

• Covariance between A & B due to nuclear data uncertainties:

• Correlation between Problems A & B due to nuclear data:
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Sandwich Rule – Variance & Covariance
• Matrix-vector operations

   Var
k
(A) =

!
S

A
C

xx

!
S

A
T

   Cov
k
(A,B) =

!
S

A
C

xx

!
S

B
T

= scalar

Nuclear Data
Covariances

Size= (G x MT x NI)2

Problem-dependent sensitivity vector, S.
Based on flux spectrum, adjoint spectum, 
nuclear data, problem isotopes, geometry,
temperature

Size = G x MT x NI

ST

c
k
(A,B) =

Cov
k
(A,B)

Var
k
(A) ⋅ Var

k
(B)
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Sensitivity-Uncertainty Based 
NCS Validation

-
MCNP-Whisper Methodology:

Selecting Benchmarks
Statistical Analysis
MOS Estimates
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Whisper Methodology for Validation & USLs
Whisper

– Statistical analysis code to determine baseline USLs
– Uses sensitivity profiles from continuous-energy MCNP6
– Uses covariance data for nuclear cross-sections

Sensitivity-Uncertainty NCS Validation Using MCNP6-Whisper
� Run MCNP6 for an Application,  & get Application sensitivity profile, SA
� Run Whisper:

� Automated, physics-based selection of benchmarks that are 
neutronically similar to the application,  ranked & weighted

• Compute Ck(i) for Application SA vs. Benchmark sensitivities SB(i)

• Select most-similar benchmarks,  based on highest  Ck(i) correlations

� Bias + bias uncertainty from Extreme Value Theory
• Statistical analysis – Extreme Value Theory, using Benchmarks selected

� Margin for nuclear data uncertainty estimated by GLLS method
• Use benchmark sensitivities & cross-section covariance data to estimate 

the MOS for nuclear data uncertainties
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MCNP-Whisper Methodology for NCS Validation  (2)
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Cu-63: !Elastic Scattering Sensitivity!
! !Copper-Reflected Zeus experiment:!
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Upper Subcritical Limit
• To consider a simulated system subcritical, the computed keff 

must be less than the Upper Subcritical Limit (USL):

Kcalc +  2σKcalc <    USL

USL   =   1   +  (Bias)  - (Bias uncertainty)  - MOS

MOS = MOSdata + MOScode + MOSapplication

• The bias and bias uncertainty are at some confidence level, 
typically 95% or 99%.
– These confidence intervals may be derived from a normal 

distribution, but the normality of the bias data must be justified.
– Alternatively, the confidence intervals can be set using non-

parametric methods.
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Sensitivity-Uncertainty Based 
NCS Validation

-
Examples:

Pu cylinder with water reflector
Pu sphere with thick Ta reflector
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Examples

Pu cylinder with water reflector
• 4.5 kg Pu-239 right-circular cylinder 
• Pu density = 19.86 g/cm3

• Reflected radially with 1 inch of water
• Reflected on the bottom with ¼ inch steel
• Height-to-diameter (H/D)  =  1.0

Note:   Lots of benchmarks similar to this

Pu sphere with thick Ta reflector
• 4.5 kg Pu-239 sphere 
• Pu density = 19.8  g/cm3

• Reflected radially with Ta
• Ta-reflector thickness =  30.  cm

Note:   No benchmarks similar to this
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Example: Pu cylinder, H/D=1, water reflector
Calculating application nuclear data uncertainties ...

application                                  adjusted    prior
pu-hd-1.0                                    0.00075     0.01385

Calculating upper subcritical limits ...
calc data unc baseline k(calc)

application margin (1-sigma)   USL > USL
pu-hd-1.0                                    0.01443     0.00075     0.97863 -0.14353

Benchmark population =   43
Population weight =  25.30973
Maximum similarity =   0.99691

Bias                   =   0.00850
Bias uncertainty =   0.00593
Nuc Data uncert margin =   0.00075
Software/method margin =   0.00500
Non-coverage penalty =   0.00000

benchmark ck weight
pu-met-fast-036-001.i                         0.9969      1.0000
pu-met-fast-024-001.i                         0.9966      0.9916
pu-met-fast-022-001.i                         0.9948      0.9386
pu-met-fast-023-001.i                         0.9931      0.8887
pu-met-fast-044-005.i                         0.9931      0.8870
. . . . . . . . .
mix-met-fast-007-022.i                        0.9724      0.2824
mix-met-fast-007-023.i                        0.9693      0.1915
pu-met-fast-045-005.i                         0.9670      0.1240
pu-met-fast-003-103.i                         0.9662      0.1021
mix-met-fast-001-001.i                        0.9650      0.0664

