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Abstract. Changes in the high latitude climate system have the potential to affect global climate
through feedbacks with the atmosphere and connections with mid latitudes. Sea ice and climate
models used to understand these changes have uncertainties that need to be characterized and
quantified. We present a quantitative way to assess uncertainty in complex computer models,
which is a new approach in the analysis of sea ice models. We characterize parametric
uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify
the sensitivity of sea ice area, extent and volume with respect to uncertainty in 39 individual
model parameters. Unlike common sensitivity analyses conducted in previous studies where
parameters are varied one at a time, this study uses a global variance-based approach in which
Sobol’ sequences are used to efficiently sample the full 39-dimensional parameter space. We
implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and
volume are used to compute the Sobol’ sensitivity indices of the 39 parameters. Main effects and
interactions among the most influential parameters are also estimated by a non-parametric
regression technique based on generalized additive models. A ranking based on the sensitivity
indices indicates that model predictions are most sensitive to snow parameters such as
conductivity and grain size, and the drainage of melt ponds. It is recommended that research be
prioritized towards more accurately determining these most influential parameter values by

observational studies or by improving parameterizations in the sea ice model.
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1. Introduction

High latitudes are important components of the climate system where changes occur more
rapidly than at lower latitudes and can have significant effects on the global climate [Screen and
Simmonds, 2010]. Such effects can be amplified by feedbacks between the ocean-ice-atmosphere
system and through connections with mid and lower latitudes [Vage et al., 2008; Francis et al.,
2009]. To understand these processes, Earth system models are used which typically include
atmosphere, ocean, ice and land components. Sea ice models are not only important in the
context of climate dynamics but also for operational forecasts at high latitudes [Blockley et al.,
2014; Dupont et al., 2015]. . Sea ice models have different levels of complexity that typically
include a significant number of physics-based processes. Sea ice model estimates, like any other
models, are expected to deviate to some degree from the exact representation of the real world
because of uncertainties associated with model predictions. It is important to establish and
understand potential sources of uncertainty and flaws in the models used in climate research and
operational forecast systems, so that conclusions drawn in climate studies are robust and
transparent, and operational predictions adequate. This should improve, for instance, seasonal ice

forecasts and our ability to project future impacts of sea ice loss.

Uncertainty in models can arise from multiple sources [Kennedy and O'Hagan, 2001],
including parametric uncertainty, which is caused by the lack of knowledge of the exact values
that model parameters should take in the simulations. For sea ice models, parameterizations of
physical processes include a number of parameters for which accurate values are not always well
established. The Los Alamos sea ice model (CICE 5.1), for instance, has implemented new or
complex parameterizations, which include a delta-Eddington radiation scheme [Holland et al.,
2012], a new melt pond formulation [Hunke et al., 2013], a mushy thermodynamic model
[Turner et al., 2013], and a variable drag coefficient scheme [Tsamados et al., 2014]. There is a
need to examine the sensitivity of model predictions to uncertainties in input parameters. A
comprehensive sensitivity analysis should help to identify important physical processes affecting
sea ice distributions, and determine what model components explain most of the model

uncertainty.
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It has been common practice in climate studies to assess the sensitivity of models to reduced
sets of input parameters, or only over limited ranges of parameter variation. The most common
practice is to conduct one-at-a-time (OAT) sensitivity analyses in which one parameter is varied
with respect to a control experiment, while others are kept constant, usually at default values.
This approach, however, cannot identify interactions among parameters and assumes linearity
and additivity in climate models, which are strong limitations given the complexity of the
climate system. The common approach only examines the main effects of parameters, and does
not quantify model uncertainty due to individual parameters. An objective ranking of important
parameters is therefore not possible in OAT analysis. For sea ice models, in particular, Peterson
et al. [2010] examined sensitivity of sea ice to 10 model parameters in two standalone sea ice
model configurations, using a linear regression approach and the standardized regression
coefficients as measurements of model sensitivity. Uotila et al. [2012] also examined the
sensitivity of sea ice in a coupled ocean-ice model to 10 parameters using 100 model runs. They
explored the parameters sampling at discrete levels within prescribed ranges of variation, and
included a reduced subset of model parameters used in the delta-Eddington radiation scheme. A
sensitivity study using a global coupled climate model [Rae et al., 2014], explored sea ice
sensitivity to 16 parameters, examining departures of 16 experiments from model results in a
control run simulation. Other sensitivity analyses applied to sea ice models have been based on
automatic differentiation [Kim et al., 2006] or the use of adjoint models. These methods,
however, are mainly local, which means the sensitivity is examined only in the vicinity of certain
parameter configurations without fully exploring the entire parameter space in the model, which
can have serious limitations on high dimensional parameter spaces [Saltelli and Annoni, 2010].
A full exploration of high-dimensional parameter spaces in climate models is prohibitive in
conventional sensitivity analyses because of the computing resources required to conduct a
single model run. An optimal approach, called global sensitivity analysis (GSA), is one in which
all input parameters are taken into account, examining possible interactions among them, and

exploring parameters over all the plausible values they can take.

