

LA-UR-16-25977 (Accepted Manuscript)

The relationship between the plasmapause and outer belt electrons

Goldstein, J.
Funsten, Herbert O.
Reeves, Geoffrey D.

Provided by the author(s) and the Los Alamos National Laboratory (2017-01-11).

To be published in: Journal of Geophysical Research: Space Physics

DOI to publisher's version: 10.1002/2016JA023046

Permalink to record: <http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-16-25977>

Disclaimer:

Approved for public release. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

¹ The Relationship Between the Plasmapause and ² Outer Belt Electrons

J. Goldstein^{1, 2}, D. N. Baker³, J. B. Blake⁴, S. De Pascuale⁵, H. O. Funsten⁶,

A. Jaynes³, J. Jahn^{1, 2}, C. Kletzing⁵, W. S. Kurth⁵, W. Li⁷ G. D. Reeves⁶, H.

Spence⁸

³ Key points:

- ⁴ • Two outer belts, a dynamic zone near the plasmapause, and a stable zone deep within cold plasma
- ⁵ • Relativistic electron flux earthward of the peak is anticorrelated with dense plasma
- ⁶ • Electron lifetimes in stable outer belt are consistent with decay by plasmaspheric hiss

Abstract.

We quantify the spatial relationship between the plasmapause and outer belt electrons for a five-day period, 15–20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8–7.7 MeV relativistic electron flux data. A plasmapause gradient-finder is applied to wave-derived electron number densities $>10 \text{ cm}^{-3}$. We identify two outer belts. Outer belt 1 is a stable zone of $>$

J. Goldstein, J. Jahn, Southwest Research Institute, 6220 Culebra Rd, San Antonio, TX 78228 USA (jgoldstein@swri.edu)

D. N. Baker, A. Jaynes, Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation Drive, Boulder, CO 80303-7814

J. B. Blake, Mail Stop M2-259, The Aerospace Corporation, P.O. Box 92957, Los Angeles, CA 90009

C. Kletzing, W. S. Kurth, S. De Pascuale, Department of Physics and Astronomy, 203 Van Allen Hall, University of Iowa, Iowa City, Iowa, USA

W. Li, Department of Atmospheric and Oceanic Sciences, UCLA, Los Angeles, California, USA.

G. D. Reeves, H. O. Funsten, Los Alamos National Laboratory, Los Alamos, NM 87545

H. Spence, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Morse Hall, 8 College Road, Durham, NH 03824 USA

¹ Space Science and Engineering Division,

15 3 MeV electrons located 1–2 R_E inside the plasmapause. Outer belt 2 is a
16 dynamic zone of < 3 MeV electrons within 0.5 R_E of the moving plasma-
17 pause. Electron fluxes earthward of each belt's peak are anti-correlated with
18 cold plasma density. Belt 1 decayed on hiss timescales prior to a disturbance
19 on 17 January, and suffered only a modest dropout, perhaps owing to shield-
20 ing by the plasmasphere. Afterward, the partially-depleted belt 1 continued
21 to decay at the initial rate. Belt 2 was emptied out by strong losses during
22 the disturbance, but restored within 24 hours. For global context we use a
23 plasmapause test particle (PTP) simulation, from which we derive a new plas-
24 maspheric index F_p , the fraction of a circular drift orbit inside the plasma-
25 pause. We find that the locally-measured plasmapause is (for this event) a
26 good proxy for the globally-integrated opportunity for losses in the cold plasma.
27 Our analysis of the 15–20 January 2013 time interval confirms that high-energy
28 electron storage rings can persist for weeks or even months if prolonged quiet
29 conditions prevail.

Southwest Research Institute, San Antonio,

TX, USA.

² Department of Physics and Astronomy,
University of Texas San Antonio, San
Antonio, TX, USA.

³ Laboratory for Atmospheric and Space
Physics, University of Colorado, Boulder,
CO, USA.

⁴ The Aerospace Corporation, Los
Angeles, CA USA.

⁵ Department of Physics and Astronomy,
University of Iowa, Iowa City, IA, USA.

⁶ Los Alamos National Laboratory, Los
Alamos, NM USA.

⁷ Department of Atmospheric and
Oceanic Sciences, UCLA, Los Angeles,
California, USA.

⁸ Institute for the Study of Earth,
Oceans, and Space, University of New
Hampshire, Durham, NH, USA.

1. Introduction

30 The inner magnetosphere comprises several distinct particle populations. In this paper
31 we focus on the relationship between the coldest (plasmasphere) and the most energetic
32 (radiation belts) populations.

33 The plasmasphere is a region of cold (few eV) plasma that surrounds Earth up to a few
34 Earth radii (R_E) [Lemaire and Gringauz, 1998]. It is composed predominantly of H^+ , with
35 time-varying amounts of He^+ and O^+ present [Olsen *et al.*, 1987; Horwitz *et al.*, 1990;
36 Craven *et al.*, 1997]. The plasmasphere's outer boundary, the plasmapause, is highly
37 dynamic, moving inward (outward) in response to enhanced (diminished) geomagnetic
38 activity. During active times the outer plasmasphere is eroded, producing plumes of cold
39 dense plasma that extend to the dayside magnetopause in the afternoon sector [Chappell
40 *et al.*, 1970; Chappell, 1974; Goldstein and Sandel, 2005].

41 The radiation belts are zones of relativistic electrons and protons encircling the Earth
42 [Van Allen and Frank, 1959]. The electrons' radial structure is controlled by the dynamic
43 imbalance between source and loss processes [Baker *et al.*, 1994; Turner *et al.*, 2014a, b;
44 Ukhorskiy *et al.*, 2015; Reeves *et al.*, 2016]. Historically, the radial structure has consisted
45 of a relatively stable inner belt (with electron lifetimes >100 days) and a more dynamic
46 outer belt (lifetimes as short as a day or less). Trapped fluxes in the outer belt can vary by
47 two orders of magnitude on timescales of a few hours to days, and the peak flux location
48 is extremely variable. Recent observations have revealed a quite different three-belt radial
49 structure, containing two outer belts of MeV electrons [Baker *et al.*, 2013; Hudson *et al.*,

50 2014] and one inner belt composed of electrons with energies < 900 keV [*Li et al.*, 2015b;
51 *Fennell et al.*, 2015].

52 The plasmasphere overlaps with the outer belt(s) to a varying degree, occasionally
53 reaching extreme overlap [*O'Brien et al.*, 2003; *Baker et al.*, 2004; *Goldstein et al.*, 2005c;
54 *Li et al.*, 2006; *Baker et al.*, 2013; *Baker et al.*, 2014], and plasmaspheric drainage plumes
55 cross both the outer belt and the ring current [*Goldstein et al.*, 2005b; *Borovsky et al.*,
56 2014]. These overlap regions may be favored locations for the growth of waves that can
57 cause loss of outer belt electrons [*Thorne and Kennel*, 1971; *Millan and Thorne*, 2007].

58 One such wave is plasmaspheric whistler-mode hiss [*Thorne et al.*, 1973; *Meredith et al.*,
59 2004; *Bortnik et al.*, 2008; *Summers et al.*, 2014; *Spasojevic et al.*, 2015; *Li et al.*, 2015a;
60 *Kim et al.*, 2015]. For outer belt electrons of hundreds of keV to a few MeV, the energy-
61 and L -dependent loss timescales due to hiss can range from a few days to tens of days
62 [*Lyons et al.*, 1972; *Lyons and Thorne*, 1973; *Goldstein et al.*, 2005c; *Ni et al.*, 2013;
63 *Li et al.*, 2014a; *Jaynes et al.*, 2014; *Breneman et al.*, 2015; *Ma et al.*, 2015; *Hardman
et al.*, 2015]. Another potentially important loss term is the growth of electromagnetic
64 ion cyclotron (EMIC) waves [*Fraser and Nguyen*, 2001; *Fraser et al.*, 2005, 2010; *Loto'aniu
et al.*, 2005; *Halford et al.*, 2010; *Denton et al.*, 2014; *Meredith et al.*, 2014; *Engebretson
et al.*, 2015; *Wang et al.*, 2015; *Yu et al.*, 2015b; *Halford et al.*, 2015]. Theoretically, both
65 EMIC wave growth and the effectiveness of EMIC-induced pitch angle scattering can be
66 increased in regions of dense cold plasma where the resonance cutoff is lower (especially
67 with heavy ion enrichment) [*Summers and Thorne*, 2003; *Meredith et al.*, 2003; *Chiliverd
et al.*, 2015; *Rodger et al.*, 2015], and strong diffusion can result in loss timescales of several
68 hours to a day [*Meredith et al.*, 2003; *Yu et al.*, 2015a]. Observational studies have shown
69

73 dynamic correlations between EMIC waves and MeV electron precipitation, especially
74 on the duskside where plasmaspheric plumes often reside [Lorentzen *et al.*, 2000; Millan
75 *et al.*, 2002, 2007; Loto'aniu *et al.*, 2006; Woodger, 2012; Woodger *et al.*, 2015; Li *et al.*,
76 2014b; Blum *et al.*, 2015]. On the other hand, both theoretical and observational evidence
77 indicates that MeV electron precipitation by EMIC waves is limited to small equatorial
78 pitch angles, so that the core MeV population may not always be affected [Kersten *et al.*,
79 2014; Usanova *et al.*, 2014; Yu *et al.*, 2015a].

80 In addition to hosting the growth of waves associated with loss terms, cold dense plasma
81 can hinder or alter chorus waves that can scatter electrons both in pitch angle and energy
82 (i.e., resulting in loss or energization) [Burtis and Helliwell, 1969; Sazhin and Hayakawa,
83 1992; Meredith *et al.*, 2001; Horne *et al.*, 2005; Summers *et al.*, 2007]. Also controlled by
84 the high mass density inside the plasmasphere is the propagation of ultra-low-frequency
85 (ULF) waves that can cause energization and radial transport of electrons whose drift
86 times are comparable to the ULF periods [Hudson *et al.*, 1995; Li *et al.*, 1998; Elkington
87 *et al.*, 2003; Hudson *et al.*, 2014]. The plasmasphere can shield electrons within it, by
88 damping the ULF waves involved in outward radial diffusion that contributes to magne-
89 topause shadowing [Shprits *et al.*, 2006; Turner *et al.*, 2014a].

90 The spatial relationship between the plasmapause and outer belt electrons has been
91 an area of research for decades. Multiple past studies have demonstrated that the quiet-
92 time slot region is produced by wave-particle interactions between energetic electrons
93 and plasmaspheric hiss [Lyons *et al.*, 1972], and that the plasmasphere and outer belt
94 are generally spatially complementary on timescales longer than a few days [O'Brien
95 *et al.*, 2003; Baker *et al.*, 2004; Goldstein *et al.*, 2005c]. For example, Li *et al.* [2006]

analyzed a decade of low-altitude >2 MeV electron data and found that the outer extent of the slot region lined up with the plasmapause location (as determined by an empirical model). The very earliest observations by the Van Allen Probes mission launched in 2012 [Reeves, 2007; Mauk *et al.*, 2013] showed something new, however: two outer belts, with clear evidence of a long-timescale overlap between the plasmasphere and both outer belts [Baker *et al.*, 2013; Hudson *et al.*, 2014]. These apparently contradictory results raise the question: what is the relationship between the plasmapause and the outer belt electrons? The plasmapause and outer belts represent a fundamentally complex system that spans large spatial, temporal and spectral scales. Understanding associations between their structure and dynamics provides insight into the underlying physics and drivers. With few exceptions [e.g., Goldstein *et al.*, 2005c; Johnston and Anderson, 2010; Baker *et al.*, 2014] previous studies have addressed this important question using plasmapause locations from models rather than observations. Still needed is a systematic comparison of observed plasmapause and outer belt locations that incorporates the two-outer-belt configuration.

In this paper we take the first step using data from two Van Allen Probes instruments from the five-day interval 15–20 January 2013. To determine the plasmapause we use electron number densities, derived from plasma wave data obtained by the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) suite [Kletzing *et al.*, 2013]. To characterize the relativistic electrons we use data from the Relativistic Electron-Proton Telescope (REPT) instrument [Baker *et al.*, 2013]. A plasmapause test particle (PTP) simulation [Goldstein *et al.*, 2005a, 2014a, b] provides global context for the local EMFISIS-derived densities. Section 2 describes the automated peak/edge and plasmapause extractions. Section 3 quantifies the spatial relationship between the plasmapause

¹¹⁹ and outer belts. Section 4 analyzes the PTP model results. In Section 5 we interpret our
¹²⁰ results, with a major focus on plasmaspheric hiss. Our summary is found in Section 6.

2. Peak/Edge and Plasmapause Extractions

¹²¹ In this section we give an overview of the 15–20 January 2013 event, and describe our
¹²² automated methods to extract from Van Allen Probes data the maxima (and their asso-
¹²³ ciated inner edges) of the relativistic outer-belt electron flux, as well as the plasmapause
¹²⁴ locations.

2.1. Event: 15–20 January 2013

¹²⁵ Figure 1 shows an overview of the five-day interval 15–20 January 2013, during which
¹²⁶ time there was a moderate geomagnetic storm ($Dst_{min} \sim -50$ nT) that commenced at
¹²⁷ 1330 UT on 17 January. Figure 1a shows two solar wind parameters and two cardinal mag-
¹²⁸ netospheric boundaries. The solar wind electric (E) field is computed as $E_{SW} \equiv V_{SW}B_Z$
¹²⁹ from 5 min OMNI data in GSE coordinates, derived from upstream measurements made
¹³⁰ by the Wind [Ogilvie *et al.*, 1995; Lepping *et al.*, 1995] and Advanced Composition Ex-
¹³¹ plorer (ACE) missions [Stone *et al.*, 1998]. Negative E_{SW} is defined to correspond to
¹³² times when the interplanetary magnetic field (IMF) is southward. The solar wind pres-
¹³³ sure (P_{SW}) is shown in purple. The subsolar magnetopause location (R_{MP}) is computed
¹³⁴ from the model of Shue *et al.* [1997]. The green curve shows the minimum plasmapause
¹³⁵ location obtained from the test particle simulation that is described in Section 4. The
¹³⁶ minimum plasmapause, defined at a given time as the minimum boundary location for
¹³⁷ that instant's 2D equatorial plasmapause shape, provides a time-varying index of the most
¹³⁸ intense erosion.

₁₃₉ Between 0830 UT and 1330 UT (17 January) the solar wind pressure increased fourfold
₁₄₀ to nearly 17 nPa, compressing the model subsolar magnetopause past geostationary orbit
₁₄₁ to a minimum value of $6.2 R_E$ at 1340 UT. At 1330 UT on 17 January (the solid vertical
₁₄₂ line) the IMF rotated to a sustained southward direction, initiating over 10 h of erosion,
₁₄₃ in which the minimum plasmapause dipped to $L < 3$. (The two dashed vertical lines
₁₄₄ indicate times selected for examples of our peak-finding analysis in [Section 2.2](#).)

₁₄₅ [Figure 1b](#) and [Figure 1c](#) show electron flux spectrograms for two energies, measured
₁₄₆ by the Relativistic Electron-Proton Telescope (REPT) on Van Allen Probes A. The data
₁₄₇ are binned in time and space as follows. There is one time bin per half-orbit (perigee
₁₄₈ to apogee or vice versa), and there are 61 bins spanning $L^* = 1$ to 7 (i.e., the radial
₁₄₉ resolution is $0.1L^*$). Binned fluxes are spin-averaged, and values of L^* were calculated
₁₅₀ using the (static) OP77 model [*Olson and Pfitzer, 1977*]. Note that the signal below
₁₅₁ $L^* \approx 2.5$ (in both spectrograms) represents a known proton background in the electron
₁₅₂ channels, rather than real electron measurements. It has been shown that the inner zone
₁₅₃ is devoid of measurable electrons in the REPT energy range during the Van Allen Probes
₁₅₄ era [*Li et al., 2015b; Fennell et al., 2015*]

₁₅₅ The REPT A spectrogram data depict a strongly energy-dependent response to the
₁₅₆ disturbance of 1330 UT on 17 January. The disturbance (black solid line) caused a
₁₅₇ depletion of 1.8 MeV outer belt electrons ([Figure 1c](#)), across a range of L^* . Farther out
₁₅₈ ($L^* > 4$) the 1.8 MeV flux dropped by 1 to 2 orders of magnitude. At smaller L^* for
₁₅₉ both 1.8 MeV and 4.2 MeV ([Figure 1b](#)) the flux decreased by a more modest factor of
₁₆₀ 2 to 3. The higher- L^* ($L^* > 4$) dropout occurred earlier than at lower L^* . Main phase
₁₆₁ dropouts are thought to be caused by a combination of processes including magnetopause

¹⁶² shadowing and outward radial transport (at large L^*) and the adiabatic effect (at small
¹⁶³ L^*) [Turner *et al.*, 2014a; Ukhorskiy *et al.*, 2015], as well as by EMIC waves [Drozdov
¹⁶⁴ *et al.*, 2015]. This disturbance-time flux decrease is discussed further in Section 5.

¹⁶⁵ The morphology of the 1.8 MeV outer belt region changed as a result of the 17 January
¹⁶⁶ disturbance: beforehand there were two outer belts of 1.8 MeV electrons, and afterward
¹⁶⁷ there was one outer belt. During the 1.5 days prior to the 17 January disturbance, outer
¹⁶⁸ belt 1 peaked at $L^* \approx 4$ and outer belt 2 peaked at $L^* \approx 5.5$ (Figure 1c). In the 12 hours
¹⁶⁹ directly before the disturbance hit, while solar wind pressure was elevated and the IMF
¹⁷⁰ was northward (Figure 1a), the two outer belts moved inward; outer belt 1 by $\sim 0.5L^*$
¹⁷¹ and outer belt 2 by $\sim 0.8L^*$. After the disturbance, what remained of outer belt 1 decayed
¹⁷² and outer belt 2 was restored.