For this application,  43 of the 1101 
benchmarks were selected as 
neutronically similar & sufficient 
for valid statistical analysis
Benchmark rankings shown below

Excellent ck's
In range .96 - .99

Traditional validation 
gave    USL = 0.970 
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Example: Pu sphere with Thick Ta Reflector
Calculating application nuclear data uncertainties ...

application                                  adjusted    prior
pu-ta-30                                     0.01387     0.03005

application margin (1-sigma)   USL > USL
pu-ta-30                                  0.01679     0.01387     0.94215 0.02222

Benchmark population =  114
Population weight =  59.05861
Maximum similarity =   0.65942

Bias                   =   0.00903
Bias uncertainty =   0.00776
Nuc Data uncert margin =   0.01387
Software/method margin =   0.00500
Non-coverage penalty =   0.00000

benchmark ck weight
pu-met-fast-045-006.i                         0.6594      1.0000
pu-met-fast-045-004.i                         0.6590      0.9991
pu-met-fast-045-003.i                         0.6562      0.9939
pu-met-fast-045-002.i                         0.6496      0.9813
pu-met-fast-045-007.i                         0.6452      0.9728
pu-met-fast-045-001.i                         0.6412      0.9652
pu-met-fast-045-005.i                         0.5667      0.8225
pu-met-fast-023-001.i                         0.4420      0.5836
. . . . . . . . . .
pu-comp-mixed-002-008.i                       0.1824      0.0863
pu-comp-mixed-002-009.i                       0.1778      0.0775
pu-comp-inter-001-001.i                       0.1375      0.0003

For this application,  114 of the 
1101 benchmarks were selected as 
neutronically similar & sufficient 
for valid statistical analysis
Benchmark rankings shown below

Very poor ck's,
Max is only 0.65

Traditional validation 
gave    USL = 0.970 
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Pu with Thick Ta Reflector - Comments
• None of the benchmarks appear to 

have the same neutronics as the 
application

– Largest Ck in the Whisper example 
output is 0.659 – very low

– Guidance for maximum Ck:

0.95 < Ck à great
0.90 < Ck < 0.95    à good
0.80 < Ck < 0.90    à fair

Ck < 0.80    à questionable

• If all Ck’s are low, there is a need 
to expand the benchmark suite, 
add similar benchmarks

• If no similar benchmarks, need 
extra analysis, analyst judgment, 
& extra margin

wval4, with 3” Ta

pu-met-fast-045-006

"!F#(u)  vs u

– The current benchmark suite for 
Whisper was focused on main needs 
for LANL validation

– Few benchmarks with Ta, none with 
thick Ta reflectors

– Need to find more benchmarks with 
Ta reflector & add to Whisper suite,     
if Ta-reflected applications are 
expected
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Sensitivity-Uncertainty Based 
NCS Validation

-

Conclusions



Sensitivity-Uncertainty Based Nuclear Criticality Safety Validation 43

Conclusions & Discussion   (1)

Whisper?   Who cares?

• Sensitivity/Uncertainty methods for validation have been under 
development for > 18 yrs at ORNL  (Broadhead, Rearden, Perfetti, 
...)

• Kiedrowski & Brown developed MCNP iterated fission probability, 
adjoint weighted tallies, & S/U capabilities, 2008-2013. Whisper in 
2014.

• There are now 2 US calculational paths for S/U based validation:
– SCALE/Tsunami
– MCNP/Whisper

• International effort for comparisons being planned
– LANL, ORNL, IRSN

• S/U based validation methods can supplement, support, & extend 
traditional validation methods
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Conclusions & Discussion   (2)
• Traditional validation methods are 40+ years old;    S-U methods 

are new. Should not argue for exclusive use of either

• Traditional & S-U methods complement each other, & provide 
greater assurance for setting USLs

– Traditional methods provide a check on S-U methods

– S-U approach to automated benchmark selection is 
quantitative, physics-based, & repeatable.   Provides a check 
on traditional.

– Traditional methods use MOS of 2-5%. 
Quantitative, physics-based, repeatable MOS from S-U usually 
smaller

• The next 5 years or so should be a transition period, 
where both traditional & S-U methods should be used

• In today's environment of audits, reviews, & "justify everything",  it 
is prudent to use both traditional & S-U methods for validation
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Questions ?