In this study we use GSA to examine the sensitivity of the CICE sea ice model in standalone
mode.to the parameters contributing to uncertainty in model predictions. It could be expected

that sensitivities in a standalone configuration differ to some extent from those in a coupled
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climate system. The approach in this study, however, has the advantage of requiring significantly
less computational resources while still being able to elucidate important physical processes
affecting sea ice. The approach uses quasi-random sequences to sample the parameter space, and
makes use of a fast surrogate of the sea ice model to acquire the large amount of data necessary
to estimate sensitivity. This approach uses a large ensemble of model runs, allowing us to
conduct the sensitivity analysis at an unprecedented level of detail. Our objectives are to
determine the most important model parameters contributing to uncertainty in predictions of sea
ice, emphasizing snow and radiation parameters, and other new model developments since Kim
et al. [2006], and to elucidate underlying physical processes of these parameters in terms of their
individual effects as well as the most important interactions among them. Section 2 presents the
GSA methodology used in this study, which is based on the variance decomposition of model
predictions. The methodology used to characterize model uncertainty and quantify the model
sensitivity is presented in Section 3. In Section 4 we present the results of the uncertainty
propagation through the model onto model predictions, the implementation of a surrogate of the
sea ice model, and estimates of sensitivity indices. A discussion of the sensitivity indices, and

their implications, is presented in Section 5, with conclusions in Section 6.

2./'Variance-based Global Sensitivity Analysis

The purpose of a Global Sensitivity Analysis (GSA) is to determine the contribution of
uncertainty in individual model parameters to the model uncertainty, allowing individual model
parameters to vary over the entire range of plausible values they may take. The uncertainty of a
model parameter can be characterized by a probability distribution (section 3.2). The term
“global”.in this context implies that an efficient way of sampling must be adopted so that
uncertainties in all parameters are sampled jointly. Importantly, no assumptions are made about

the linearity or additivity of the model, implicit in most commonly used sensitivity analyses.

The variance of model predictions over input parameter distributions is used as a
measurement of sensitivity. Given a model prediction, a variance-based GSA explicitly seeks to
apportion its variance to individual parameters. Given p model input parameters, a p-dimensional

parametric space can be uniformly distributed and normalized in a unit hypercube
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W=X0<X;<1 i=1,...,p)

A Hoeffding decomposition [Saltelli et al., 2010] of a model prediction Y = f(X) can be

expressed as a sum of 2” terms of increasing dimensionality [Sobol’, 2001]

D D
FOO=fot ) D+ D fy(XX)+ -+ Hfuo p(Ku Xarerr, Xp) (1)
i=1

1<i<j

where the integrals of the functions in the decomposition over any of their variables must be
zero, and therefore the functions be mutually orthogonal [Jacques et al., 2006]. It follows that

variances can also be decomposed according to

4 14
VI = D Vik ) Ve 4V (2)
i=1

1<i<j

Normalizing the above equation by the total variance V(Y), one obtains

p p
ZSL' + Z SU +- - +51‘2'__'p =1 (3 )
i=1 1<i<j

where each term represents a fraction of the total variance and thus can be used to estimate the
sensitivity of model predictions to input parameters. The terms in the first sum are the first-order
sensitivity indices, the terms in the second sum are the second-order sensitivity indices, and so
on [Homma and Saltelli, 1996]. The first-order indices, also called main effects, indicate the
reduction in V(Y) that would be obtained if parameter X; could be set to a fixed value. The main
effects are useful to prioritize parameters for uncertainty reduction, thus guiding research toward

determining more accurate values for parameters with large first-order sensitivity indices.

The higher-order indices indicate variance explained by interactions between parameters, which

cannot be attributed to individual effects of input parameters. For instance, S;; accounts for the
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variance explained by the interaction between X; and X; so that a non-zero S; indicates that the

effect of X; on ¥ would also depend on what value X; takes.

A useful measurement of sensitivity is the total sensitivity index (S7;) which is the sum of all the
terms involving x; in equation (3). Sz; can also be thought of as the variance that would remain if
all input parameters but x; could be set to fixed values. The total index is useful to determine
which input parameters are not very important (either directly or through their interactions) for
the model uncertainty, so that parameters with small total indices can be fixed at default values.

S; and S7; have also been expressed as [Saltelli et al., 2010]

_ in(EX~i (lel))

== (4)
and
EXNi(VXi(Y|X~i)) _ VXNi(EXi(Y|X~i))
S 70 BN 7( )

where X; represents the i*" input parameter, and Vx; and Ex, indicate variances and expectations
taken over all values of X;. Similarly X_; represents all input parameters but X;, and V; . and

E; indicate variances and expectations taken over all parameters keeping X; fixed.
In practice, estimation of sensitivity indices given by equations 4 and 5 requires a large

number of model evaluations. The method for estimating the variances and sensitivity indices in

these equations is presented in the Appendix.

This article is protected by copyright. All rights reserved.



3. Methods

We use CICE in standalone mode (section 3.1) to examine sea ice sensitivity to a much larger
number of input parameters than has been addressed in previous studies. The model output
variables of interest are sea ice extent, area and volume integrated over the northern and southern
hemispheres. Area refers to actual area of ocean covered by sea ice, while extent refers to the
area covered by more than 15% sea ice. We initially identified 49 input parameters associated
with the CICE configuration described in section 3.1, whose values are not accurately known and
are therefore uncertain. We chose 39 of these input parameters (Table 1) to conduct the GSA, in
order to examine as many uncertain parameters as possible, while neglecting 10 parameters from
the analysis because they were specific to the ocean, or because there was enough confidence
that-they would turn out to be negligibly important for the variables of interest. The calculation
of sensitivity indices for the 39 parameters left in the analysis would require a very large number
of model evaluations and a full exploration of the parametric space over the entire ranges of
plausible parameter values (section 3.3). In practice, this is computationally prohibitive for the
sea ice model configuration used in this study and therefore the use of a statistical emulator is
explored to produce data points at a reduced computational cost (section 3.5). Next we introduce
the main features of CICE, the criteria used to design the ensemble of different model
configurations, the implementation of a Gaussian process emulator to approximate the CICE

model, and the methodology used to estimate the sensitivity indices.