¹⁷³ The above change in outer belt morphology did not occur for 4.2 MeV and higher: both
¹⁷⁴ before and after the disturbance the 4.2 MeV electrons occupied a single outer belt at
¹⁷⁵ $L^* \approx 3.5$ (Figure 1b). Thus outer belt 1 may be interpreted as a “storage ring” [Baker
¹⁷⁶ *et al.*, 2013] of high-energy electrons that persisted (with a modest drop) through the
¹⁷⁷ disturbance while the higher- L^* outer belt 2 experienced large dynamical changes. For
¹⁷⁸ energies ≥ 4.2 MeV this stable storage ring was the dominant flux feature during the
¹⁷⁹ 15–20 January 2013 event.

¹⁸⁰ In the next section we detail our method for extracting peaks and edges from the
¹⁸¹ relativistic electron data.

2.2. Electron Peak and Edge Finder

¹⁸² For this study we use an automated algorithm to extract the locations of peaks and
¹⁸³ edges from the REPT spectrogram data. First, each flux versus L^* profile at $0.1L^*$ resolu-

tion is smoothed with an 8-point boxcar average, which is sufficient to smooth spatial and temporal L^* variations occurring over small scales and to retain and identify systematic flux variations occurring at scales greater than $\sim 0.5L^*$. In each boxcar-smoothed profile $f(L^*)$, the algorithm identifies peaks (f_{peak}) via two differential criteria: $d \log f / dL^* \approx 0$ and $d^2 \log f / dL^{*2} < 0$. For each peak f_{peak} thus identified, the corresponding edge is where $f_{\text{edge}} = f_{\text{peak}} \exp(-1)$ for L^* values smaller than the peak. [Figure 2](#) shows the result of applying this peak and edge finder to REPT data at two selected times before and after the disturbance: 0048 UT on 17 January ([Figure 2a](#)) and 2139 UT on 18 January ([Figure 2b](#)). These two times are indicated in [Figure 1](#) by vertical dashed lines. At each time the algorithm was applied to eight REPT energy channels: [1.8, 2.1, 2.6, 3.4, 4.2, 5.2, 6.3, 7.7] MeV. In [Figure 2](#) the peak locations (L_{peak}) of outer belts 1 and 2 are indicated by numbered (“1” or “2”) dots and vertical lines. The point at $L^* < 2.5$ labeled “p⁺” also satisfies the two differential f_{peak} criteria above, but this peak is rejected because it results from the proton background signal, as noted earlier. For each peak the corresponding edge location L_{edge} is indicated by the nearest dashed line inward of the peak.

2.3. Plasmapause Finder

To locate the plasmapause for this study we use number density data derived from plasma waves measured by the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) suite on Van Allen Probes A. The extraction of electron number densities (n_e) from the 15–20 January 2013 EMFISIS wave data is briefly discussed in [Appendix A1](#) and described in detail in *Goldstein et al. [2014b]*. [Figure 3](#) shows two example density profiles, from 0138–0610 UT on 15 January and 1926–2354 UT on 18 January. These profiles have been interpolated to the L^* bins used for the REPT spectrograms,

206 yielding an EMFISIS n_e spectrogram (cf. [Figure 4b](#)). To extract plasmapause locations
 207 from profiles like these, we use an automated algorithm. First, each density versus L^*
 208 profile is smoothed with a 4-point boxcar average. In each smoothed profile $n(L^*)$ the al-
 209 gorithm identifies the plasmapause (L_P) as the outermost location satisfying two criteria:
 210 $d \log n / dL^* < 0$ and $n_e \geq 10 \text{ cm}^{-3}$. That is, the plasmapause is found as the outermost
 211 negative density gradient crossing the threshold value 10 cm^{-3} , where the threshold is
 212 applied to the unsmoothed data. Where the sampled outermost gradient does not cross
 213 the threshold, the minimum extracted density (outermost L^* value) is used. Plumes and
 214 other subglobal structure, that might otherwise complicate the automated plasmapause
 215 detection, are not a major concern in the predawn MLT sector where these data were
 216 taken.

2.4. Extractions for 15–20 January 2013

217 The automated algorithms were applied to the binned Van Allen Probes A REPT
 218 and EMFISIS data from 15–20 January 2013. [Figure 4a](#) shows the 1.8 MeV REPT A
 219 spectrogram, with extracted peak locations (L_{peak} , solid lines) and edges (L_{edge} , dashed
 220 lines). Outer belt 1 (i.e., the storage ring) is plotted in blue, and outer belt 2 is in black.
 221 [Figure 4b](#) contains a 2D spectrogram of EMFISIS A number density (n_e), binned in L^*
 222 and time to match the REPT A spectrogram’s resolution and cadence. The extracted
 223 plasmapause (L_P) is the black line.

224 On 15 and 16 January the 1.8 MeV outer belts 1 and 2 were relatively stable, with
 225 average peak locations of $L^* = 3.9$ (outer belt 1) and $L^* = 5.5$ (outer belt 2). Starting on
 226 17 January both outer belts moved inward; by the time of the disturbance (1330 UT on
 227 17 January), outer belts 1 and 2 had migrated to $L^* = 3.4$ ($\Delta L^* = -0.5$) and $L^* = 4.7$

²²⁸ ($\Delta L^* = -0.8$), respectively. As a result of the disturbance, outer belt 2 experienced a
²²⁹ strong dropout in which flux decreased by a factor of > 100 (cf. arrow labeled ‘dropout’);
²³⁰ for this half-orbit bin the automated algorithm identified no peak for belt 2. After the
²³¹ dropout outer belt 2 recovered, and late on day 18 stabilized to a mean value of $L^* = 4.6$.
²³² Outer belt 1 experienced a modest (factor of 2) decrease in flux from the disturbance, but
²³³ then decayed (rather than recovering) so that by about 1700 UT, for $L^* < 3.4$ there was
²³⁴ no 1.8 MeV peak, only a plateau in flux.

²³⁵ The plasmapause varied somewhat prior to the disturbance. Given the relatively quiet
²³⁶ conditions that prevailed ($K_p \leq 2$), and judging from the simulated plasmasphere [Gold-
²³⁷ stein *et al.*, 2014b], this early variability in the EMFISIS-measured plasmapause was
²³⁸ produced by the rotation of quiet-time local-time structure past the Van Allen Probes A
²³⁹ spacecraft. The 17 January disturbance caused a global plasmaspheric erosion (cf. [Figure 1a](#) and Goldstein *et al.* [2014b]), which appears in the binned EMFISIS data as a
²⁴⁰ reduction of the plasmapause to $L_P < 4$ by the end of day 17.

²⁴² It is worth noting that our simple procedure identifies the peaks of a flux-versus- L^*
²⁴³ profile containing the superposition of outer belt 1 and outer belt 2 populations. One
²⁴⁴ complication of this procedure is that for profiles in which the two populations overlap,
²⁴⁵ there is some inevitable contamination that may lead to errors in the peak and edge loca-
²⁴⁶ tions. Future studies may address this error by modeling the two belts as a superposition
²⁴⁷ of two distinct/separable flux curves.

3. Plasmapause and Outer Belts

248 In this section we quantify the spatial relationship between the plasmapause and outer
 249 belts. We first compare the boundary locations extracted in the previous section, and
 250 then compare relativistic electron fluxes to cold plasma density.

3.1. Comparison of Boundary Locations

251 [Figure 5](#) compares REPT electron peaks (L_{peak}) and edges (L_{edge}) to the EMFISIS-
 252 derived plasmapause (L_P). Each plot is formatted the same as [Figure 4a](#), with the addition
 253 of the plasmapause (thick white line). Five energies are shown.

254 The energy-dependence of the two outer belts is evident in these plots: the electron
 255 population composing outer belt 1 is spectrally much harder than that of belt 2. Belt 1
 256 electrons have significant fluxes in the higher-energy channels, whereas belt 2 is absent
 257 above 2.6–3.4 MeV. This energy dependence is discussed further in [Section 5](#).

258 The spatial relationship between the plasmapause and these two outer belts is also
 259 evident. Outer belt 2 is located within one L^* shell of the time-dependent plasmapause.
 260 Outer belt 1 is generally deep inside the plasmapause, and its location is uncorrelated
 261 with the time-dependent plasmapause. This spatial relationship is further quantified in
 262 [Figure 6](#). We follow *O'Brien et al.* [2003] and compare the peak of the outer belt(s) with
 263 the plasmapause, though other previous studies have chosen the inner edge of the outer
 264 belt for comparison. In [Figure 6a](#) through [6e](#) are plotted the difference between the outer
 265 belt locations and the plasmapause, $\Delta L^* \equiv L_{\text{peak}} - L_P$, for five energies, and both outer
 266 belts. Outer belt 1 is given by the blue curve, and outer belt 2 is red. Where $\Delta L^* < 0$, the
 267 outer belt lies within the plasmapause. For each of these curves, the dashed line gives the

268 per-energy mean value ($\langle \Delta L^* \rangle$) during 15–20 January 2013. [Figure 6f](#) plots these mean
 269 values versus energy.

270 For this 5-day period, on average, outer belt 1 was well inside the plasmapause; $\langle \Delta L^* \rangle$
 271 exhibits a shallow drop from -1.3 to -1.8 with energy between 1.8 MeV and 7.7 MeV.
 272 Thus, the location of the peak flux in belt 1 seems weakly dependent on energy, but
 273 independent of the plasmapause location. In contrast, the location of outer belt 2 does
 274 appear to be correlated with the plasmapause. At all energies for which there is an outer
 275 belt 2, $|\langle \Delta L^* \rangle| \leq 0.5$.

3.2. Comparison of Fluxes and Densities

276 [Figure 7](#) plots relativistic electron flux (f) versus cold plasma density (n), at four
 277 selected energies, and during two selected time intervals (during which L_{peak} and L_{edge}
 278 locations were relatively steady). The blue data are for outer belt 1, and the red data
 279 are for belt 2. Flux data points are only plotted if their corresponding spin-averaged
 280 count rates were above 25 s^{-1} . Flux values were assigned to each belt (1 or 2) if their bin
 281 locations fell within the range $L_{\text{edge}} \leq L \leq L_{\text{peak}}$. Thus, these fluxes are from the region
 282 earthward of the peak, where $d \log f / d L^* > 0$.

283 For each energy the thick line gives an empirical linear fit to $\log f$ versus $\log n$, except
 284 for the 2.6 and 3.4 MeV plots for outer belt 2 that have too few points. The linear fit is
 285 weighted, using measurement errors of $C^{-0.5}$, where C is the count rate for each binned
 286 flux. Each plot is annotated (upper left corner) with its fit parameters. All fitted slopes
 287 are negative; i.e., electron fluxes earthward of each belt's peak are anti-correlated with
 288 cold plasma density.

289 An inverse relationship might be expected because the plasmasphere hosts a major loss
 290 term (hiss), and is generally spatially complementary with a major energization term
 291 (chorus). However, the comparison should be performed for a larger dataset to demon-
 292 strate statistical significance. Moreover, sampling points earthward of the peak may yield
 293 an inverse relationship in part because cold density generally falls with L . To test this
 294 factor, we repeated the above analysis for outer belt 1, at 1.8 and 2.1 MeV, for post-
 295 disturbance fluxes within the range $L_{\text{peak}} \leq L \leq L_{\text{edge}}$ (i.e., at the outer, negative flux
 296 gradient $d \log f/dL^* < 0$). The alternate calculation (not shown), which samples the
 297 outer edge of outer belt 1, rather than the inner edge, also exhibits an inverse relationship
 298 similar to that shown in Figure 7.

4. Global Context: PTP Model

299 In this section we use a model to provide global context for the local observations by the
 300 Van Allen Probes. The model is a plasmapause test particle (PTP) dynamic simulation
 301 that represents the plasmaspheric boundary as an ensemble of $E \times B$ -drifting particles,
 302 as described in more detail in earlier papers [Goldstein *et al.*, 2005a, 2014a]. The PTP
 303 simulation's electric field is driven by the solar wind E-field and Kp. The simulation run
 304 for the 15–20 January 2013 event was reported by Goldstein *et al.* [2014b].

305 Figure 8a plots the locations of Van Allen Probes A plasmapause encounters during
 306 15–20 January. The black line gives the plasmapause locations obtained from the EMFI-
 307 SIS binned densities by the automated algorithm (cf. Section 2.3). The blue line shows
 308 plasmapause locations encountered by a virtual satellite flying through the PTP simula-
 309 tion [Goldstein *et al.*, 2014b], also binned to match the time cadence and L^* resolution of
 310 the REPT spectrograms. The dashed lines give the averages for the EMFISIS and PTP

311 curves; these mean values agree to within $0.4 R_E$, which increases confidence that the
 312 global context provided by the simulation may be useful for the observations.

313 [Figure 8b](#) shows the magnetic local time (MLT) extent of the plasmasphere versus
 314 time, at $L = 5$, as follows. At each time (horizontal axis), the vertical dimension is
 315 colored green to indicate the region inside the plasmapause. For example, snapshots at
 316 two selected times are given in [Figure 8d](#). The first snapshot is from 2210 UT on 17
 317 January. At $L = 5$ (dashed blue line), the model plasmasphere region is roughly between
 318 noon (1200 MLT) and dusk (1800 MLT). This time (2210 UT, 17 January) is indicated by
 319 a black vertical line in [Figure 8b](#). Along this line the green region spans 1200–1800 MLT.
 320 The second snapshot (0135 UT, 19 January, cf. [Figure 8c](#)) has a more complicated
 321 plasmapause shape with a residual wrapped plume [Goldstein et al., 2014b], leading to
 322 several regions of green along the corresponding black vertical line in the MLT-versus-time
 323 plot.

324 We now introduce a new plasmaspheric index, the fraction inside the plasmasphere
 325 (F_p). The F_p index is simply the fraction of a circular drift orbit that lies within the
 326 plasmasphere, which because of the dynamically-changing plasmapause shape, generally
 327 depends both on L -value and time. More earthward circles may lie entirely inside the
 328 plasmasphere ($F_p = 1$), whereas farther out, circular drift orbits might only cross a plume
 329 ($F_p < 1$) or no cold plasma at all ($F_p = 0$). The blue curve of [Figure 8b](#) gives the F_p
 330 index for $L = 5$, versus time. Again using the example at 2210 UT on 17 January (black
 331 vertical line), the cold plasma at $L = 5$ spanned 1200–1800 MLT, i.e., 6 MLT hours, or
 332 $F_p = 0.25$.

333 The model-derived F_p index is intended to provide a metric of the per- L^* , globally-
 334 integrated opportunity for losses in the cold plasma. For relativistic electrons with nearly
 335 circular drift orbits, the F_p index measures the fraction of their path within the plasma-
 336 sphere; for constant drift speed this would also be the fraction of their time. [Figure 8c](#)
 337 plots the F_p index versus L^* and time. Dark green gives $F_p \sim 1$. White regions are
 338 where electrons spend approximately half of their orbit inside the plasmasphere. Blue
 339 regions show $F_p < 0.4$. The PTP model's virtual-satellite plasmapause (black curve)
 340 approximately follows the general shape of the $F_p \geq 0.6$ region. Because F_p is a global in-
 341 dex, correspondence with the black curve means that the simulated "local" plasmapause
 342 encounters (measured along the virtual-satellite trajectory) are a reasonable proxy for
 343 the global plasmasphere. Since the EMFISIS-derived local plasmapause locations agree
 344 (within $0.4 R_E$) with these simulated local crossings, these observed locations are also (by
 345 the transitive relation) good proxies for the global plasmasphere, for this event.

346 [Figure 9](#) plots relativistic electron fluxes versus the F_p plasmaspheric index, at two
 347 selected energies, and during two selected time intervals. As for [Figure 7](#), flux values were
 348 assigned to belt 1 or 2 from the region earthward of the peak ($d \log f / dL^* > 0$). For
 349 outer belt 1 (blue data), the locations earthward of the peak are almost entirely within
 350 the plasmasphere, i.e., $F_p = 1$; thus, the electron fluxes are uncorrelated with F_p . In
 351 contrast, in outer belt 2 flux drops with increasing F_p . Note that because data fall into
 352 two distinct groups above and below the value $F_p \sim 0.4$, two slightly different linear fits
 353 are shown for belt 2. The solid lines are the fits for the range $F_p = [0.4, 0.99]$; these fit
 354 parameters annotate the upper left corner. The dashed lines give fits for a wider range
 355 $F_p = [0.15, 0.99]$, which yield slopes of -0.4 and -0.5 respectively for 1.8 and 2.1 MeV.

³⁵⁶ Both these ranges yield negative slopes, implying that electrons on orbits with greater
³⁵⁷ plasmaspheric overlap experience greater cumulative scattering losses.

³⁵⁸ The F_p index thus has two possible uses. First, it provides a way to determine if in situ
³⁵⁹ measurements may be used as a proxy for the global region of cold plasma encountered
³⁶⁰ by relativistic electrons. Second, if boundary locations are available but densities are not,
³⁶¹ F_p may help measure (e.g., as a negative slope in Figure 9) the net, time-integrated effect
³⁶² of losses inside the plasmasphere.

