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Our goal

Improve decision support by monitoring
and forecasting events using social
media, mathematical models, and

quantitying model uncertainty.



Our approach

Real-time, data-driven forecasts with quanftified uncertainty:
Not just for weather anymore.

Forecasts with
quantified uncertainty

Real-time, voluminous,
extremely noisy data

] + 1 = 3

The whole is greater than the sum of its paris! — Aristotle

Mathematical models



Our approach

Information flow from
human observations of
events through an Internet

system and classification
algorithms to produce
quantitatively uncertain
forecast.
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What do we wani?

= Holy grail

* Predict events before they occur/start

m Realistic alternative

« Accurate, guantitatively uncertain

forecast
= Our proposal @@%
- Social Internet data can help EW@ S

)
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Global internet peneftration

? Average
Relative IPv4 utilization observed using ICMP Ping requests Source: Carna Botnet




Internet data sources

Information sharing Information seeking
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Using Twitter to Extract Behavior

10,000 Tweets/hour
about “swine flu”
in 2009

Extract emergent
behaviors such as
facemask usage

Use information to
iInform models and
quantify impact

tweets per million

face masks observed
CDC weighted ILI ——
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Where are people tweeting from?

= Challenges
— Only 1-2% of tweets carry a geotag
— Behavior is not demographically and geographically uniform



Lo C q ii n g q twe et Rank Fields MCAE success

| lo tz tx In 1823 100.0%
2 lo tz tx ds In 1826 100.0%
3 lo tz 1862 87.7%
4 lo tz tx 1878 99.2%
Scalable, content-based S oo o 108 996%
. 6 lo tz ds 2013 94.1%
approach — Gaussian 7 lo tz ds I 2121  1000%
8 lo 2125 65.8%
1 9 lo tx ds In 2176 100.0%
mixture model 0 1w 200 1000%
11 lo tx ds 2274 99.2%
12 lo tx In 2310 100.0%
E . -l- _l 3M 13 lo tx 2383 98.0%
Xperlmen S On 14 tz tx ds In 2492 100.0%
15 lo ds 2585 88.3%
L 16 tz tx ds 2594 99.4%
global, multi-ingual 7w W 2617 1000%
18 tz tx 2691 98.7%
19 lo ds In 2759 100.0%
TweeTS 20 tz 2945 76.1%
21 tz ds 2991 91.8%
22 tz ds In 3039 100.0%
. 23 lo In 3253 100.0%
Oﬂ|y reqUII’eS S0,000 24 x ds In 3267 100.0%
. 25 tx ds 3426 98.8%

3 .
tweets 1o train model 00w I 96 1000%
28 tx 3855 95.7%
29 ds 4482 79.7%
1 . 1 30 ds In 4484 100.0%
Fields: user location, user . S ]

time zone, tweet text, user
description, user language

MCAE: Mean Comprehensive Accuracy Error




Locating a tweet

0.12 x

(80th percentile)

Amexcans are optipgAstic about the economy & like what Obama is
text: doing.

is bliss.
language: en

os Angeles,

time zone: Pacific Time (US & Canada) ,

location:



Agent-based Simulation

Simulates the impact of
disease spread and
mifigation strategies within
the U.S.

Synthetic population with
demogrqphl.c Ond . . Income: $37K $28K $0 $0
geospd'l'lgl d|fferenT|OT|On Statu:s: woker worker  student daycare

n/a n/a

Workforce absenteeism by
industry classification

Explicit contact patterns and
changes in human behavior




Quantify impact of facemask usage
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Eliciting data from Wikipedia

articles

One stop shop for
monitoring an event -
Wikipedia arficle content

Number of Revisions

Trained named-entity
recognizer

Wikipedia information
closely align with ground
truth data

2014 Ebola Epidemic -

cases, deaths, and
hospitalizations




Using Wikipedia to tfrack incidence

30 million arficles in Lo

287 |C|ngUCIgeS N ’ Influenza .

WIKIPEDIA =

The Free Encyclopedia From Wikipedia, the free encyclopedia

Article Talk Read View source ~ Q

Main page “Flu" redirects here. For other uses, see Flu (disambiguation).

Copiagte “Grippe" redirects here. For other uses, see Grippe (disambiguation).
Featured content

-I- h Current events Influenza, commonly known as “the
. . . . Influenza

Random article flu®, is an infectious disease of birds I

Donate to Wikinedia Classification and extemal resources
: P and mammals caused by RNA e
° e viruses of the family

We S I e ¥ Interaction Orthomyxoviridae, the influenza
Helo viruses. The most common
About Wikipedia
Community portal

symptoms are chills, fever, runny
nose, sore throat, muscle pains,
Recent changes .
3 headache (often severe), coughing,
Contact page )

weakness/fatigue and general

Article access logs ER

confused with other influenza-like

. o ~ Languages & llinesses, especially the common

Afrikaans cold, influenza is a more severe

O V O I | O b | e S I n C e Alemannisch disease caused by a different type
Bl of virus.[" Influenza may produce magnified approximately 100,000 times
Aragonée nausea and vomiting, particularly in | ICD-10 J0@, J11 @