3.1. Los Alamos Sea Ice Model

CICE is one of the most widely used sea ice models for climate research [Gent et al., 2011;
Hewitt et al., 2011; Bentsen et al., 2013] and operational forecast systems at high latitudes
[Tonani-et al., 2015]. The model solves dynamic and thermodynamic equations for multiple ice
thickness. categories [Hunke et al., 2015]. For this analysis, in the dynamic component an elastic-
viscous-plastic (EVP) rheology is used to account for deformation of the ice pack [Hunke and
Dukowicz, 1997], and sea ice is redistributed among thickness categories due to mechanical
redistribution [Thorndike et al., 1975; Liscomb et al., 2007]. The thermodynamic component
describes the ice pack as a mushy layer [Turner et al., 2013] in which desalination occurs as sea

ice grows; temperature and salinity are prognostic variables over seven ice layers on each of five
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thickness categories used in this study. Albedo and radiative fluxes at the surface of sea ice are
computed using a delta-Eddington radiation scheme based on inherent optical properties defining
scattering and absorption properties of the snow-ice surface [Briegleb and Light, 2007; Holland
etal., 2012]. In the present model configuration, melt water and liquid precipitation falling over
sea ice are tracked using a level-ice pond formulation in which melt ponds are carried as tracers
on undeformed sea ice, and a depth-area ratio is assumed for changes in pond volume [Hunke et

al., 2013].

In this study we use CICE in standalone mode with a horizontal resolution of 1° [Hunke and
Holland, 2007]. The model’s slab ocean mixed layer is forced by a monthly climatological
ocean forcing derived from a Community Climate System Model (CCSM) run [Collins, et al.,
2006]. The oceanic forcing fields consist of sea surface slope and currents, salinity and deep
ocean heat fluxes. Atmospheric forcing fields of 6-hourly wind speed, air temperature, and
specific humidity are taken from the coordinated ocean-ice reference experiment (CORE 2)
[Griffies et al., 2009; Large and Yeager, 2009]. The atmospheric forcing also includes the
specification of monthly climatologies of precipitation [Griffies et al., 2009] and cloud fraction
[Roske, 2001]. The model is integrated from 1958-1975, with no ice as initial condition. In 1975
several model runs with different configurations (described in the experimental design of section
3.3) are restarted and run until 2009. Only model results from 1980-2009 are used in the

sensitivity analysis to allow the model to adjust after the 1975 restart.

3.2. Prior distributions of uncertain parameters in CICE

The CICE configuration described above has a number of uncertain parameters that were
broadly categorized in terms of the physical processes in which they are involved (Table 1).
Uncertainties associated with 39 parameters examined in this study are characterized through
probability distributions, including the minimum and maximum values that individual
parameters can take. In order to assign prior probability distributions to the parameters
(representing our prior knowledge about them), we determined plausible values that these
parameters might take based on a literature review of experimental data, model studies, and

expert judgment.
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Probability distributions for the model parameters are not generally available, except for a few
parameters such as ice and snow density. Different types of probability distributions are used to
characterize uncertainty in the input parameters. Uniform distributions are used when there is a
considerably lack of information about a parameter’s actual distribution. Normal distributions are
assigned if standard deviation and mean values are available from the literature review, and
observations support Gaussian behavior. In cases when not much information is available for a
given parameter, but different references suggest unimodal distributions centered at a preferential
value, a triangular distribution is chosen. Whenever a parameter is constrained to be positive, or
varies across several orders of magnitude, log-uniform, log-normal, or log-triangular
distributions are considered. For parameters representing ratios, ranging between zero and one,
logit-normal distributions are considered. Where there is enough information, we center the
distributions at the mean values found in the different studies, and the parameter’s minimum and
maximum values are set at +3 standard deviations from that mean. If these extremes lie far away
from realistic values, or do not appear to be plausible, we set them in a more ad-hoc manner. A
summary of each parameter’s prior (pdf, minimum, and maximum values) specified in this study

is presented in Table 2.

The distributions describing uncertainty in input parameters (Table 2) are used to design
combinations of parameters to be used in the GSA. In particular, a 39-dimensional unit
hypercube is used in the next section to produce ensemble designs. First, the coordinate of a
given parameter in a unit hypercube is mapped onto an ordinate in the closed interval defined by
the cumulative distribution functions of the minimum and maximum values for that parameter.
Second, the corresponding parameter value is obtained by taking the inverse cumulative
distribution function of the ordinate previously obtained. More details about the methods used to
design the sets of parameter combinations used in this study are described in the following

section.
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3.3. Experimental design

In GSA the full exploration of high dimensional parametric spaces requires the sampling of
data points to be done efficiently to keep the number of model evaluations as small as possible. It
is a. common practice to use low-discrepancy sequences as a type of quasi Monte Carlo sampling
in the design of sampling matrices (sequences of data points consisting of different combinations
of input parameter values). Low-discrepancy sequences are constructed to distribute data points
uniformly over the parametric spaces, and include Latin Hypercubes, Niederreiter, Halton, and
Sobol’ sequences [Lemieux, 2009]. In this study we have used scrambled Sobol’ sequences
[Owen, 1998] which allow good pairwise distributions in high dimensions with the added feature
that additional data points added to the sequence guarantee higher density sampling of the

parameter space.