5. Interpretation

³⁶³ Our analysis of the 15–20 January 2013 time interval confirms the preliminary conclu-
³⁶⁴ sion [Baker *et al.*, 2013; Hudson *et al.*, 2014; Baker *et al.*, 2014] that the spatial relationship
³⁶⁵ between the plasmapause and outer belt region may be more complicated than the sim-
³⁶⁶ ple picture in which the outer belt peak lines up with the plasmapause [O'Brien *et al.*,
³⁶⁷ 2003; Goldstein *et al.*, 2005c; Li *et al.*, 2006]. We found a strongly location- and energy-
³⁶⁸ dependent response. Prior to the 17 January disturbance, there were two outer zones of
³⁶⁹ relativistic electrons, which we labeled belt 1 and belt 2. Belt 1 consisted of higher-energy
³⁷⁰ (> 3 MeV) electrons deep inside the plasmasphere. Belt 2 was lower-energy (< 3 MeV)
³⁷¹ electrons whose peak location roughly (within $0.5 R_E$) followed the plasmapause. After
³⁷² the disturbance the partially-depleted belt 1 flux decayed, whereas belt 2 flux recovered
³⁷³ after the factor-of-100 disturbance-time dropout. As discussed in the following sections,
³⁷⁴ outer belt 2 bears the typical relationship to the plasmapause in which the electron peak
³⁷⁵ is correlated with the plasmapause, whereas the dynamics of outer belt 1 is indicative of
³⁷⁶ the more atypical storage-ring configuration.

5.1. Outer Belt 1 (Storage Ring)

377 The presence of belt 1 deep within the plasmasphere represents the more atypical
 378 storage-ring configuration, i.e., an energetic outer belt with significant plasmaspheric over-
 379 lap on long time scales. How do we explain the belt 1 observations? Our interpretation
 380 is that the dynamics of outer belt 1 during 15–20 January resulted from the combined
 381 influence of at least two phenomena: plasmaspheric hiss before and after the disturbance,
 382 and modest (though rapid) losses during the disturbance.

383 In the pre-disturbance outer belt 1, the electron loss timescales are consistent with
 384 those of plasmaspheric hiss. [Figure 10a](#) depicts the time development of electron flux for
 385 selected energies spanning 1.8–6.3 MeV, at $L^* = 3.5$; i.e., at an L^* value representative
 386 of outer belt 1 before the disturbance. At each energy the log flux before day 17 is fitted
 387 to an $\exp(-t/\tau)$ dependence; this fit is given in the log-scaled plot by the thick straight
 388 line. The fitted values of the loss timescale τ (cf. annotation to the left of each flux
 389 curve) increase with energy, from 10 d at 1.8 MeV to 129 d at 6.3 MeV. Thus, the decay
 390 before the disturbance was stronger at lower energies, at $L^* = 3.5$. [Figure 10b](#) repeats
 391 this loss timescale calculation at binned L^* values between 3 and 5. Negative τ values
 392 found outside of $L^* \sim 4.2$ or so (i.e., in outer belt 2) are not plotted. At each energy
 393 the electron lifetimes vary by a factor of ~ 4 . Nonetheless, the lifetime curves for each L^*
 394 value rises steeply with energy, from 8–33 d at 1.8 MeV to 45–130 d at 6.3 MeV. These
 395 electron lifetimes (including their energy dependence) are very consistent with theoretical
 396 predictions of hiss loss timescales at $L = 3.2$ by *Ni et al.* [2013]. *Meredith et al.* [2007]
 397 also predicted hiss lifetimes (at $L = 3.5$ and for AE<100 nT) similar to our measured
 398 lifetimes: 20 d (> 100 d) for 2 MeV (5 MeV).

399 Electron loss timescales in the post-disturbance outer belt 1 are also consistent with
400 those of plasmaspheric hiss. As was done for the pre-disturbance data, in [Figure 10c](#) at
401 each energy the log flux (after day 18) is fitted to an $\exp(-t/\tau)$ dependence. The resultant
402 electron lifetimes increase with energy, from 10 d at 1.8 MeV to 73 d at 6.3 MeV. [Figure 10d](#)
403 plots the electron lifetimes versus energy and L^* , and as with the pre-disturbance data
404 these lifetimes are very consistent with those for plasmaspheric hiss.

405 EMFISIS observations of plasmaspheric hiss throughout the 5-day interval support this
406 interpretation. [Figure 11](#) plots an order-of-magnitude estimate of hiss wave power (cf.
407 [Appendix A2](#)) versus time for 15–20 January. The thick gray line plots the peak value
408 per 9-h interval; purple number labels indicate power levels (in $nT^2 \times 10^4$), rounded to
409 one significant digit. Significant hiss wave power was observed both before and after the
410 17 January disturbance, though the peak wave power was generally higher afterward; the
411 per-day maximum on day 17 was a factor of ~ 5 higher than the previous day. The red
412 numbers at the top of the plot indicate the corresponding hiss amplitudes (in pT), which
413 are in the correct range to be responsible for the observed electron loss timescales of both
414 [Figure 10b](#) (before the disturbance) and [Figure 10d](#) (after).

415 As shown in [Figure 12](#), belt 1 exhibited only a modest flux dropout during the distur-
416 bance, strongest in the ~ 3 –5 MeV energy range. This dropout is discussed in [Section 5.2](#).
417 Outer belt 1 observations are thus consistent with the behavior and properties of a
418 storage ring [Baker *et al.*, 2013]: a long-lived, energetic belt deep inside the plasmasphere.
419 Prior to the disturbance it was already slowly decaying at an energy-dependent rate
420 consistent with scattering by hiss; after the disturbance-time depletion it continued to
421 decay at a nearly identical rate. The peak electron fluxes, at several MeV, have lifetimes

422 of weeks (or even months). Left undisturbed, as for example during prolonged intervals
 423 of relatively quiet conditions with no significant plasmapheric erosion, these storage rings
 424 can persist for a long time, as previously noted by *Baker et al.* [2014]. Indeed in the 1.5
 425 months preceding our case study (i.e., between 1 December 2012 and 16 January 2013),
 426 very quiet conditions prevailed with $\text{Dst} > -30 \text{ nT}$. Extra shielding may be provided by
 427 the plasmasphere [*Turner et al.*, 2014a] during isolated solar wind pressure increases.

5.2. Disturbance-Time Losses

428 The flux dropouts recorded after the 17 January disturbance are consistent with an
 429 outer magnetospheric loss process. Disturbance-related dropouts were large outside the
 430 plasmapause, and small inside.

431 [Figure 12b](#) shows flux versus time at selected energies, at $L^* = 4.7$, i.e., in outer belt
 432 2, and outside the plasmapause ($L_P \approx 4.4$ at the time of the belt 2 dropout). After
 433 the disturbance, fluxes at $L^* = 4.7$ dropped by as much as two orders of magnitude.
 434 [Figure 12a](#) shows flux at $L^* = 3.5$, i.e., in outer belt 1, and inside the plasmapause
 435 ($L_P \approx 3.8$ at the time of the belt 1 dropout). At this lower L^* value the fluxes dropped
 436 by a more modest factor of $< 2\text{--}4$ at all energies, and the dropouts happened later than
 437 at higher L^* . To quantify the magnitude of the dropouts more systematically, [Figures 12c](#)
 438 and [12d](#) plot the dropout flux ratio R_D for outer belts 1 and 2 respectively, versus energy
 439 and L^* (the latter being color-coded). Here R_D is defined as the ratio of pre-disturbance
 440 to post-disturbance flux. There is a clear progression from larger dropouts at higher L^* to
 441 smaller dropouts at more earthward locations. There is also a clear energy dependence.
 442 For outer belt 1 at $L^* < 4.2$, the magnitude of the dropout was generally largest in the
 443 range $\sim 3\text{--}5 \text{ MeV}$. For outer belt 2 at $L^* \geq 4.2$, the magnitude of the dropout decreased

444 with energy. As discussed below (cf. [Section 5.4](#)), in the REPT energy range outer belts
445 1 and 2 peaked at approximately 3–5 MeV and 1.8 MeV respectively. Thus, for each belt
446 the dropout was largest for energies in the vicinity of the flux-versus-energy peak.

447 What loss process(es) might yield these spatial and energy dependences? One candidate
448 is magnetopause shadowing. Strong losses in the outer magnetosphere are consistent
449 with outward radial diffusion driven by magnetopause shadowing losses that create a
450 steep gradient in phase space density [*Shprits et al.*, 2006]. Partial shielding by the
451 plasmasphere is also consistent with this mechanism [*Turner et al.*, 2014a]. Next we
452 consider the adiabatic (Dst) response. We do not herein convert flux to phase space
453 density in terms of the adiabatic invariants, as is necessary to quantify the contribution
454 of the adiabatic effect. However, it is possible that some of the outer belt 2 dropout was
455 caused by the adiabatic effect, based on the fact that outer belt 2 recovered to nearly
456 the pre-disturbance flux level within one day (2.5 orbits), which is the same time frame
457 as the recovery to pre-disturbance Dst levels from the moderate minimum of ~ -50 nT.
458 On the other hand, outer belt 1 did not recover at all; after the disturbance, belt 1
459 decayed from its post-dropout level (as described above). Moreover, BARREL balloon
460 observations indicate electron precipitation (i.e., actual losses, as opposed to adiabatic
461 variation) occurred during 17–19 January 2013 [*Li et al.*, 2014b; *Woodger et al.*, 2015;
462 *Blum et al.*, 2015]. Wave observations during the disturbance suggest EMIC waves may
463 have been responsible for at least some of these losses [*Li et al.*, 2014b; *Blum et al.*, 2015].
464 Lastly, we consider chorus waves. [Figure 13](#) plots an order-of-magnitude estimate of chorus
465 wave power versus time for 15–20 January, derived from EMFISIS wave observations
466 (cf. [Appendix A3](#)). Chorus waves were observed along the Van Allen Probes A orbit

467 beginning at about 1800 UT on 17 January, i.e., 4.5 hours after the 1330 UT disturbance
 468 onset (solid black vertical line). After 1800 UT, wave power peaked at 10^{-3} – 10^{-1} nT² (i.e.,
 469 10^3 – 10^5 pT²). *Shprits et al.* [2007] estimated that for chorus of this intensity, >1 MeV
 470 electrons have loss timescales of >1 day. Though there may very well have been chorus
 471 wave power at other locations (i.e., not along the satellite orbit), the few-hour timescale
 472 for the flux dropout of outer belt 2 (Figure 12b) suggests chorus is not the main loss
 473 mechanism at work.

5.3. Outer Belt 2 Dynamics

474 The correlation between the peak of outer belt 2 and the plasmapause follows the typical
 475 relationship found in pre-Van-Allen-Probes studies (discussed earlier). This plasmapause-
 476 outer belt correspondence is usually attributed to the interplay of both acceleration and
 477 loss processes. As the plasmasphere is eroded, the region where loss mechanisms (hiss,
 478 EMIC) are effective may likewise shrink. At the same time, acceleration mechanisms
 479 outside the plasmapause (chorus waves, Pc5 ULF waves) may also migrate earthward
 480 during erosion events. For example, following the disturbance-time dropout of outer belt
 481 2 (Section 5.2), outer belt 2 recovered, essentially regaining its pre-disturbance flux levels
 482 within \sim 24 hours (cf. Figure 12b). The recovered belt 2 peak was within $0.5 R_E$ of
 483 the plasmapause. One likely mechanism for this recovery is local acceleration by chorus
 484 waves just outside the plasmapause. As noted above, moderate-to-strong (10^{-3} – 10^{-1} nT²)
 485 chorus wave power was observed by Van Allen Probes A after \sim 1800 UT on 17 January
 486 (cf. Figure 13). From theoretical calculations by *Summers et al.* [2007], at $L^* = 4.5$
 487 and for wave power of 0.01 nT² (in the middle of the range of chorus power observed
 488 for our event by Van Allen Probes), the minimum acceleration timescale for > 1 MeV

489 particles is indeed on the order of a day. However, such a short (\sim 24-hour) recovery time
 490 as was observed after the 17 January disturbance is theoretically predicted to result from
 491 strong chorus wave activity. Given that the average chorus wave power during the 17–
 492 18 January recovery was only moderate (although there were intervals of intense chorus;
 493 cf. [Figure 13](#)), there was probably at least a partial contribution from the adiabatic effect
 494 and/or energization by ultra-low-frequency (ULF) waves [Hudson *et al.*, 1995; Li *et al.*,
 495 1998; Elkington *et al.*, 2003; Horne *et al.*, 2007]. Both chorus and ULF waves are believed
 496 to be strongly affected (in terms of wave intensity and propagation) by the evolving cold
 497 plasma.

498 Just before the disturbance, outer belt 2 dynamics was not strongly coupled to that
 499 of the plasmasphere. In the \sim 12 hours preceding the convection increase of 1330 UT on
 500 17 January, the 1.8–2.1-MeV electrons in outer belt 2 migrated inward (and increased in
 501 flux), from $L^* \approx 5.5$ to $L^* \approx 4.7$ (cf. [Figure 5a](#) and [Figure 5b](#)). This inward migration was
 502 probably caused by the elevated solar wind pressure that began early on 17 January (cf.
 503 [Figure 1](#)). Some energization occurred as well; the pressure enhancement was accompanied
 504 by a sharp increase in fluxes of 2.6–3.4 MeV electrons at $L^* \approx 4.7$, whereas prior to the
 505 pressure increase belt 2 fluxes were not significant at these energies (cf. [Figure 5c](#) and
 506 [Figure 5d](#)). During this belt 2 inward migration, the plasmapause instead moved outward
 507 (cf. [Figure 5a](#)).

5.4. Energetics of Outer Belts 1 and 2

508 [Figure 14](#) plots electron flux versus energy and L^* at two selected times before and after
 509 the disturbance. With a local flux maximum at \sim 3–5 MeV, belt 1 was more energetic
 510 than belt 2, whose flux (in the REPT energy range) decreased steeply with energy above

511 1.8 MeV. Figure 14 shows that the net effect of the day 17 disturbance was to reduce the
 512 flux of < 4 MeV electrons in outer belt 1, and move both belts inward, as follows. After day
 513 18, outer belt 1 (partially depleted at all energies) decayed at rates favoring higher losses
 514 at lower energies. Belt 1 experienced a net migration from an energy-averaged location of
 515 $L^* = 3.4$ to $L^* = 3.2$ ($\Delta L^* = -0.2$). Belt 2 also moved inward, from $L^* = 5.1$ to $L^* = 4.6$
 516 ($\Delta L^* = -0.5$), but recovered its pre-event flux and flux-versus-energy distribution.

6. Summary

517 In this paper we have studied an atypical outer belt morphology during a five-day
 518 period, 15–20 January 2013, by comparing the locations of relativistic electron peaks to the
 519 plasmapause. At the start of the interval there were two pre-existing outer belts, a stable
 520 zone deep within the plasmasphere (belt 1) and a more dynamic zone near the plasmapause
 521 (belt 2). Belt 2 was emptied out during the disturbance, possibly by magnetopause
 522 shadowing with some contribution from the adiabatic effect, but was restored within
 523 24 hours. Belt 1 was slowly decaying on hiss timescales before the disturbance, and
 524 suffered only a modest dropout, perhaps owing to shielding from radial diffusion by the
 525 plasmasphere. After the disturbance, the partially-depleted belt 1 continued to decay at
 526 the same rate as before.

527 We quantified the spatial relationship between the plasmapause and outer belt electrons
 528 for the 15–20 January interval, by comparing the locations of relativistic electron peaks in
 529 both belts to the plasmapause. We found that the stable, more energetic outer belt 1 was
 530 (on average) between 1 and 2 R_E inside the plasmapause, with deeper penetration into
 531 cold plasma for higher energies. The dynamic outer belt was (on average) within 0.5 R_E
 532 of the moving plasmapause. Relativistic electron fluxes earthward of each belt's peak were

533 found to be anti-correlated with cold plasma density, implying that electrons immersed
534 in denser plasma experience greater cumulative scattering losses (or lesser cumulative
535 acceleration).

536 To provide global context for our data analysis, we used a plasmapause test particle
537 (PTP) simulation. Virtual satellite crossings of the simulated plasmapause agree (on
538 average) with actual crossings to within $0.4 R_E$. We introduced a new plasmaspheric
539 index F_p , the fraction of a circular drift orbit inside the plasmapause. Based on agreement
540 between regions of high F_p and the virtual satellite crossings we concluded that the locally-
541 measured plasmapause is (for this event) a good proxy for the per- L^* , globally-integrated
542 opportunity for losses in the cold plasma.

543 Our analysis of the 15–20 January 2013 time interval confirms that the spatial rela-
544 tionship between the plasmapause and outer belt region may be more complicated than
545 was generally believed before the Van Allen Probes mission. This single case study is the
546 first step in determining and understanding that complexity. The next step will require a
547 systematic study such as that of *Li et al.* [2006], but using Van Allen Probes data. The
548 automated techniques used herein (to obtain electron peaks and edges, and plasmapause
549 locations) lend themselves to a more systematic, statistical study using a larger dataset.
550 Extending the energy range to lower energies is also necessary to understand more fully
551 the role of hiss.

Appendix A: EMFISIS Wave Data Analysis

552 In this appendix we describe how Van Allen Probes EMFISIS wave data are analyzed to
553 obtain electron number density, and identify plasmaspheric hiss. The former is obtained

554 from the High Frequency Receiver (HFR), and the latter from the Waveform Receiver
 555 (WFR) [Kletzing *et al.*, 2013].