2 O O 7 :i::gu children,) but these symptoms are | ICD-9 487¢@
Aymer aru more common in the unrelated DiseasesDB 670114
Azerbaycanca gastroenteritis, which is sometimes | MedlinePlus 000080
e inaccurately referred to as "stomach | eMedicine med/1170(& ped/3006 &
Bén-lam-ga fiu* or *24-hour fiu".! MeSH D007251 @

Benapyckan
Typically, influenza is transmitted through the air by coughs or sneezes, creating

Benapyckan
O O re e (rapawxesiua) aerosols containing the virus. Influenza can also be transmitted by direct contact
Bunrapcku

with bird droppings or nasal secretions, or through contact with contaminated

4 ::i:sm surfaces. Airborne aerosols have been thought to cause most infections,
Brazhonen although which means of transmission is most important is not absolutely
O V O I | O b | e O n O n Catala clear."l Influenza viruses can be inactivated by sunlight, disinfectants and
Cestina detergents. /€] As the virus can be inactivated by soap, frequent hand washing

hourly basis

WIKIPEDIA

The Free Encyclopedia



Global disease monitoring

Wikipedia article
traffic

Linear models

Monitor disease
around the globe

Wikipedia traffic

correlates with
disease incidence
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Forecasting
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Up to 28 day forecast

for some diseases.




2013-2014 Influenza Forecasts

Wikipedia traffic )

SEIR (susceptible —
exposed — infectious —
recovered) models

seasonality
heterogeneous .
Mmixing R

Data assimilation

Bi-weekly forecasts of
the 2013-2014 flu
2y season




2015-2016 Influenza Forecasts

Wikipedia traffic and
C | i n iC O | S U rvei | | O n C e Epidemic Thresholding Theorem Peak Infectiousness (PI) Timing of Peak Infectiousness (PT)
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Infectious o] 7 Range of Historical PTs
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. . Not an epidemic: S(0) < p ok o om om o ok B—— 026 — 05 — 1 — 2 — 4
IﬂfeCTIOUS —_ Epidemic: S(0) > p PI = 1(0) + S(0) — p[log(S(0)) + 1 — log(p)]
recovered) model
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hitps://bsvgateway.org/flu

2015-2016 Influenza Forecasts

Dave Osthus, Reid Priedhorsky, Sara Del Valle
(based on ILI+ data through 2/13/16 and Wikipedia data through 2/18/16)

» Los Alamos

NATIONAL LABORATORY

EST.1943

Chance (%) flu season will start by ... Chance (%) the flu season will peak ... Chance (%) the flu season will be ...
Region 2/7/16 2/14/16 2/21/16 |before Feb.|in Feb. |in March |in April | after April Mild Moderate | Intense

National 38 62 76 <1 28 60 12 <1 99 1 <1
| Region 1 8 21 36 2 13 57 27 1 >99 <1 <1
| Region 2 45 61 68 <1 57 33 9 <1 97 3 <1
| Region 3 2 11 25 <1 11 61 27 1 >99 <1 <1
| Region 4 >99 >99 >99 <1 72 24 4 <1 >99 <1 <1
| Region 5 6 25 42 <1 15 64 21 <1 98 2 <1
| Region 6 7 29 45 <1 20 65 15 <1 >99 <1 <1
| Region 7 5 19 34 <1 16 61 22 2 >99 <1 <1
| Region 8 61 81 86 <1 26 59 15 <1 98 1 <1
| Region 9 >99 >99 >99 <1 46 45 9 <1 96 3 <1
| Region 10 >99 >99 >99 <1 13 65 22 <1 99 1 <1

Health and Human Services Regions

10

Hawaii and Alaska are members
of regions 9 and 10, respectively

Previous forecasts can be accessed at

hitp://bsvgateway.org/flu/forecast-archives/

Model description: Our model produces probabilistic forecasts of
the flu season, similar to how weather, presidential elections, and
sporting event outcomes are forecasted. This means our model
produces information such as, “there is an 80% chance the flu will
peak after January” rather than “the flu will peak after January”. This
approach explicitly acknowledges uncertainty in the data and the
model. Forecasts are created at national and regional levels (see
map). Our model combines three components: historical flu
information, a mathematical representation of how flu spreads
through a population, and data for the current flu season provided by
the Centers for Disease Control and Prevention. When new data
become available, the forecasts are updated. As a result, the model’s
uncertainty about what may happen for the remainder of the flu
season usually decreases with subsequent updates. Our forecasts
will be updated every two weeks for the 2015-2016 flu season.

Special thanks to Geoffrey Fairchild, Jim Gattiker, Nicholas Generous, and Kyle Hickmann



The Value of Internet Data - 2014-2015

® Observed ILI
1 .5°/o =
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Quantitative Analysis of Chatter
(CUAQC)

Software for acquiring, processing, and analyzing
social Infernet content.

Collects data from Twitter streaming APl &
Wikipedia access logs & content dumps

Estimates origin of locations of tweets with no
geotfag

Turns diverse kids of Internet data intfo hourly
(daily) time series of event counts

Facilitates parallel access to the dataset &
reasonable performance

hitps://qithub.com/reidpr/quac




Summary

Develop new tools to extract useful information
from Internet data streams

Develop new approaches to assimilate real-time
information into predictive models

Validate approaches by forecasting events

Our ultimate goal: develop an event forecasting
system using mathematical approaches and
heterogeneous data stfreams
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