Using scrambled Sobol” sequences, model ensembles are created for 39 dimensions, the same
number of input parameters. In each ensemble member, all of the 39 input parameters change
their values so that a large number of sampling points in parameter space is possible. We first use
the Sobol’ design, along with the prior distributions in Table 2, to conduct 150 CICE model runs
and make a preliminary screening of input variables -output variables relationships (section 3.4).
Then 400-Sobol’ points are added to the initial sequence, adding up to a total of 550 model runs,
whose results are used to train a surrogate of the model. The first 400 members of this extended
Sobol’ sequence (including those in the preliminary screening) are transformed onto parameter
space using the priors in Table 2. The last 150 members are transformed using uniform
distributions for all of the 39 parameters, to increase the sampling at the tails of the prior
distributions (section 3.5). Finally, we use Sobol’ sequences to produce large sampling matrices

(~10° members) for use in the estimation of the sensitivity indices (section 4.3).

3.4. Preliminary screening

The calculation of sensitivity indices requires a very large number of model evaluations. Test
cases conducted on highly non-linear analytical functions with O(10) parameters have shown
that the number of model evaluations required to obtain the total sensitivity indices is O(10%)
[Saltelliet al., 2010]. This number of model evaluations would be computationally prohibitive

for a complex and computationally intensive model such as CICE, which depends on four times
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that many input parameters. We seek an emulation to accomplish fast estimates of model
predictions (section 3.5). However, emulators of high dimensional functions might not scale well
and can be very hard to construct [Bengio et al., 2006]. If the subset of input parameters that
accounts for global variations of a function (or active variables) is large, then building an

emulator can be impractical [O'Hagan and West, 2013].

As was mentioned in section 3.3, we initially conducted a set of 150 CICE model evaluations
to preliminarily screen the model predictions, assess the suitability of implementing a statistical
emulator for sea ice extent, area, and volume in CICE, and to identify inactive parameters that
could be fixed in the analysis to alleviate the computational cost. In this approach, we look for
evidence of non-random relationships between the model predictions and each of the 39 input
parameters using a combined squared rank differences and Spearman’s rank correlation test
[Hora and Helton, 2003]. The method is useful to detect monotone relations as well as general

non-linear patterns in datasets of model inputs and model predictions.

Of the initial 150 runs, about 100 were successful and could be used for the preliminary
screening. Other runs failed due to parameter-induced instabilities. From the screening, the
number of active variables (for which non-random behavior was detected) per output variable of
interest ranges somewhere between 4 and 12 parameters (not shown), which indicates that
building an emulator might be feasible for these types of variables. The preliminary screening
also showed that a relatively large number of parameters displayed non-random relationships
with variables of interest at some point throughout the year, therefore supporting our choice of

not fixing any of the 39 parameters made in the experimental design.

3.5. Gaussian Process Emulator

The predictions from the CICE model are deterministic for a given combination of input
parameter values, and GSA requires running CICE many times (~1000 per input parameter,
[Oakley and O'Hagan, 2004]) to fully explore the parameter space, which is impractical from a
computational standpoint. An alternative is to build a fast surrogate (or emulator) of CICE to
produce estimates for any combination of input parameters. We use a Bayesian approach to

represent scalar output variables of interest (sea ice extent, area, and volume) in terms of
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unknown functions following Gaussian distributions at every input point (i.e., every combination
of 39 input parameters). That is, the prediction of the emulator has a Gaussian distribution (V")
which is fully characterized by its mean and covariance. An underlying assumption of Gaussian
process emulators is that the model response is a smooth function of the inputs, so that nearby
input points have similar response function values. A Gaussian process of a model output

variable Y = f(X) is described as

fC) ~GP(u(), K()) (6)

where u(+) is the mean function, and K (-,) the covariance function specifying the covariance
between pairs of random variables. Prior assumptions about the mean and covariance functions
must.be made and then updated using evidence from a training dataset. First, the training and test
points are given by X¢ and X', respectively, and the mean and covariance priors by u* and
K (X*, X) , respectively. Without loss of generality the prior mean (u*) is typically assumed to be
zero. Secondly, in order to obtain predictions of f(+), the prior is updated using evidence coming
from the training dataset. The distribution of f(X*) conditioned on the training data f(X,) is then

(see Rasmussen and Williams [2006] for details on Gaussian processes)

FEIIf (xe) ~ N (W + KX, x0) - K(xe x0) ™ (F Cer) — pe), K&, X7) — KX, %) (7)
‘KX x) ™" K (X, X))

The form of the covariance between predictions in terms of the input parameters requires
covariance functions, which have a number of hyperparameters controlling the smoothness
(length scales) and the overall variance (signal variance) of the functions. The covariance
structure ‘1s separable in parameter space, implying that length scales are different for each
parameter. We use the GPy library implemented in Python [The GPy authors, 2012-2015] to fit
emulators for each scalar output variable of interest (i.e. sea ice extent, area, and volume).
Emulators, were fit using different covariance functions including exponential, squared
exponential, Matern 3/2, Matern 5/2, and combinations of sums and products among them
[Rasmussen and Williams, 2006]. Multiplication and summation of covariance functions can, in

principle, improve emulator performance when the process underlying a dataset has more than
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one length scale associated with it. Each time an emulator is fitted, the hyperparameters are
optimized . by maximizing the likelihood of the data given the fitted emulator (marginal
likelihood). In addition, logarithmic and square root transformations were also applied during the

fitting process to obtain better emulation performance [O'Hagan, 2006].