A1. Electron Number Density

556 This subsection is a brief description of how EMFISIS plasma wave data are analyzed
 557 to obtain electron number density. A more complete description is contained in *Goldstein*
 558 *et al.* [2014b].

559 Electron number density is obtained from EMFISIS HFR data as shown in [Figure A.1a](#).
 560 For each HFR spectrogram, the upper hybrid resonance (UHR) line [Mosier *et al.*, 1973]
 561 is manually identified, and the electron plasma frequency (f_{pe}) is assumed to lie at the
 562 UHR lower edge. Values of f_{pe} are extracted manually, using the CURSOR routine of
 563 the Interactive Data Language (IDL). Each manually-clicked point is reassigned to the
 564 center of the nearest pixel, yielding an extraction binned to the UT cadence and frequency
 565 resolution of the HFR. These plasma frequencies are converted to number density using
 566 the standard formula $n_e(\text{cm}^{-3}) = (f_{pe}/8979.49\text{Hz})^2$, as shown in [Figure A.1b](#). *Goldstein*
 567 *et al.* [2014b] showed that these manually-extracted n_e values agreed with those obtained
 568 using a semi-automated algorithm, to within 9% on average, i.e., to within < 1 HFR
 569 frequency bin.

A2. Plasmaspheric Hiss

570 This subsection describes how plasmaspheric hiss signals are herein identified from EM-
 571 FISIS WFR data from 15–20 January 2013. Hiss is a broad-band electromagnetic wave
 572 observed in plasmaspheric plasma, in the ~ 100 Hz to ~ 1 kHz range and having peak am-
 573 plitudes in the ~ 100 pT range [Thorne *et al.*, 1973; Meredith *et al.*, 2004; Bortnik *et al.*,

574 2008]. Proper extraction from wave data requires wave polarization analysis to distin-
575 guish plasmaspheric hiss from other wave modes such as magnetosonic waves [Li *et al.*,
576 2015a]. In this appendix we present a fast, crude identification algorithm based solely on
577 the known average spectral properties (frequency range) and occurrence location (inside
578 the plasmasphere). The purpose of this hiss extraction is solely to obtain an order-of-
579 magnitude estimate of the hiss wave power for our case study of the 15–20 January 2013
580 event.

581 For illustrative purposes, an example spectrogram of WFR data ($B_u B_u$ component)
582 spanning 16–18 January is shown in [Figure A.2b](#). For this study, the WFR data are filtered
583 using a semi-automated algorithm, as follows. High-density regions are first determined
584 using extracted electron number densities ([Figure A.2a](#)). To filter out non-plasmaspheric
585 intervals, an ad-hoc upper frequency cutoff is assumed to follow $10n_e \times \text{cm}^3\text{Hz}$ ([Fig-
586 ure A.2b](#)). The lower frequency threshold is set to a nominal/conservative value of 100 Hz.
587 After this automatic filtering, a manual filter is applied to remove 21 specific UT in-
588 tervals: Day 15: 0000–0036, 0106–0200, 0254–0318, 0500–0818, 1030–1100, 1930–2000,
589 2200–0000; Day 16: 0000–0242, 0448–0500, 0612–1000, 1800–0000; Day 17: 0400–0718,
590 1630–0000; Day 18: 0130–1030, 1912–0000; Day 19: 0000–0248, 0430–0500, 0606–1130,
591 1312–1342, 1718–2000, 2242–0000. The resulting filtered WFR spectrogram is shown in
592 [Figure A.2b](#). The frequency-integrated wave power ([Figure A.2c](#)) is then calculated using
593 the INT_TABULATED routine in IDL. To check the extraction, our filtered spectrogram
594 of 16 January was compared to that obtained for the same day by Li *et al.* [2015a] using
595 a more rigorous wave polarization analysis. For 16 January our method agreed qualita-

596 tively with the wave-polarization method, well enough to provide an order-of-magnitude
 597 estimate for hiss wave power.

598 The wave power curve (Figure A.2c) is in the range expected for hiss (peak power
 599 $\sim 0.01 \text{ nT}^2$), although there may be a finite contribution from magnetosonic waves. The
 600 analysis demonstrates that plasmaspheric hiss was present in the plasmasphere both before
 601 and after the disturbance (1330 UT on 17 January; cf. Section 2.1). The peak per-day
 602 hiss wave power increased from $4 \times 10^{-3} \text{ nT}^2$ on day 16, to $2 \times 10^{-2} \text{ nT}^2$; i.e., by a factor
 603 of 5.

A3. Chorus

604 This subsection describes how chorus wave signals are analyzed from EMFISIS WFR
 605 data from 15–20 January 2013. Chorus is an intense, whistler-mode wave usually observed
 606 outside the plasmapause, in the ~ 0.1 – $0.8 f_{ce}$ range (where f_{ce} is the electron cyclotron
 607 frequency), whose wave power depends on the geomagnetic disturbance level [Burtis and
 608 Helliwell, 1969; Meredith et al., 2001; Li et al., 2013]. In this appendix we present our
 609 technique for identifying and estimating chorus wave power for our case study of the
 610 15–20 January 2013 event.

611 Figure A.3a shows an example EMFISIS WFR spectrogram ($B_u B_u$ component) span-
 612 ning 16–18 January, manually filtered to remove all but intervals containing significant
 613 chorus wave power. From this spectrogram, chorus magnetic wave power is calculated by
 614 numerically integrating the spectral density from the lower hybrid frequency to $0.8 f_{ce}$.
 615 The resultant wave power is shown in Figure A.3b. These local measurements (taken
 616 along the Van Allen Probes A orbital trajectory) indicate that moderate to strong chorus
 617 wave power was observed late in the day (after about 1800 UT) on 17 January 2013. Li

618 *et al.* [2013] demonstrated how electron data from low-altitude satellites can be analyzed
619 to infer global chorus wave amplitudes. We applied this technique (results not included
620 here) to find at least moderate chorus wave power, outside the Van Allen Probes observed
621 plasmapause at a range of MLT values spanning the postmidnight to prenoon sectors.

622 **Acknowledgments.**

623 Van Allen Probes data (and plasmapause test particle simulations) are publicly acces-
624 sible via the ECT and EMFISIS links at <http://rbspgway.jhuapl.edu/>. OMNI solar wind
625 data are accessible via <http://cdaweb.gsfc.nasa.gov/>. This work was supported primar-
626 ily by RBSP-ECT funding provided by JHU/APL contract 967399 under NASA's prime
627 contract NAS5-01072. Development of the FIDO index was supported by the NASA He-
628 liophysics Guest Investigator pro- gram under NNX07AG48G. The research at University
629 of Iowa was supported by JHU/APL contract 921647 under NASA prime contract NAS5-
630 01072. The analysis at UCLA was supported by NASA grant NNX15AF61G and AFOSR
631 award FA9550-15-1-0158. OMNI 5-min data, provided by J. H. King, N. Patatashvili at
632 AdnetSystems, NASA GSFC and CDAWeb, were derived from datasets produced by the
633 Wind and ACE missions.

References

634 Baker, D. N., J. B. Blake, L. B. Callis, J. R. Cummings, D. Hovestadt, S. Kanekal,
635 B. Klecker, R. A. Mewaldt, and R. D. Zwicki (1994), Relativistic electron acceleration
636 and decay time scales in the inner and outer radiation belts: SAMPEX, *Geophys. Res.*
637 *Lett.*, 21, 409.

638 Baker, D. N., S. G. Kanekal, X. Li, S. P. Monk, J. Goldstein, and J. L. Burch (2004),
639 An extreme distortion of the Van Allen belt arising from the ‘Halloween’ solar storm in
640 2003, *Nature*, *432*, 878, doi:10.1038/nature03116.

641 Baker, D. N., et al. (2013), A long-lived relativistic electron storage ring embedded in
642 Earth’s outer Van Allen Belt, *Science*, *340*, 186, doi:10.1126/science.1233518.

643 Baker, D. N., et al. (2013), The Relativistic Electron-Proton Telescope (REPT) Instru-
644 ment on Board the Radiation Belt Storm Probes (RBSP) Spacecraft: Characterization
645 of Earth’s Radiation Belt High-Energy Particle Populations, *Space Sci. Rev.*, *179*, 337–
646 381, doi:10.1007/s11214-012-9950-9.

647 Baker, D. N., et al. (2014), An impenetrable barrier to ultrarelativistic electrons in the
648 Van Allen radiation belts, *Nature*, *515*, 531, doi:10.1038/nature13956.

649 Blum, L. W., et al. (2015), Observations of coincident EMIC wave activity and duskside
650 energetic electron precipitation on 18-19 January 2013, *Geophys. Res. Lett.*, *42*, 5727,
651 doi:10.1002/2015GL065245.

652 Borovsky, J. E., R. H. W. Friedel, and M. H. Denton (2014), Statistically measuring the
653 amount of pitch angle scattering that energetic electrons undergo as they drift across
654 the plasmaspheric drainage plume at geosynchronous orbit, *J. Geophys. Res.*, *119*, 1814,
655 doi:10.1002/2013JA019310.

656 Bortnik, J., R. M. Thorne, and N. P. Meredith (2008), The unexpected origin of plasma-
657 spheric hiss from discrete chorus emissions, *Nature*, *452*, 62, doi:10.1038/nature06741.

658 Breneman, A. W., et al. (2015), Global-scale coherence modulation of radiation-belt elec-
659 tron loss from plasmaspheric hiss, *Nature*, *523*, 193, doi:10.1038/nature14515.

660 Burtis, W. J., and R. A. Helliwell (1969), Banded chorus: A new type of VLF radiation
661 observed in the magnetosphere by OGO 1 and OGO 3, *J. Geophys. Res.*, *74*, 3002,
662 doi:10.1029/JA074i011p03002.

663 Chappell, C. R. (1974), Detached plasma regions in the magnetosphere, *J. Geophys. Res.*,
664 *79*, 1861, doi:10.1029/JA079i013p01861.

665 Chappell, C. R., K. K. Harris, and G. W. Sharp (1970), The morphology of the bulge
666 region of the plasmasphere, *J. Geophys. Res.*, *75*, 3848, doi:10.1029/JA075i019p03848.

667 Clilverd, M. A., et al. (2015), Electron precipitation from EMIC waves: A case study from
668 31 May 2013, *J. Geophys. Res.*, *120*, 3618, doi:10.1002/2015JA021090.

669 Craven, P. D., D. L. Gallagher, and R. H. Comfort (1997), Relative concentration of He⁺
670 in the inner magnetosphere as observed by the DE 1 retarding ion mass spectrometer,
671 *J. Geophys. Res.*, *102*, 2279, doi:10.1029/96JA02176.

672 Denton, R. E., V. K. Jordanova, and B. J. Fraser (2014), Effect of spatial density variation
673 and O⁺ concentration on the growth and evolution of electromagnetic ion cyclotron
674 waves, *J. Geophys. Res.*, *119*, 8372, doi:10.1002/2014JA020384.

675 Drozdov, A. Y., Y. Y. Shprits, K. G. Orlova, A. C. Kellerman, D. A. Subbotin, D. N.
676 Baker, H. E. Spence, and G. D. Reeves (2015), Energetic, relativistic, and ultrarelativis-
677 tic electrons: Comparison of long-term VERB code simulations with Van Allen Probes
678 measurements, *J. Geophys. Res.*, *120*, 3574, doi:10.1002/2014JA020637.

679 Elkington, S. R., M. K. Hudson, and A. A. Chan (2003), Resonant acceleration and
680 diffusion of outer zone electrons in an asymmetric geomagnetic field, *J. Geophys. Res.*,
681 *108*, 1116.

682 Engebretson, M. J., et al. (2015), Van Allen probes, NOAA, GOES, and ground obser-
683 vations of an intense EMIC wave event extending over 12 h in magnetic local time, *J.*
684 *Geophys. Res.*, *120*, 5465, doi:10.1002/2015JA021227.

685 Fennell, J. F., S. G. Claudepierre, J. B. Blake, T. P. O'Brien, J. H. Clemons, D. N.
686 Baker, H. E. Spence, and G. D. Reeves (2015), Van Allen Probes show that the inner
687 radiation zone contains no MeV electrons: ECT/MagEIS data, *Geophys. Res. Lett.*, *42*,
688 1283, doi:10.1002/2014GL062874.

689 Fraser, B. J., and T. S. Nguyen (2001), Is the plasmapause a preferred source region
690 of electromagnetic ion cyclotron waves in the magnetosphere?, *J. Atmos. Solar-Terr.
691 Phys.*, *63*, 1225.

692 Fraser, B. J., H. J. Singer, M. L. Adrian, D. L. Gallagher, and M. F. Thomsen (2005), The
693 Relationship Between Plasma Density Structure and EMIC Waves at Geosynchronous
694 Orbit, in *Inner Magnetosphere Interactions: New Perspectives from Imaging*, edited by
695 J. L. Burch, M. Schulz, and H. Spence, p. 55, American Geophysical Union, Washington,
696 D. C.

697 Fraser, B. J., R. S. Grew, S. K. Morley, J. C. Green, H. J. Singer, T. M. Loto'aniu,
698 and M. F. Thomsen (2010), Storm time observations of electromagnetic ion cyclotron
699 waves at geosynchronous orbit: GOES results, *J. Geophys. Res.*, *115*, A05208, doi:
700 10.1029/2009JA014516.

701 Goldstein, J., and B. R. Sandel (2005), The global pattern of evolution of plasmaspheric
702 drainage plumes, in *Inner Magnetosphere Interactions: New Perspectives from Imaging*,
703 edited by J. L. Burch, M. Schulz, and H. Spence, p. 1, American Geophysical Union,
704 Washington, D. C., doi:10.1029/159GM01.

705 Goldstein, J., J. L. Burch, and B. R. Sandel (2005a), Magnetospheric model of subauroral
706 polarization stream, *J. Geophys. Res.*, 110, A09222, doi:10.1029/2005JA011135.

707 Goldstein, J., J. L. Burch, B. R. Sandel, S. B. Mende, P. C:son Brandt, and M. R. Hairston
708 (2005b), Coupled response of the inner magnetosphere and ionosphere on 17 April 2002,
709 *J. Geophys. Res.*, 110, A03205, doi:10.1029/2004JA010712.

710 Goldstein, J., S. G. Kanekal, D. N. Baker, and B. R. Sandel (2005c), Dynamic relation-
711 ship between the outer radiation belt and the plasmapause during March–May 2001,
712 *Geophys. Res. Lett.*, 32, L15104, doi:10.1029/2005GL023431.

713 Goldstein, J., M. F. Thomsen, and A. DeJong (2014a), In situ signatures of residual
714 plasmaspheric plumes, *J. Geophys. Res.*, 119, 4706, doi:10.1002/2014JA019953.

715 Goldstein, J., et al. (2014b), Simulation of Van Allen Probes plasmapause encounters, *J.*
716 *Geophys. Res.*, 119, 7464, doi:10.1002/2014JA020252.

717 Halford, A. J., B. J. Fraser, and S. K. Morley (2010), EMIC wave activity during geo-
718 magnetic storm and nonstorm periods: CRRES results, *J. Geophys. Res.*, 115, A12248,
719 doi:10.1029/2010JA015716.

720 Halford, A. J., B. J. Fraser, and S. K. Morley (2015), EMIC waves and plasmaspheric and
721 plume density: CRRES results, *J. Geophys. Res.*, 120, 1974, doi:10.1002/2014JA020338.

722 Hardman, R., M. A. Clilverd, C. J. Rodger, J. B. Brundell, R. Duthie, R. H. Holz-
723 worth, I. R. Mann, D. K. Milling, and E. Macusova (2015), A case study of elec-
724 tron precipitation fluxes due to plasmaspheric hiss, *J. Geophys. Res.*, 120, 6736, doi:
725 10.1002/2015JA021429.

726 Horne, R. B., R. M. Thorne, S. A. Glauert, J. M. Albert, N. P. Meredith, and R. R.
727 Anderson (2005), Timescale for radiation belt electron acceleration by whistler-model

728 chorus waves, *J. Geophys. Res.*, 110, doi:10.1029/2004JA010811.

729 Horne, R. B., R. M. Thorne, S. A. Glauert, N. P. Meredith, D. Pokhotelov, and O. Santolík
730 (2007), Electron acceleration in the Van Allen radiation belts by fast magnetosonic
731 waves, *Geophys. Res. Lett.*, 34, L17107, doi:10.1029/2007GL030267.

732 Horwitz, J. L., R. H. Comfort, P. G. Richards, C. M. O., C. R. Chappell, P. Anderson,
733 W. B. Hanson, and L. H. Brace (1990), Plasmasphere-ionosphere coupling 2. Ion com-
734 position measurements at plasmaspheric and ionospheric altitudes and comparison with
735 modeling results, *J. Geophys. Res.*, 95, 7949.

736 Hudson, M. K., A. D. Kotelnikov, X. Li, I. Roth, M. Temerin, J. Wygant, J. B. Blake,
737 and M. S. Gussenhoven (1995), Simulation of proton radiation belt formation during
738 the March 24, 1991 SSC, *Geophys. Res. Lett.*, 22, 291.

739 Hudson, M. K., S. R. Elkington, J. G. Lyon, V. A. Marchenko, I. Roth, M. Temerin,
740 J. B. Blake, M. S. Gussenhoven, and J. R. Wygant (1997), Simulation of radiation belt
741 formation during storm sudden commencements, *J. Geophys. Res.*, 102, 14087.

742 Hudson, M. K., D. N. Baker, J. Goldstein, B. T. Kress, J. Paral, F. R. Toffoletto,
743 and M. Wiltberger (2014), Simulated magnetopause losses and Van Allen Probe flux
744 dropouts, *Geophys. Res. Lett.*, 41, 1113, doi:10.1002/2014GL059222.

745 Jaynes, A. N., et al. (2014), Evolution of relativistic outer belt electrons during an ex-
746 tended quiescent period, *J. Geophys. Res.*, 119, 9558, doi:10.1002/2014JA020125.

747 Johnston, W. R., and P. C. Anderson (2010), Storm time occurrence of relativistic elec-
748 tron microbursts in relation to the plasmapause, *J. Geophys. Res.*, 115, A02205, doi:
749 10.1029/2009JA014328.

750 Kersten, T., R. B. Horne, S. A. Glauert, N. P. Meredith, B. J. Fraser, and R. S. Grew
751 (2014), Electron losses from the radiation belts caused by EMIC waves, *J. Geophys.*
752 *Res.*, 119, 8820, doi:10.1002/2014JA020366.

753 Kim, K.-C., D.-Y. Lee, and Y. Shprits (2015), Dependence of plasmaspheric hiss on solar
754 wind parameters and geomagnetic activity and modeling of its global distribution, *J.*
755 *Geophys. Res.*, 120, 1153, doi:10.1002/2014JA020687.

756 Kletzing, C. A., et al. (2013), The Electric and Magnetic Field Instrument Suite and Inte-
757 grated Science (EMFISIS) on RBSP, *Space Sci. Rev.*, 179, 127–181, doi:10.1007/s11214-
758 013-9993-6.

759 Lemaire, J. F., and K. I. Gringauz (1998), *The Earth's Plasmasphere*, Cambridge Univer-
760 sity Press, Cambridge.

761 Lepping, R. P., et al. (1995), The WIND Magnetic Field Investigation, *Space Sci. Rev.*,
762 71, 207.

763 Li, W., B. Ni, R. M. Thorne, J. Bortnik, J. C. Green, C. A. Kletzing, W. S. Kurth, and
764 G. B. Hospodarsky (2013), Constructing the global distribution of chorus wave intensity
765 using measurements of electrons by the POES satellites and waves by the Van Allen
766 Probes, *Geophys. Res. Lett.*, 40, 4526, doi:10.1002/grl.50920.

767 Li, W., Q. Ma, R. M. Thorne, J. Bortnik, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky,
768 and Y. Nishimura (2015a), Statistical properties of plasmaspheric hiss derived from Van
769 Allen Probes data and their effects on radiation belt electron dynamics, *J. Geophys.*
770 *Res.*, 120, 3393, doi:10.1002/2015JA021048.

771 Li, W., et al. (2014a), Quantifying hiss-driven energetic electron precipitation: A detailed
772 conjunction event analysis, *Geophys. Res. Lett.*, 41, 1085, doi:10.1002/2013GL059132.

773 Li, X., D. Baker, M. Temerin, G. D. Reeves, and R. D. Belian (1998), Simulation of dis-
774 persionsless injections and drift echoes of energetic electrons associated with substorms,
775 *Geophys. Res. Lett.*, 25, 3763.

776 Li, X., D. N. Baker, T. P. O'Brien, L. Xie, and Q. G. Zong (2006), Correlation between
777 the inner edge of outer radiation belt electrons and the innermost plasmapause location,
778 *Geophys. Res. Lett.*, 33, L14107, doi:10.1029/2006GL026294.

779 Li, X., R. S. Selesnick, D. N. Baker, A. N. Jaynes, S. G. Kanekal, Q. Schiller, L. Blum,
780 J. Fennell, and J. B. Blake (2015b), Upper limit on the inner radiation belt MeV electron
781 intensity, *J. Geophys. Res.*, 120, 1215, doi:10.1002/2014JA020777.

782 Li, Z., et al. (2014b), Investigation of EMIC wave scattering as the cause for the BARREL
783 17 January 2013 relativistic electron precipitation event: A quantitative comparison of
784 simulation with observations, *Geophys. Res. Lett.*, 41, 8722, doi:10.1002/2014GL062273.

785 Lorentzen, K. R., M. P. McCarthy, G. K. Parks, J. E. Foat, R. M. Millan, D. M. Smith,
786 R. P. Lin, and J. P. Treilhou (2000), Precipitation of relativistic electrons by interac-
787 tion with electromagnetic ion cyclotron waves, *J. Geophys. Res.*, 105(A3), 5381, doi:
788 10.1029/1999JA000283.

789 Loto'aniu, T. M., B. J. Fraser, and C. L. Walters (2005), Propagation of electromagnetic
790 ion cyclotron wave energy in the magnetosphere, *J. Geophys. Res.*, 110, A07214, doi:
791 10.1029/2004JA010816.

792 Loto'aniu, T. M., R. M. Thorne, B. J. Fraser, and D. Summers (2006), Estimating rela-
793 tivistic electron pitch angle scattering rates using properties of the electromagnetic ion
794 cyclotron wave spectrum, *J. Geophys. Res.*, 111, A04220.

795 Lyons, L. R., and R. M. Thorne (1973), Equilibrium structure of radiation belt electrons,
796 *J. Geophys. Res.*, *78*, 2142.

797 Lyons, L. R., R. M. Thorne, and C. F. Kennel (1972), Pitch-angle diffusion of radiation
798 belt electrons within the plasmasphere, *J. Geophys. Res.*, *77*, 3455.

799 Ma, Q., et al. (2015), Modeling inward diffusion and slow decay of energetic electrons in the
800 Earth's outer radiation belt, *Geophys. Res. Lett.*, *42*, 987, doi:10.1002/2014GL062977.

801 Mauk, B. H., N. J. Fox, S. G. Kanekal, R. L. Kessel, D. G. Sibeck, and A. Ukhorskiy
802 (2013), Science Objectives and Rationale for the Radiation Belt Storm Probes Mission,
803 *Space Sci. Rev.*, *179*, 3–27, doi:10.1007/s11214-012-9908-y.

804 Meredith, N. P., R. B. Horne, and R. R. Anderson (2001), Substorm dependence of
805 chorus amplitudes: Implications for the acceleration of electrons to relativistic energies,
806 *J. Geophys. Res.*, *106*, 13165–13178.

807 Meredith, N. P., R. M. Thorne, R. B. Horne, D. Summers, B. J. Fraser, and R. R. Anderson
808 (2003), Statistical analysis of relativistic electron energies for cyclotron resonance with
809 EMIC waves observed on CRRES, *J. Geophys. Res.*, *108*, doi:10/1029/2002JA009700.

810 Meredith, N. P., R. B. Horne, R. M. Thorne, D. Summers, and R. R. Anderson (2004),
811 Substorm dependence of plasmaspheric hiss, *J. Geophys. Res.*, *109*, A06209, doi:
812 10.1029/2004JA010387.

813 Meredith, N. P., R. B. Horne, S. A. Glauert, and R. R. Anderson (2007), Slot region
814 electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers, *J.*
815 *Geophys. Res.*, *112*, A08214, doi:10.1029/2007JA012413.

816 Meredith, N. P., R. B. Horne, T. Kersten, B. J. Fraser, and R. S. Grew (2014), Global
817 morphology and spectral properties of EMIC waves derived from CRRES observations,

818 *J. Geophys. Res.*, 119, 5328, doi:10.1002/2014JA020064.

819 Millan, R. M., and R. M. Thorne (2007), Review of radiation belt relativistic electron
820 losses, *J. Atmos. Solar-Terr. Phys.*, 69, 362, doi:10.1029/2004BK000104.

821 Millan, R. M., R. P. Lin, D. M. Smith, K. R. Lorentzen, and M. P. McCarthy (2002),
822 X-ray observations of MeV electron precipitation with a balloon-borne germanium spec-
823 trometer, *Geophys. Res. Lett.*, 29, 2194, doi:10.1029/2002GL015922.

824 Millan, R. M., R. P. Lin, D. M. Smith, and M. P. McCarthy (2007), Observation of
825 relativistic electron precipitation during a rapid decrease of trapped relativistic electron
826 flux, *Geophys. Res. Lett.*, 34, L10101, doi:10.1029/2006GL028653.

827 Mosier, S. R., M. L. Kaiser, and L. W. Brown (1973), Observations of noise bands aso-
828 ciated with the upper hybrid resonance by the IMP 6 radio astronomy experiment, *J.*
829 *Geophys. Res.*, 78, 1673.

830 Ni, B., J. Bortnik, R. M. Thorne, Q. Ma, and L. Chen (2013), Resonant scattering
831 and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss, *J.*
832 *Geophys. Res.*, 118, 7740, doi:10.1002/2013JA019260.

833 O'Brien, T. P., K. R. Lorentzen, I. R. Mann, N. P. Meredith, J. B. Blake, J. F. Fennell,
834 M. D. Looper, D. K. Milling, and R. R. Anderson (2003), Energization of relativistic
835 electrons in the presence of ULF power and MeV microbursts: Evidence for dual ULF
836 and VLF acceleration, *J. Geophys. Res.*, 108(A8), 1329, doi:10.1029/2003JA009784.

837 Ogilvie, K. W., et al. (1995), SWE, a comprehensive plasma instrument for the wind
838 spacecraft, *Space Sci. Rev.*, 71, 55.

839 Olsen, R. C., S. D. Shawhan, D. L. Gallagher, C. R. Chappell, and J. L. Green (1987),
840 Plasma observations at the earth's magnetic equator, *J. Geophys. Res.*, 92, 2385, doi:

841 10.1029/JA092iA03p02385.

842 Olson, W. P., and K. A. Pfitzer (1977), Magnetospheric magnetic field modeling, *Tech.*
843 *rep.*

844 Reeves, G. D. (2007), Radiation Belt Storm Probes: A New Mission for Space Weather
845 Forecasting, *Space Weather*, 5, S11002, doi:10.1002/2007SW000341.

846 Reeves, G. D., et al. (2016), Energy-dependent dynamics of kev to mev electrons in the in-
847 ner zone, outer zone, and slot regions, *J. Geophys. Res.*, 121, doi:10.1002/2015JA021569.

848 Rodger, C. J., A. T. Hendry, M. A. Clilverd, C. A. Kletzing, J. B. Brundell, and G. D.
849 Reeves (2015), High-resolution in situ observations of electron precipitation-causing
850 emic waves, *Geophys. Res. Lett.*, 42, 9633, doi:10.1002/2015GL066581.

851 Sazhin, S. S., and M. Hayakawa (1992), Magnetospheric chorus emissions: A review,
852 *Planet. Space Sci.*, 40, 681–697.

853 Shprits, Y. Y., R. M. Thorne, R. Friedel, G. D. Reeves, J. F. Fennell, D. Baker, and S. G.
854 Kanekal (2006), Outward radial diffusion driven by losses at magnetopause, *J. Geophys.*
855 *Res.*, p. submitted.

856 Shprits, Y. Y., N. P. Meredith, and R. M. Thorne (2007), Parameterization of radiation
857 belt electron loss timescales due to interactions with chorus waves, *Geophys. Res. Lett.*,
858 34, L11110, doi:10.1029/2006GL029050.

859 Shue, J.-H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer
860 (1997), A new functional form to study the solar wind control of the magnetopause size
861 and shape, *J. Geophys. Res.*, 102, 9497, doi:10.1029/97JA00196.

862 Spasojevic, M., Y. Y. Shprits, and K. Orlova (2015), Global empirical models
863 of plasmaspheric hiss using Van Allen Probes, *J. Geophys. Res.*, 120, 10, doi:

864 10.1002/2015JA021803.

865 Stone, E. C., A. M. Frandsen, R. A. Mewaldt, E. R. Christian, D. Margolies, J. F. Ormes,
866 and F. Snow (1998), The Advanced Composition Explorer, *Space Sci. Rev.*, 86, 1, doi:
867 10.1023/A:1005082526237.

868 Summers, D., and R. M. Thorne (2003), Relativistic electron pitch-angle scattering by
869 electromagnetic ion cyclotron waves during geomagnetic storms, *J. Geophys. Res.*,
870 108(A4), 1143, doi:10.1029/2002JA009489.

871 Summers, D., B. Ni, and N. P. Meredith (2007), Timescales for radiation belt electron
872 acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF
873 chorus, ELF hiss, and electromagnetic ion cyclotron waves, *J. Geophys. Res.*, 112,
874 A04207, doi:10.1029/2006JA011993.

875 Summers, D., Y. Omura, S. Nakamura, and C. A. Kletzing (2014), Fine structure of
876 plasmaspheric hiss, *J. Geophys. Res.*, 119, 9134, doi:10.1002/2014JA020437.

877 Thorne, R. M., and C. F. Kennel (1971), Relativistic electron precipitation during mag-
878 netic storm main phase, *J. Geophys. Res.*, 76, 4446.

879 Thorne, R. M., E. J. Smith, R. K. Burton, and R. E. Holzer (1973), Plasmaspheric hiss,
880 *J. Geophys. Res.*, 78, 1581, doi:10.1029/JA078i010p01581.

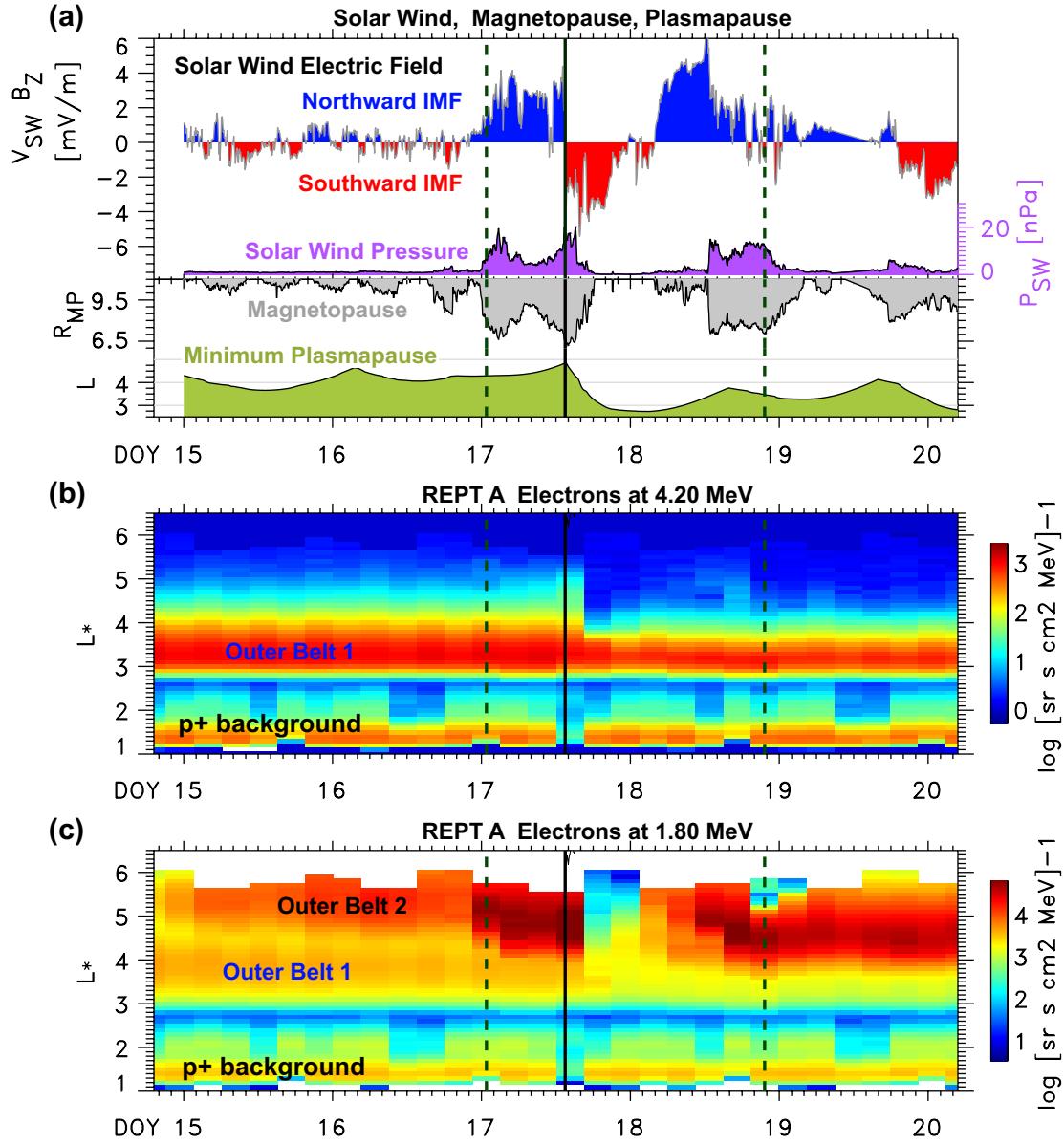
881 Turner, D. L., et al. (2014a), On the cause and extent of outer radiation belt losses
882 during the 30 September 2012 dropout event, *J. Geophys. Res.*, 119, 1530, doi:
883 10.1002/2013JA019446.

884 Turner, D. L., et al. (2014b), Competing source and loss mechanisms due to wave-particle
885 interactions in Earth's outer radiation belt during the 30 September to 3 October 2012
886 geomagnetic storm, *J. Geophys. Res.*, 119, 1960, doi:10.1002/2014JA019770.