We have followed a cross-validation approach to choose among emulators with different
covariance functions and different data transformations. In this context, the entire set of actual
model runs is used for training and validation purposes. In this study the entire dataset is divided
into 10 subsets. Each subset is used as validation dataset once, while the remaining 9 subsets are
used as training datasets. The metric used to assess the emulator performance is the square error
between the emulated and simulated mean quantities. For each covariance function and data
transformation, a root-mean-square error (RMSE) is computed over all the validation points in
the 10 emulators fitted during cross validation, and the emulator combining the covariance
function and data transformation with the smallest RMSE 1is chosen for a particular output
variable of interest (section 4.2). The entire dataset (as opposed as subsets) is then used to train
an emulator that uses the optimal combination of covariance function and data transformations as

described above.

4. Results

In this section we present results of sea ice extent, area and volume from an ensemble of 302
members to illustrate the propagation of parametric uncertainty onto model predictions. We also
present results from the cross-validation of Gaussian emulators (built using an ensemble of 397
members) for the output variables of interest. At the end of the section we present the sensitivity
indices for the CICE model, including a ranking of the most important parameters contributing to

the CICE model uncertainty in the current model configuration.

4.1. Parameter uncertainty propagation onto CICE predictions

We use the results of 302 model runs whose configurations used the parameters prior
distributions (~24% of runs crashed due to instabilities caused by some parameter combinations)

to examine how uncertainty in the input parameters (Table 2) propagates onto model predictions
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(i.e. sea ice extent, area, and volume). Figure 1 shows histograms of sea ice extent, area, and
volume produced by the ensemble of 302 simulations in the northern hemisphere in September
and March. In summer the spread is considerably larger and the variables are more uniformly
distributed than in winter. The winter estimates have less spread and are characterized by more
unimodal distributions than in summer, indicating that parameter uncertainty is less important in
winter. In the southern hemisphere (Figure 2), the cross-ensemble variability is relatively small
and similar in March and September for sea ice extent and area. This variability is, however,
much larger in September than in March for sea ice volume, indicating that ice thickness can be

very sensitive to parameter choices during winter in the southern hemisphere.

The propagation of parametric uncertainty onto the monthly mean extent, area and volume is
shown in Figure 3. After the maximum ice extent is reached in March in the northern
hemisphere, parametric uncertainty in the sea ice extent and area estimates begins to grow,
becoming: considerably large by the end of spring through the end of summer (Figure 3a, c).
With ice starting to grow in fall, uncertainty in extent and area is reduced, becoming almost
negligible throughout the winter. The low uncertainty in the winter sea ice area estimates is
explained by the prescribed atmospheric forcing driving high concentrations over most of the
Arctic Ocean. The winter sea ice extent estimates, however, are more affected by the melting
rates at the ice-ocean interface, which are determined largely by the prescribed climatological
ocean conditions in standalone simulations of sea ice [Bitz et al., 2005]. Unlike extent and area,
parametric uncertainty in sea ice volume is large all year round in the northern hemisphere
(Figure 3e). It is expected that in a fully couple model parametric uncertainties of sea ice extent
and area also become important all year round (including winter). In a fully coupled context the
choice of sea ice parameters should feedback on the atmosphere, which would result in

uncertainty estimates of winter sea ice extent and area larger than those in Figure 3a and c.

In the southern hemisphere the uncertainty in the model estimates of sea ice extent and area is
the lowest during fall, when sea ice begins to grow, and during winter. Once the sea ice begins to
retreat in spring, the uncertainty rapidly increases. With the sea ice pack coverage dramatically
shrinking in summer, most of the ensemble runs become insensitive to parametric uncertainty.

The uncertainty in the model estimates of sea ice volume in the southern hemisphere has a more
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distinctive seasonality than in the northern hemisphere. As the sea ice pack starts to shrink in the
Southern ocean during spring, the uncertainty in sea ice volume estimates begins to decay. With
the expansion of the sea ice pack in winter, the volume estimates have large uncertainty and the

choice of parameter values becomes very important.

The CICE default configuration typically produces estimates within one standard deviation
above the ensemble mean estimates. Observational estimates shown in Figure 3 are generally
within model ensemble estimates, except for a slight overestimation of the sea ice area in the
ensemble during winter in both the northern and the southern hemisphere. Further reduction in
the uncertainty of input parameters are not expected to improve considerably the agreement in
the annual cycle between model estimates and observations because their difference is several
times. bigger than the range of model predictions. However, uncertainties associated with the
ocean and atmospheric forcing can be more relevant than parametric uncertainty to produce
better model agreement with observations, particularly when parametric uncertainty is

considerably low.

4.2. Emulator validation

From the preliminary screening (section 3.4) we expect around 10 active parameters per
output variable. Since the required number of model runs required to build an emulator is
recommended to be at least 10-15 per active variable [O Hagan, 2006, Oakley and O’Hagan,
2001];-we have conducted a total of 550 model runs as described by the experimental design
(section 3.3). The mapping of the Sobol’ design onto parameter space was made as described in

section 3.2 using a mixture of the parameters prior distributions and uniform distributions.