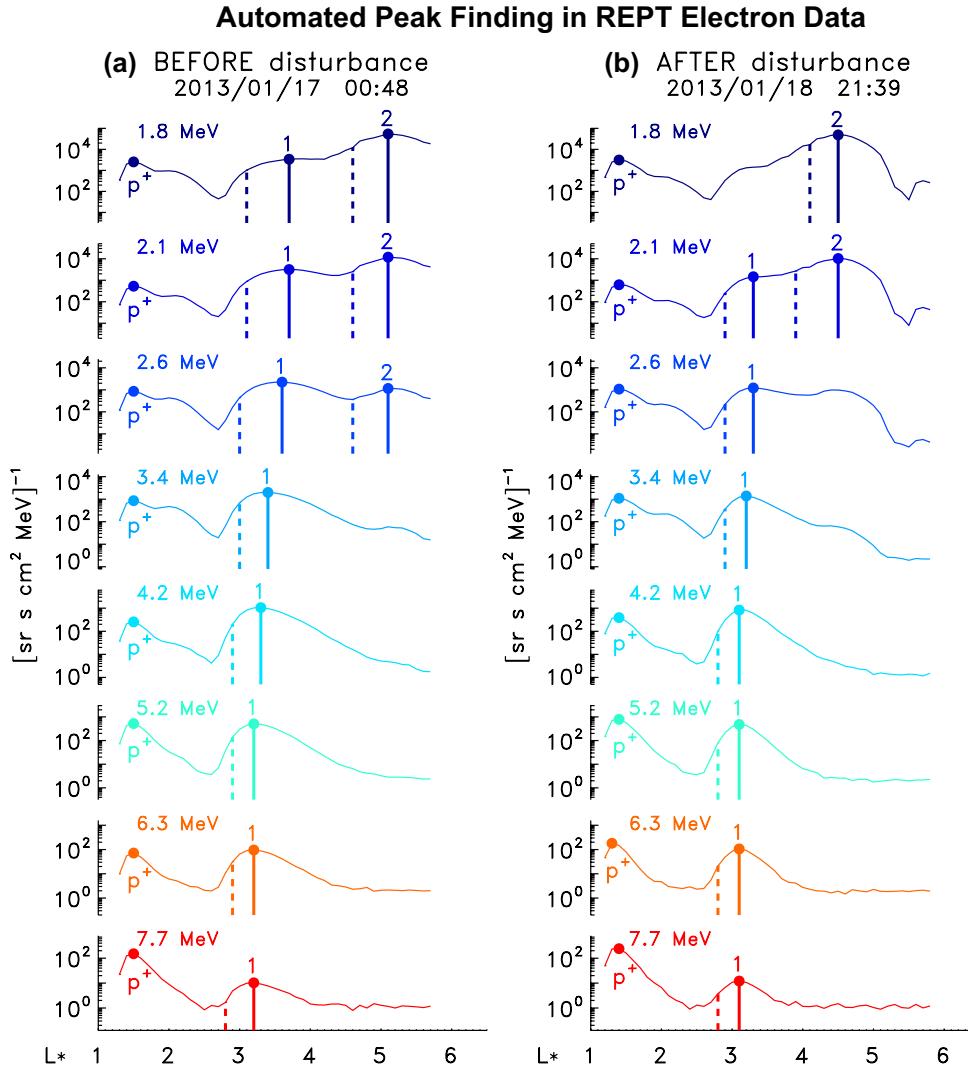
887 Ukhorskiy, A. Y., M. I. Sitnov, R. M. Millan, B. T. Kress, J. F. Fennell, S. G. Claudepierre,
888 and R. J. Barnes (2015), Global storm time depletion of the outer electron belt, *J.*
889 *Geophys. Res.*, *120*, 2543, doi:10.1002/2014JA020645.

890 Usanova, M. E., et al. (2014), Effect of EMIC waves on relativistic and ultrarelativistic
891 electron populations: Ground-based and Van Allen Probes observations, *Geophys. Res.*
892 *Lett.*, *41*, 1375, doi:10.1002/2013GL059024.

893 Van Allen, J. A., and L. A. Frank (1959), Radiation around the Earth to a radial distance
894 of 107,400 km, *Nature*, *183*, 430.


895 Wang, D., et al. (2015), Statistical characteristics of EMIC waves: Van Allen Probe
896 observations, *J. Geophys. Res.*, *120*, 4400, doi:10.1002/2015JA021089.

897 Woodger, L. A. (2012), Investigating EMIC waves as a precipitation mechanism for rela-
898 tivistic electrons, Ph.D. thesis, Dartmouth College, Hanover, NH.


899 Woodger, L. A., A. J. Halford, R. M. Millan, M. P. McCarthy, D. M. Smith, G. S. Bowers,
900 J. G. Sample, B. R. Anderson, and X. Liang (2015), A summary of the BARREL
901 campaigns: Technique for studying electron precipitation, *J. Geophys. Res.*, *120*, 4922,
902 doi:10.1002/2014JA020874.

903 Yu, J., L. Y. Li, J. B. Cao, Z. G. Yuan, G. D. Reeves, D. N. Baker, J. B. Blake, and
904 H. Spence (2015a), Multiple loss processes of relativistic electrons outside the heart of
905 outer radiation belt during a storm sudden commencement, *J. Geophys. Res.*, *120*, 10,
906 doi:10.1002/2015JA021460.

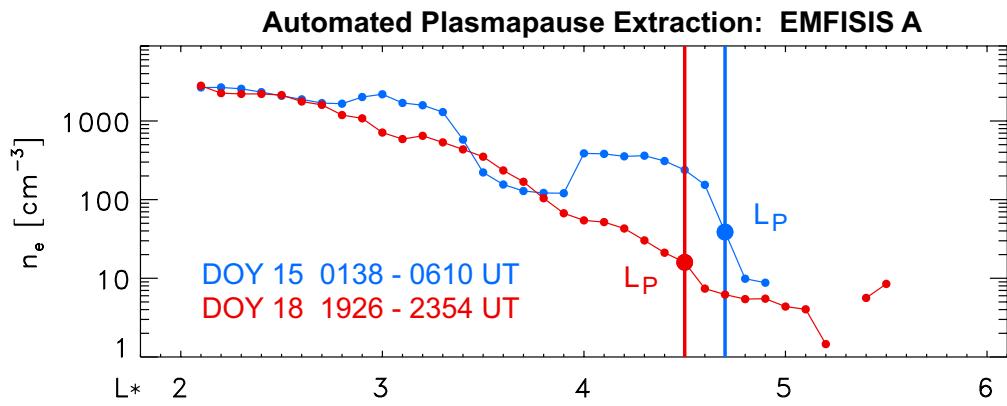
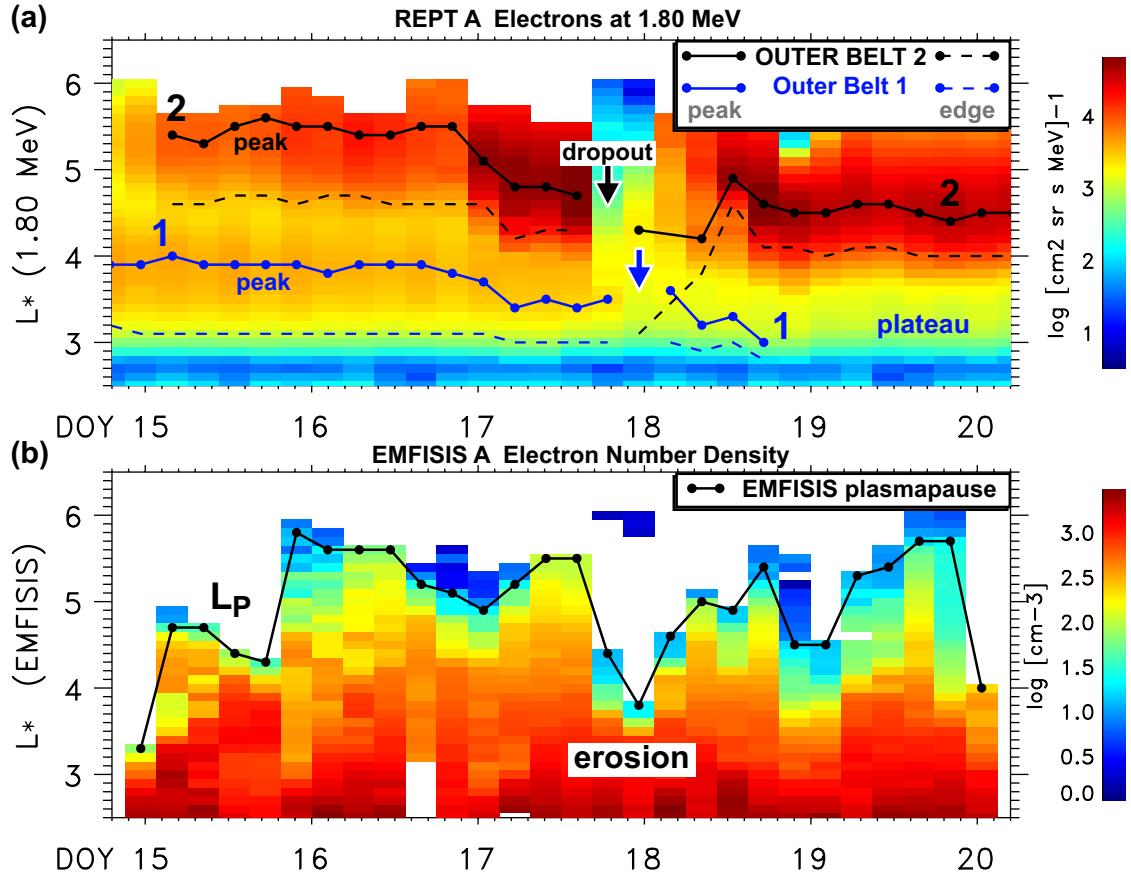
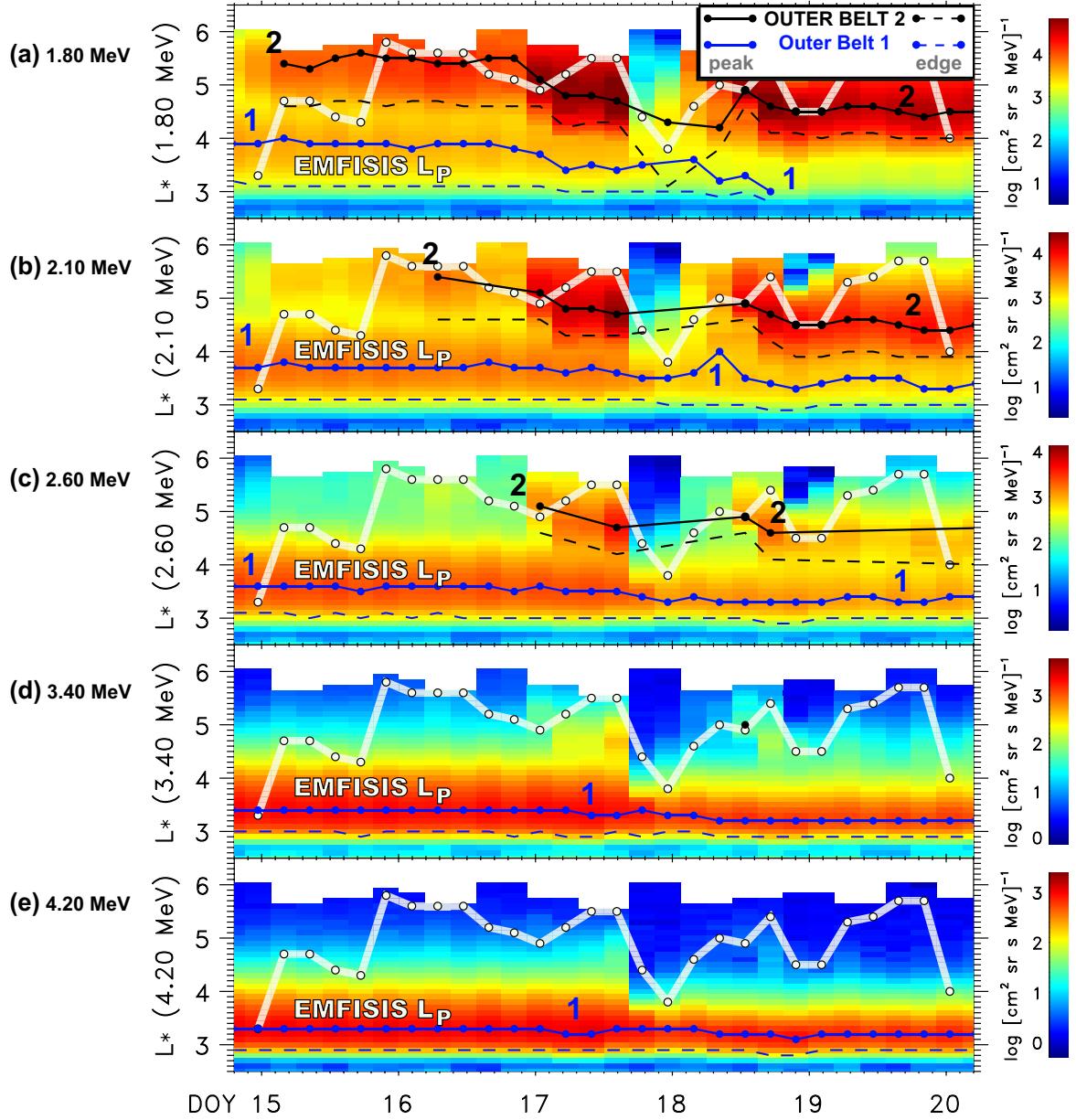
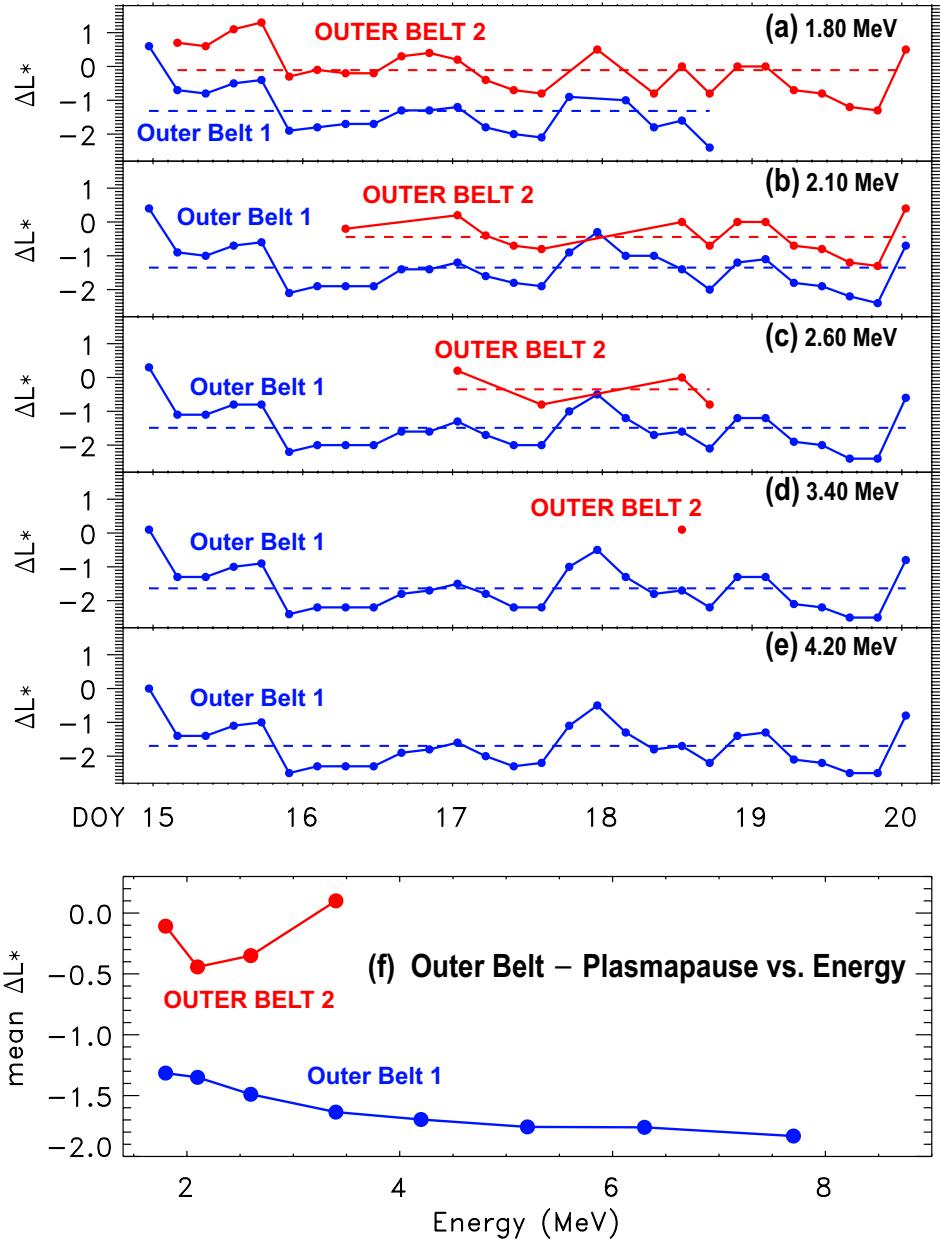
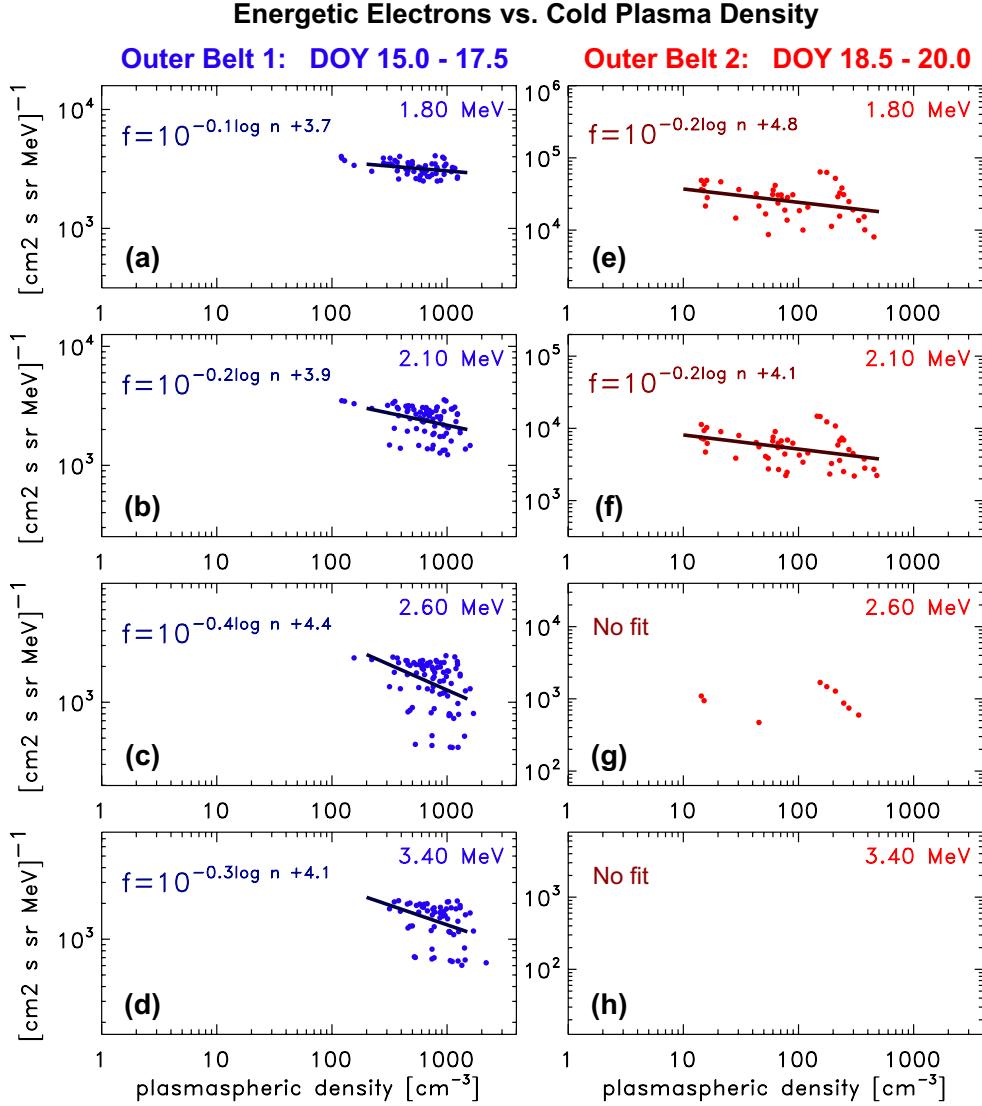