Using the monthly sea ice extent, area and volume from an ensemble of 397 successful model
runs. (~28% runs failed out of 550) we fit Gaussian emulators and select the one which
minimizes the RMSE between training points and test points. The emulator with the best
performance is then used to conduct the sensitivity analysis. Figure 4 shows the RMSE values
obtained for the emulators for which the best fit is obtained as described in section 3.5. The
accuracy of the emulator in terms of RMSE varies throughout the year, which is closely related

to the variable uncertainty found in the ensemble runs as indicated in Figure 3.
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In the northern hemisphere the largest errors in the emulated extent and area occur in August
(Figure 4), when the parametric uncertainty in the ensemble is also the largest. The RMSE in
summer area and extent is about 10-20% of the ensemble mean quantities. As expected from
Figure 3, the emulator performance in winter, spring, and fall is very good. The emulator errors
for sea ice volume in the northern hemisphere are relatively constant throughout the year in
accordance with the uncertainty in the ensemble, and the RMSE as a percentage of the ensemble

mean thickness decreases from about 17% in September to about 6% in April.

In the southern hemisphere the RMSE is generally smaller than in the northern hemisphere.
The emulated sea ice extent, area, and volume have relatively better accuracy from February-
October than from November-January. The RMSE as a percentage of the ensemble mean
quantities has a maximum value of about 20% (February), and values less than 2% from
November-January indicating good emulator accuracy for most of the year in the southern
hemisphere. The relatively smaller RMSE in southern hemisphere than in the northern
hemisphere suggests that the emulator generally produces better estimates in seasonal ice than in

multiyear ice regimes.

We show comparisons of emulated and simulated September sea ice volume conducted
during cross-validation over different validation sets for the northern (Figure 5) and the southern
hemispheres (Figure 6). In the northern hemisphere most of the model simulations fall within
one standard deviation of the mean emulation prediction. There are a few validation points where
the disagreement between emulated and simulated sea ice volume is relatively important,
particularly in the validation set 9, possibly due to parameter subspaces in which sampling of
training points is not optimal due to rapid variations of the model predictions. In the southern
hemisphere the emulator predictions match very well the model estimates in all the validation

sets.

The emulator has shown skill in predicting model results within reasonable error bands. The
least-agreement is found at the end of summer in the northern hemisphere. Given the complexity
of the processes controlling summer Arctic sea ice variability, the emulator performance is still
satisfactory for the purpose of conducting the sensitivity analysis, whose results are presented in

the next section.
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4.3. CICE sensitivity indices

In GSA, total sensitivity indices give the overall importance that input parameters have on
model sensitivity; parameters with total sensitivity indices close to zero are unimportant in terms
of sensitivity and can be fixed at some default value without significantly affecting the model
predictions. Parameters with low first order sensitivity indices could still have important

interactions with other parameters and therefore should not be set at fixed values.

The first order and total sensitivity indices are estimated as described in the Appendix using
N=10’ to guarantee the convergence of sensitivity indices with p=39 parameters. This implies
that the required number of emulator estimates per output variable of interest is 2 X 10°
emulator runs (A and B matrices) plus 10° (A% matrix) emulator runs per input parameter.
Therefore a total of 4.1 X 10° emulation predictions are required to obtain the sensitivity indices

of a single output variable.

The seasonal evolution of the total sensitivity indices in the northern hemisphere is shown in
Figure 7 for the sea ice extent, area and volume for a selection of the parameters contributing to
the model uncertainty (see also Tables 1 and 2 for parameter names and ranges of variation). The
model predictions are highly sensitive to the snow conductivity (ksno) all year round with St>
0.47 for ice volume and St > 0.2 for extent and area. Parameters controlling the melt pond
drainage (lambda pond) and the maximum snow grain size (rsnw_mlf) are important during
summer and early fall with St> 0.15. The snow grain size also affects model predictions through
another parameter, R snw, with Sp > 0.05 from spring to fall. The ocean-ice drag is very
important for sea ice extent and area through the dragio parameter during winter and spring
when sea ice is advected less easily under the effect of seasonal winds, and considerably less
important during summer and early fall when the ice drifts more freely. It is possible that the
effect of dragio on sea ice volume is less important than on extent and area because volume is
more easily affected by thermodynamics than by dynamical processes such as redistribution and
opening of leads, particularly when the ice pack is tight. The sea ice area at the end of fall and
beginning of winter is also affected by the assumed values of the solid fraction at the ice-ocean
interface (phi_i mushy) in the mushy thermodynamics formulation. Generally, as the total index

(St) of an individual parameter is reduced, the total indices of one or more other parameters
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increase, indicating competing effects among relevant physical processes affecting sea ice
throughout the year. For instance, the sensitivity of the sea ice volume to ksno drops
considerably at the end of spring and remains relatively low through summer in favor of the

sensitivity to lambda_pond, rsnw_mlt, and R_snw.

At the onset of the melt season, the sea ice and snow layers begin to melt and absorb solar
radiation, making the latter parameters become active. The extent to which melt ponds are
drained has an effect on the albedo of sea ice, which is a combination of the albedos of bare and
ponded sea ice. The larger the fractional area of ponded ice, the more heat is absorbed by the ice
pack, which has a direct effect on the melting of sea ice. Melt ponds can be formed by snow melt
runoff, which depends also on the heat absorption of the snow pack. The snow albedo in the
delta-Eddington formulation for absorption of shortwave radiation depends, among other things,
on the snow grain size. This sensitivity analysis shows that »snw_mlt and R_snw are the delta-

Eddington parameters with the highest sensitivity in sea ice model predictions.

Sea ice in the southern hemisphere (Figure 8) is also highly sensitive to snow conductivity
(ksno), though to a lesser extent than in the northern hemisphere. In the southern hemisphere
dynamical processes acquire a larger relevance through processes involving dragio in the ocean-
ice drag formulation. In contrast to the northern hemisphere, the ocean-ice drag is important not
only in winter and spring but also in summer. The R_snw and rsnw_mlt parameters affecting the
snow grain size are still somewhat important in the southern hemisphere although to a lesser

degree than in the northern hemisphere.

Even though sensitivities of sea ice extent and area are generally correlated with each other,
there are instances when the effect of one parameter on sea ice area differs considerably from the
effect on sea ice extent. For instance, Figure 7b shows an increase of sensitivity of sea ice area to
dragio while sea ice extent remains insensitive to that parameter in May. This spike in the
sensitivity of sea ice area to dragio (Figure 7b) is accompanied by a sudden drop in the
sensitivity to ksno (Figure 7a). From March to May when ice concentrations are relatively high,
the changes in concentration will affect more the area than the extent. The sensitivities on sea ice
area and extent could also differ due to changes in concentrations taking place away from the

marginal ice zone, to changes in sensitivities associated with other parameters, or due to errors in
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the sensitivity estimates arising from emulator error.

In Figure 9 and Figure 10 we present the first order and the total sensitivity indices of the
CICE input parameters for sea ice at the end of each of the four seasons. We focus the analysis
on sea ice volume because it is an integrated measure of the thickness, which to a large extent
determines the survivability of sea ice and therefore can be a more relevant variable to predict
sea ice evolution [Holland et al., 2008; Chevallier and Salas-Mélia, 2012]. We have ranked the
indices in order of decreasing importance for the September ice volume (month of minimum
Arctic sea ice coverage) in the northern hemisphere. In the figures we have used 0.02 (shaded
region) as a threshold to indicate that an effect is unimportant. The difference between the total
sensitivity and the first order indices for an individual parameter along the horizontal axis
indicates the relative importance of its interactions with other parameters. If the total sensitivity
index is close to the first order index for a given parameter, there are no important interactions
with other terms, and the effect of that parameter on the model predictions is purely additive (i.e.,
it does not depend on what values other parameters take). If the total sensitivity index is not close
to the first order index however, then the effect of an individual parameter is non-additive and

will depend on the values that interacting parameters take.

The September sea ice volume in the northern hemisphere (Figure 9a) is sensitive to about 10
parameters. The top 5 most important parameters are ksno, lambda_pond, rsnw_mlt, R_snw, and
dragio, all of which display interactions with other parameters. The other parameters with non-
negligible sensitivity indices include density of sea ice and snow (rhoi and rhos, respectively),
the thickness of the ice scattering layer (hi_ss/), the aspect ratio of the yield curve (ecc), and the
strength of the slow drainage mode in the mushy thermodynamics (dSd¢ slow mode). In fall and
winter (Figure 9b and c) the sensitivity of the model becomes larger for ksno but reduces for the
other parameters. The high sensitivity to ksno highlights the importance of the insulating effect
of the snow cover (which will be discussed in section 5) along with the effects that other
parameters have on sea ice volume. During the ice growth season the interaction between model
parameters also decreases and sensitivity is due mainly to first order effects. In spring, the R_snw
indices begin to spin up (Figure 9d), but other parameters that are also active during the melt

season only become important in summer (Figure 9a).
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In the southern hemisphere the sea ice volume is also highly sensitive to ksno. In comparison
with the northern hemisphere, however, the importance of lambda pond and rsnw mlt is
considerably reduced. During summer (Figure 10c¢), dragio, rhoi, and ecc are considerably more
important in the southern hemisphere than they are in the northern hemisphere. The energy
dissipation parameter due to shear (Cs) is important only in the southern hemisphere. Without
considering the effect of ksno, this would indicate that in comparison with the Arctic, the
sensitivity of sea ice in the southern ocean appears to be more affected by dynamical processes
than by thermodynamic processes. The interactions between model parameters are also less
important in the southern hemisphere, except for interactions associated with dragio which
appear to be produced almost entirely by interaction with ksno (Figure 10c). In fall, winter, and
spring (Figure 10d, a, and b), sea ice volume is sensitive to fewer parameters and their
interactions are small. Besides sensitivity to ksmo, important parameters also include

dSdt_slow_mode in fall and winter, and rhoi and astar in winter and spring.

We also estimated the sensitivity indices in different ice regimes, one during the 1980s when
relatively large amounts of sea ice were present in the Arctic, and another during the 2000s when
historical minima of sea ice occurred in the Arctic (not shown). There was no evidence that the
sensitivity to input parameters changed considerably between these two different climatic
conditions, with only marginal differences in the fractions of the total variance produced by

individual parameters, and shifts in the parameter rankings in only a few cases.

Our parameter rankings are broadly consistent with previous sensitivity studies. In particular,
ice and snow conductivities, and albedos have been found to be the most important parameters in
Kim et al. [2006], Peterson et al. [2010], and Uotila et al. [2012]. While our study does not
explicitly examine albedos because these are computed internally within CICE, it identifies
important parameters controlling snow grain size (rsnw_mlit and R_snw) which ultimately affect
the albedo estimates in the delta-Eddington radiation scheme. Our study also identifies important
parameters previously found unimportant or not examined such as lambda pond, rsnw_mlt,
astar, and hi_ssl. These parameters suggest the important role of specific melt pond (drainage),
snow._(grain size) and ice (scattering, and ridging) parameters contributing to model uncertainty.