907 Yu, X., et al. (2015b), In situ observations of EMIC waves in O⁺ band by the Van Allen
908 Probe A, *Geophys. Res. Lett.*, *42*, 1312, doi:10.1002/2015GL063250.

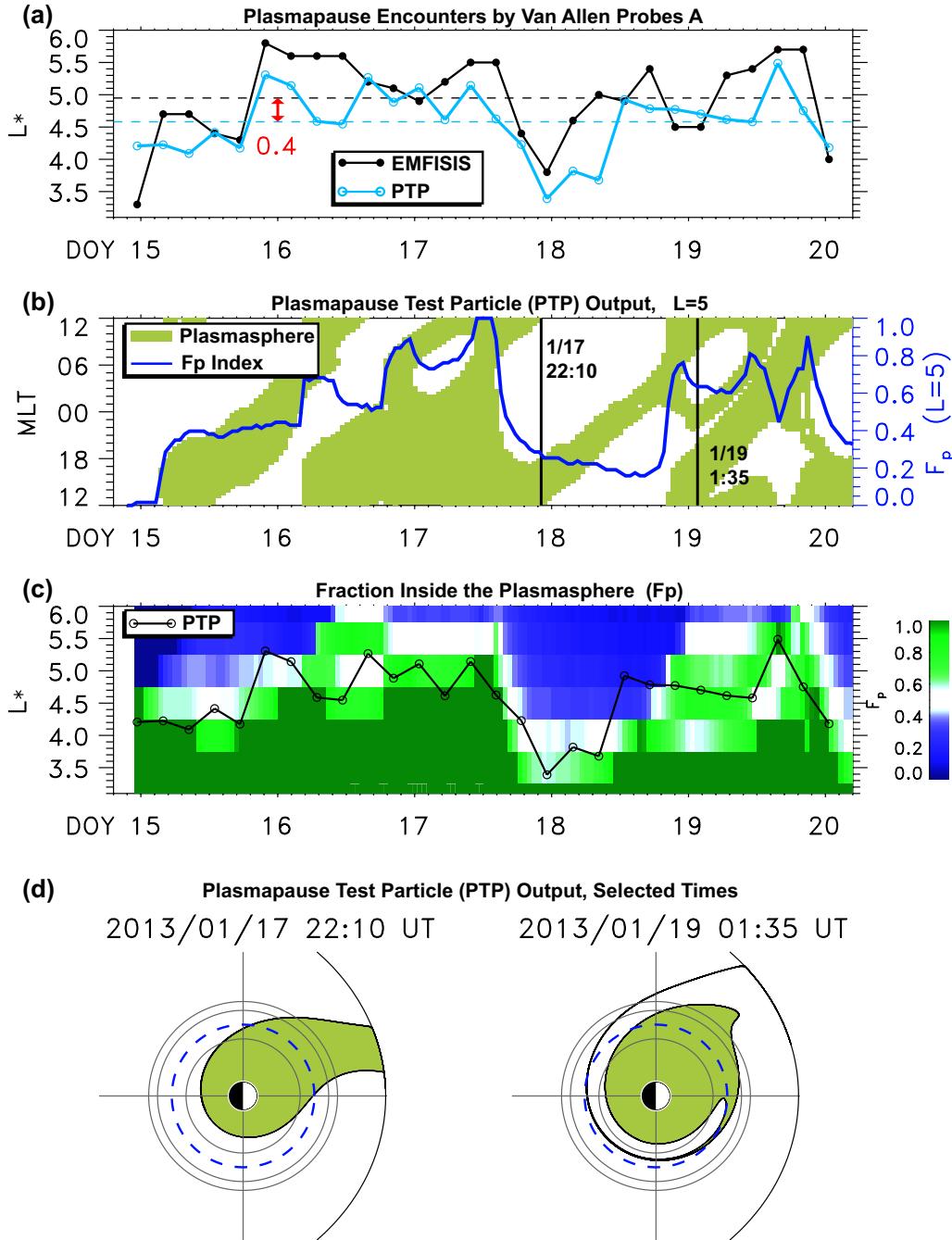
Figure 1. Overview of the 15–20 January 2013 disturbance event [Goldstein et al., 2014b], initiated on 1330 UT on 17 January (solid vertical line). Dashed vertical lines are times used for peak-finding examples, Figure 2. (a) OMNI solar wind electric field (E_{SW}) and pressure (P_{SW}), subsolar magnetopause (R_{MP}) using Shue et al. [1997], and minimum test-particle-simulated plasmapause (cf. Section 4). (b,c) REPT 4.20 MeV and 1.80 MeV electrons from Van Allen Probes A. D R A F T June 9, 2016, 7:00pm D R A F T

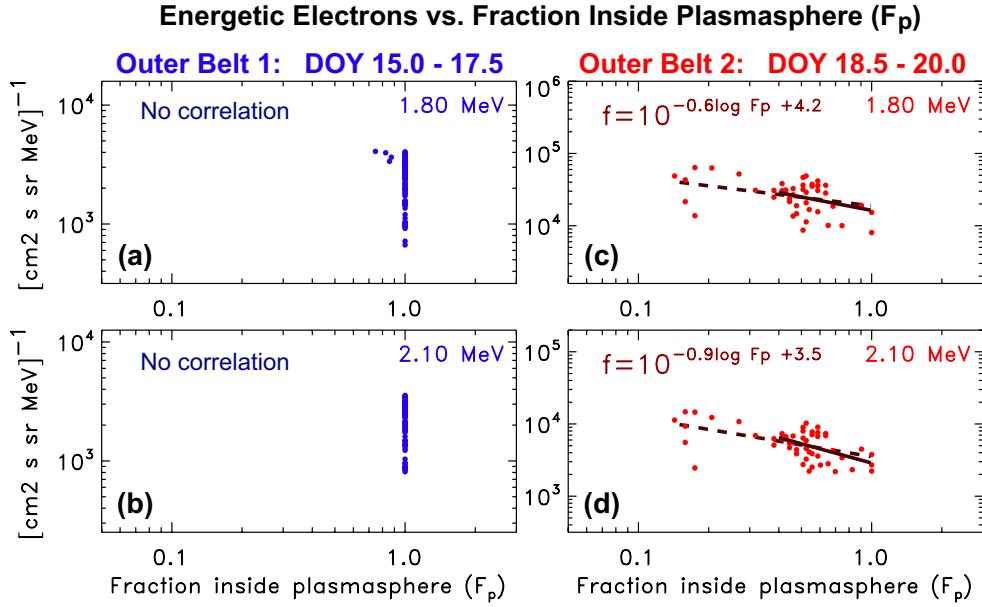
Figure 2. Electron peak and edge finder, applied to REPT A data for two selected times and 8 energies. Peaks of outer belts 1 and 2: numbered (“1” or “2”) dots and vertical lines. Corresponding $\exp(-1)$ edges: dashed lines. Points labeled “p⁺” are proton contamination.

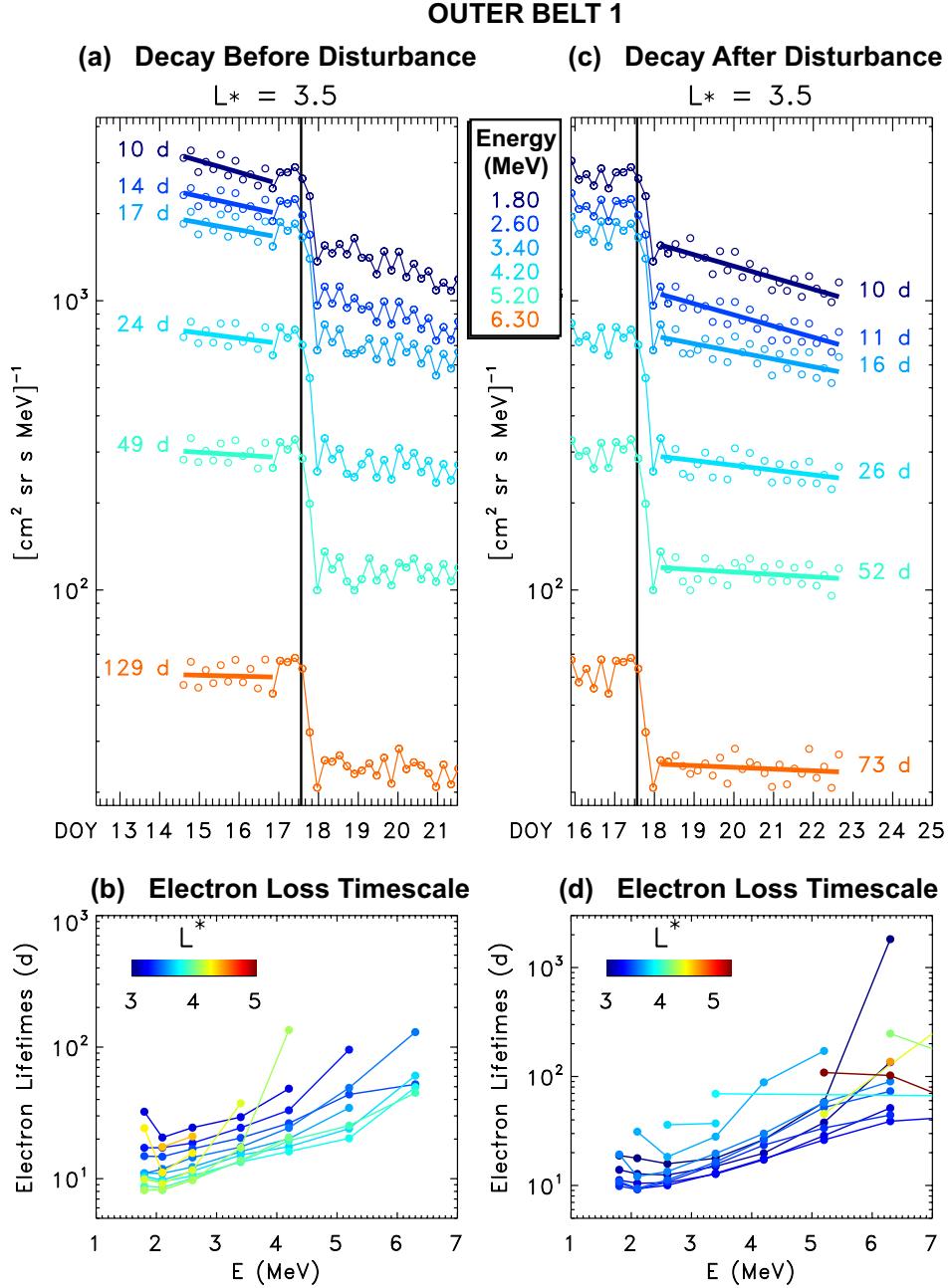
Figure 3. Plasmapause finder, applied to EMFISIS A data (binned in L^* to match REPT A data from Figure 2) for two selected times.

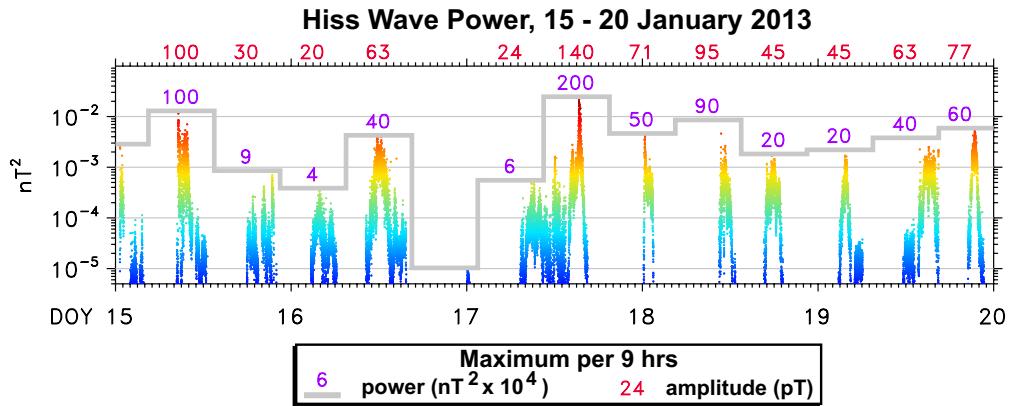





Figure 4. Automated extraction of outer belt and plasmapause locations for 15–20 January 2013. (a) 1.8 MeV REPT A spectrogram with extracted peaks (f_{peak} , solid lines) and edges (f_{edge} , dashed lines). Two outer belts ('1' and '2') are found. (b) EMFISIS A densities binned to match REPT spectrogram; the black line is the extracted plasmapause (L_P).


Figure 5. Comparison of outer belts and plasmapause, 15–20 January 2013. Each panel shows REPT A spectrogram with outer belt peaks and edges as in Figure 4a. The plasmapause (L_P) is overplotted in white. Five energies are shown: (a) 1.8 MeV, (b) 2.1 MeV, (c) 2.6 MeV, (d) 3.4 MeV, (e) 4.2 MeV.


Figure 6. Difference between the outer belts and plasmapause. The blue and red curves are for outer belts 1 and 2, respectively. Dashed lines give the per-energy mean values ($\langle \Delta L^* \rangle$) for 15–18. Five energies are shown: (a) 1.8 MeV, (b) 2.1 MeV, (c) 2.6 MeV, (d) 3.4 MeV, (e) 4.2 MeV. (f) Mean difference $\langle \Delta L^* \rangle$ versus energy.


Figure 7. Relativistic electron flux (f) versus cold plasma density (n) at four selected energies during steady conditions. Blue (red) data are for outer belt 1 (2), from the region earthward of the peak (cf. text). The thick lines are linear fits to $\log f$ versus $\log n$.


Figure 8. Plasmapause test particle (PTP) simulation results for global context. **(a)** Plasmapause encounters by actual and virtual Van Allen Probes A spacecraft. **(b)** Cold plasma regions (green) versus MLT and time, at $L = 5$. Blue curve is F_p , the fraction of drift orbit inside the plasmasphere (cf. text). **(c)** 2D plot of F_p versus L^* and time; black curve is PTP plasmapause. **(d)** Equatorial plasmapause at two selected times. The Sun is to the right. Black circles at $L = [4, 6, 6.6]$; blue dashed circle at $L = 5$.

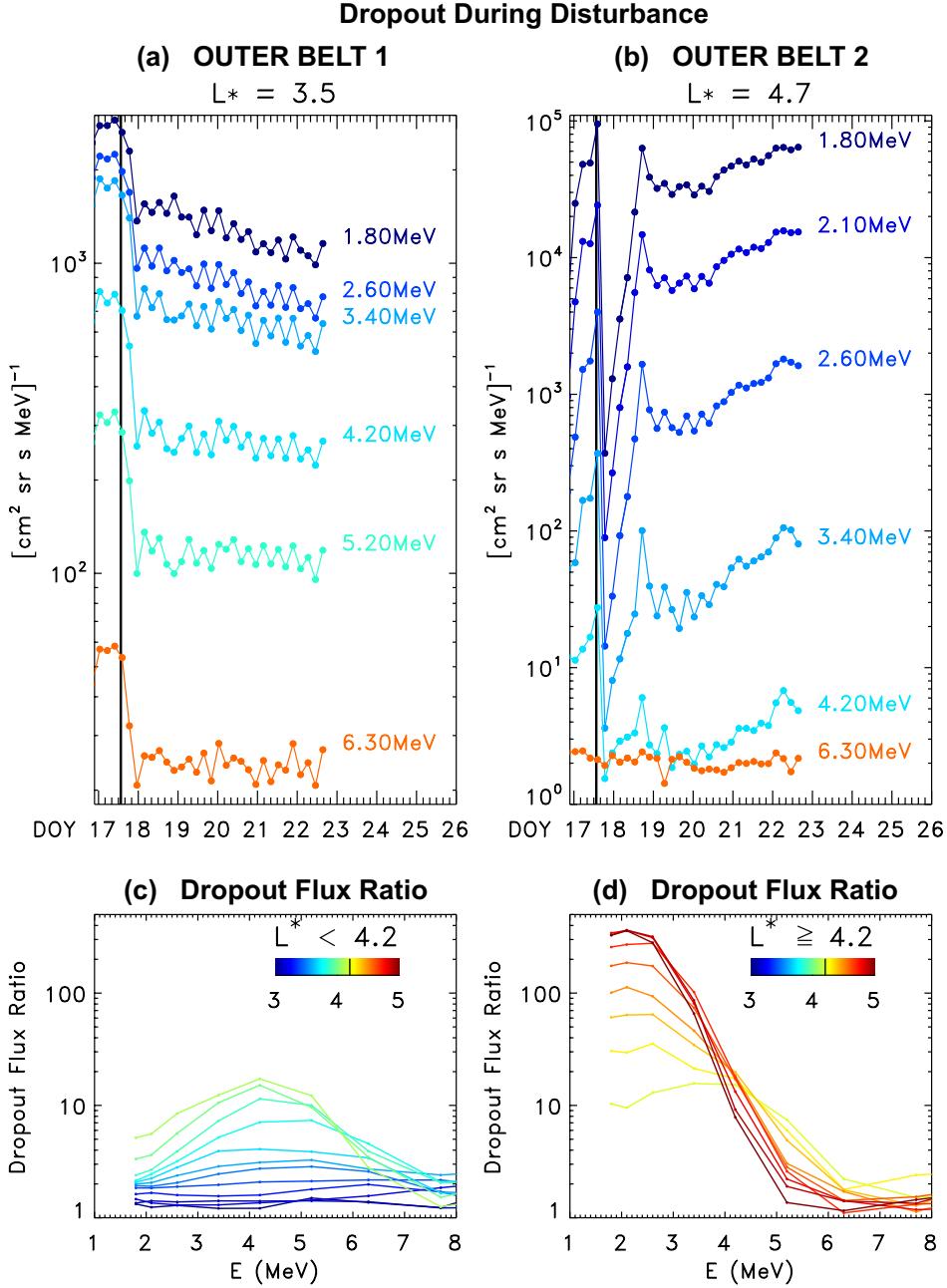

Figure 9. Relativistic electron flux (f) versus fraction of drift orbit inside the plasmasphere (F_p) at two selected energies during steady conditions. Blue (red) data are for outer belt 1 (2), from the region earthward of the peak. The thick lines are linear fits to $\log f$ versus $\log F_p$. The dashed lines are alternate fits for a wider range of F_p (cf. text).

Figure 10. Outer belt 1 ($L^* = 3.5$) loss before and after the disturbance (vertical black line). **(a,c)** Belt 1 electron flux versus time for energies spanning 1.8–6.3 MeV. Thick lines are exponential ($\exp(-t/\tau)$) fits to log flux before day 17 and after day 18. Loss timescales between 10 d at 1.8 MeV and 129 d at 6.3 MeV are consistent with plasmaspheric hiss. **(b, d)** Outer belt 1, pre- and post-disturbance loss timescale (τ) versus energy and L^* .

Figure 11. Estimate of hiss wave power for 15-20 January 2013 (cf. Appendix A2). The thick gray line indicates the peak value per 9-h interval; purple number labels indicate power levels (in $nT^2 \times 10^4$), rounded to one significant digit. The red numbers at the top of the plot indicate the corresponding hiss amplitudes (in pT). Points are color-coded by power to emphasize peak values.

Figure 12. Flux dropouts during the disturbance (vertical black line). **(a)** Outer belt 1 ($L^* = 3.5$) electron flux versus time for energies spanning 1.8–6.3 MeV shows modest (factor of 2–4) drop with no post-disturbance recovery. **(b)** Outer belt 2 ($L^* = 4.7$) electron flux shows post-disturbance dropouts of up to two orders of magnitude (decreasing with energy). Post-disturbance fluxes recovered in <2 days. **(c, d)** Dropout flux ratio (cf. text) versus energy and L^* , with larger dropouts at higher L^* .

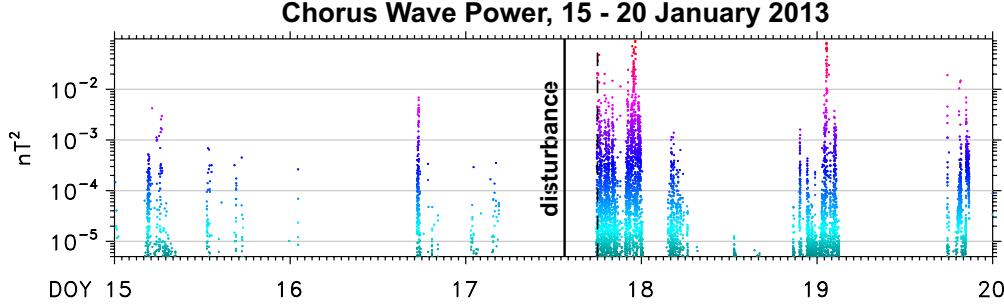


Figure 13. Estimate of chorus wave power for 15-20 January 2013 (cf. Appendix A3).

Points are color-coded by power to emphasize peak values.

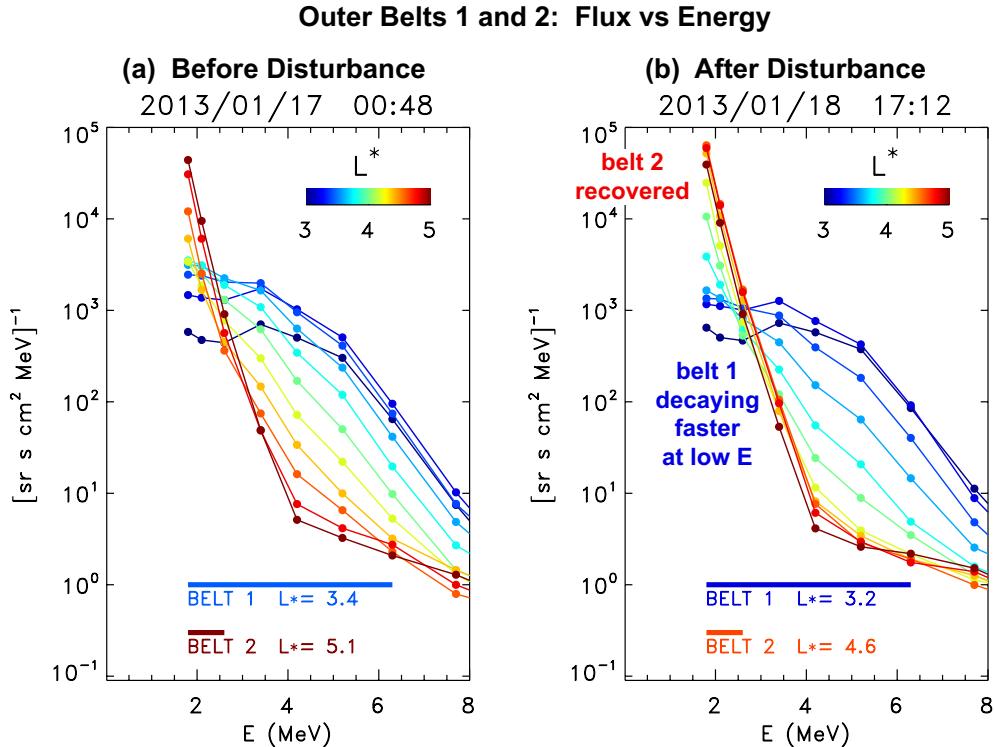
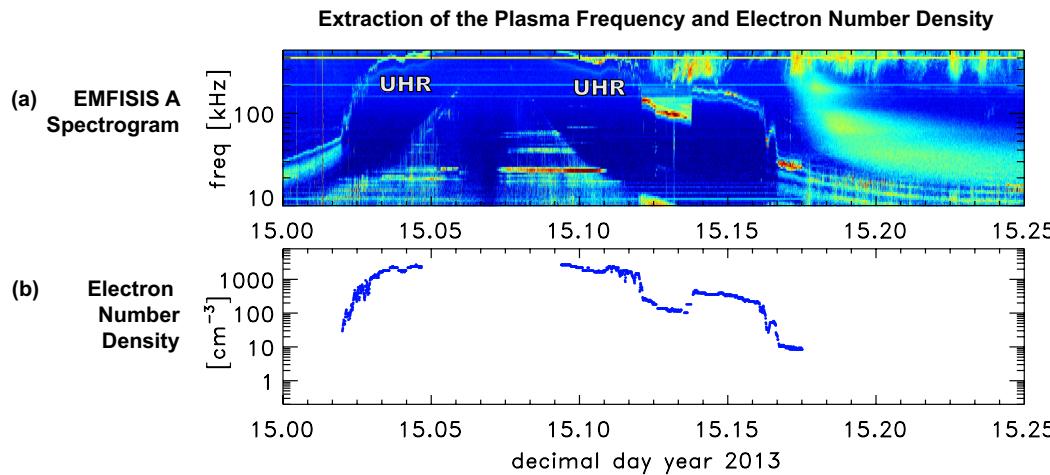
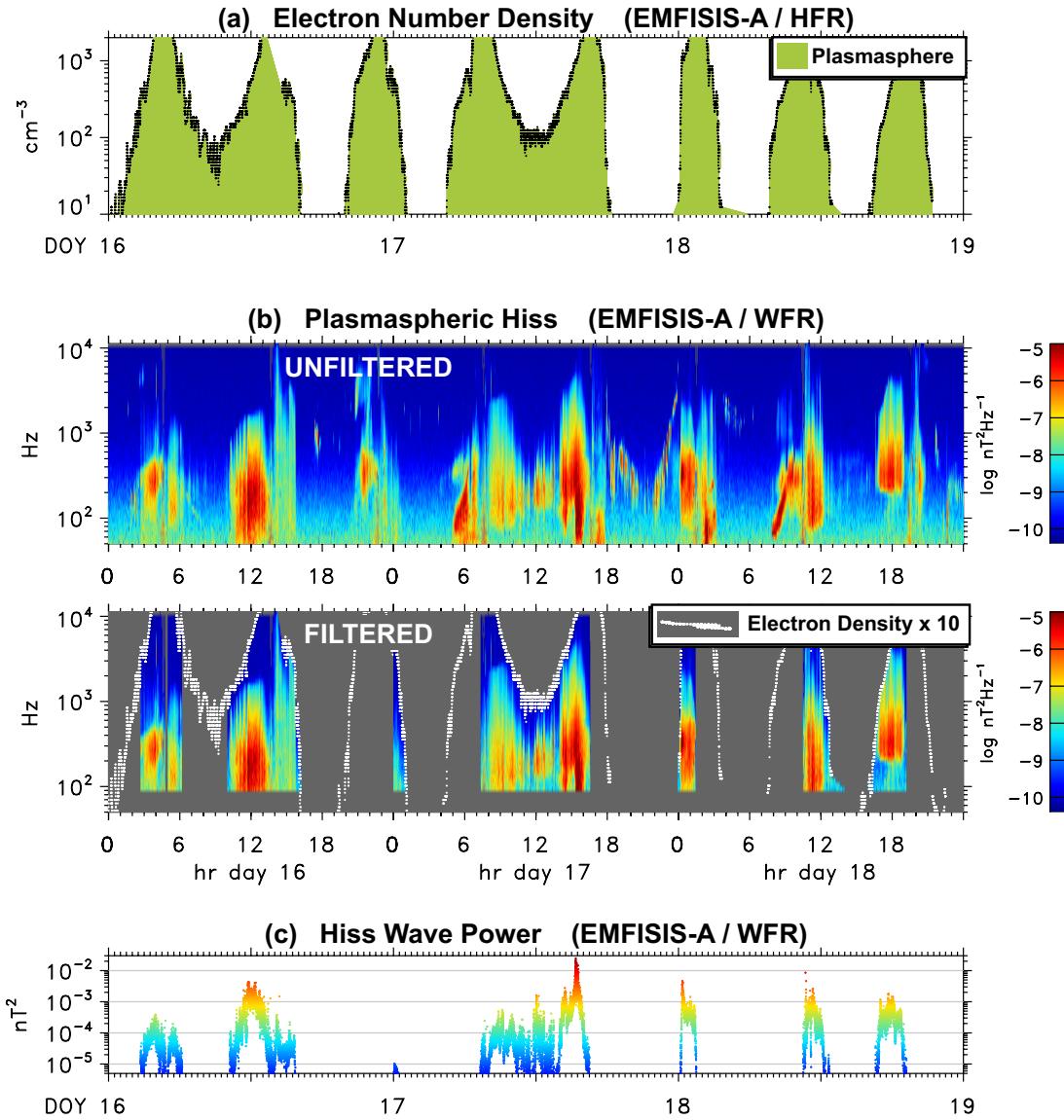




Figure 14. Relativistic electron flux versus energy and location, (a) before and (b) after the disturbance at 1330 UT on 17 January. Color indicates L^* . Horizontal bars at the bottom of each plot indicate the energy extent of belts 1 and 2 (i.e., the energy range of extracted peaks, as in Figure 5). The energy-averaged peak locations (L_{peak}) are also indicated.

Figure A.1. Analysis of EMFISIS HFR wave data. **(a)** EMFISIS A HFR spectrogram showing UHR line (cf. text). **(b)** Extracted electron number density n_e .

Figure A.2. Analysis of EMFISIS WFR wave data to identify plasmaspheric hiss. (a) Electron number density derived as in Figure A.1. (b) EMFISIS A WFR spectrograms, unfiltered and filtered to isolate hiss (cf. text). (c) Hiss wave power.

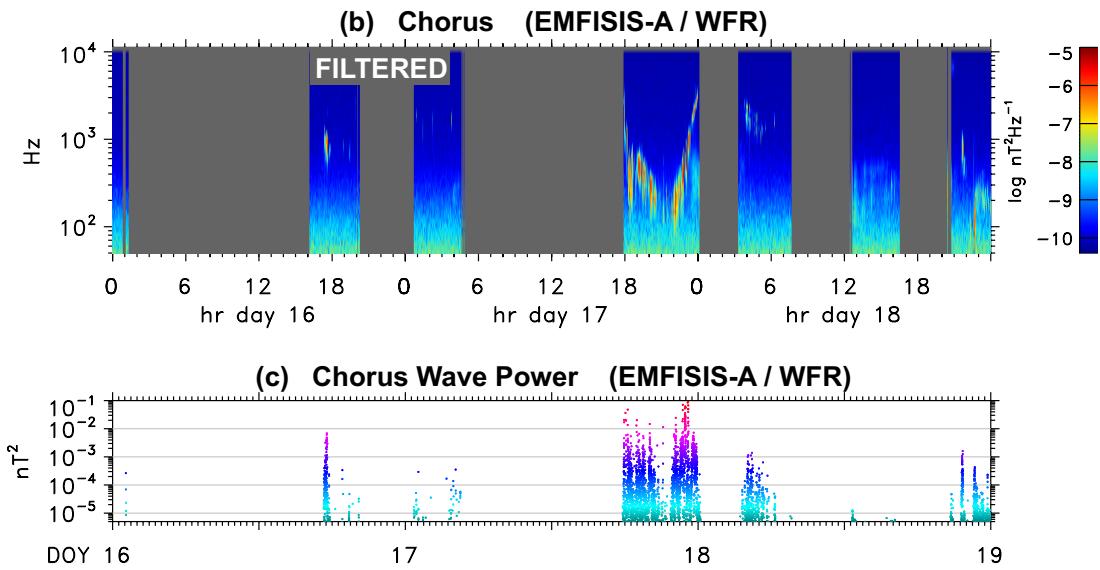


Figure A.3. Analysis of EMFISIS WFR wave data to identify chorus. (a) EMFISIS A WFR spectrograms, filtered to isolate chorus (cf. text). (b) Chorus wave power.