Arctic ice volume is relatively less sensitive to ice density (rhoi) in this study than in previous
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studies [Kim, et al., 2006] because its importance is superseded by the snow and melt pond
parameters mentioned above. A comparison with a previous sensitivity study in a coupled
climate model [Rae et al., 2014] shows that conductivity is the most important parameter in both
standalone and fully coupled configurations. While R _saw is important in both configurations,
our study suggests that other parameters (rsnw_mlit, lambda _pond) are even more important,
which could be partially explained by the more comprehensive list of input parameters included

in our study.

5. Discussion of main effects and interactions

The sensitivity indices estimated in section 4.3 measure the sensitivity of sea ice to the
individual parameters and the interactions among them. They do not, however, provide much
insight onto the functional relationships between the sea ice variables and the effects of
individual parameters, or the physical processes underlying such relationships. We focus on the
September Arctic sea ice volume to discuss its relationships with the most important parameters
in terms of parametric uncertainty. We seek a generalized additive model [Hastie and Tibshirani,
1986; Wood, 2000] with the structure given by equation (1), but with inputs (X;) restricted to the
top ten (p=10) most influential parameters in Figure 9a. A generalized additive model assumes
that the model prediction is the sum of unknown functions of the parameters, which are
estimated non-parametrically rather than based on assumed forms such as polynomials. For
simplicity we consider only the first and second order terms in equation (1), and neglect higher
order interactions so that f(X) =~ fo + 212, fi(X) + X3¢ ifij (X;X;). The main effects are the
univariate functions in the first summation, and the second order effects (or interactions) are the
bivariate functions in the second summation of the expression for f{X). In the expression for f{X)
the expected value over all the input parameters is fy and therefore the main and the second order

effects represent deviations from that expected value.

In order to fit an additive model for September Arctic sea ice volume we evaluate the
emulator 10* times, varying the top 10 important parameters and setting the unimportant
parameters fixed at default values. The main effects (one per parameter) are obtained by

applying non-parametric smoothing functions to one-dimensional scatterplots of sea ice volume
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versus each of the 10 parameters included in the model [Wood, 2006, Wood, 2015]. Similarly,
the interactions between pairs of parameters are obtained by smoothing two-dimensional
scatterplots of the sea ice volume as a function of pairs of parameters, which amount to 44

second order interactions.

5.1. Main effects

Figure 11 shows the main effects on the most important model parameters controlling the
simulated September Arctic sea ice volume. The main effects give the sensitivity of the model to
variations in one individual parameter when the model predictions are averaged over all other
parameters. Thus the figure shows first order changes in sea ice volume as a function of
individual parameters along their (normalized) plausible range of values. Note that the
relationships between ice volume and lambda_pond, rsnw_mlt, dragio, ecc, and ksno have clear

non-linear behavior.

The variation of sea ice volume is larger as a function of ksno (Figure 11a) in comparison
with the variation produced by other parameters (Figure 11b-i). An increase in snow conductivity
reduces the insulation effect of the snow, resulting in larger heat losses and ice growth during
winter. As lambda_pond increases melt pond drainage occurs faster, reducing the fractional area
of ponded sea ice. Ponded sea ice has lower albedo than bare ice and therefore promotes sea ice
melt. Large values of lambda pond associated with bare ice lead to large sea ice volume while
lower values associated with ponded ice result in reduced volume (Figure 11b). The main effect
for lambda pond tends to flatten near the extremes, which can be indicative of thresholds
beyond which sea ice volume is insensitive. These thresholds could occur because virtually all
seaice is-ponded (low lambda_pond), or because melt ponds have been totally flushed out of the

seaice surface (high lambda pond).

The sensitivity of the model to parameters involved in the radiation scheme is encompassed
mainly in rsnw_mlt, R_snw, and hi_ssl (Figure 11c, d, and g). The first two parameters affect
directly the estimation of the snow grain size, and the third parameter is the thickness of the ice
scattering layer. For relatively small snow grain sizes, the maximum melting snow grain size

(rsnw_mlf) has a big influence on sea ice volume (Figure 11c¢). Constraining the snow grain size
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also constrains the lower bound of snow albedo. When rsnw_mlt is small, increasing its value
results in a dramatic decline of ice volume due to considerable reduction in snow albedo and
enhanced absorption of solar radiation. The sensitivity of sea ice volume is much less important
at high values of rsnw_mlit possibly due to high melt rates which would deplete the snow pack
beyond certain grain sizes. The R_snw parameter gives the standard deviation of the snow grain
size. Increasing R_snw has the effect of reducing the grain size in the delta-Eddington radiation
scheme, increasing albedo and reducing absorption of solar radiation, which results in lower sea
ice melt rates and increased September ice volume (Figure 11d). Increasing the thickness of the
ice scattering layer (/i ss/) considerably increases the ice volume (Figure 11g) by increasing the
albedo and reducing the heat absorption of bare ice [Light et al., 2015], thus reducing the overall

melting in the sea ice pack.

September Arctic sea ice volume can also be sensitive to dynamic processes in the standalone
model through the dragio and ecc parameters (Figure 1le and i). Sea ice volume is slightly
sensitive at low values of the neutral ocean-ice drag, but largely sensitive at high values.
Moreover, the main effect of dragio suggests that sea ice volume can either increase or decrease
with dragio. At low dragio values, increasing of the neutral drag results in a slight reduction of
Arctic sea ice volume, possibly because of the dominant role of the wind stress that would keep
moving sea ice out of the Arctic into the North Atlantic. On the other hand, at relatively high
values of dragio, increasing the neutral drag increases the ice volume. We speculate that
enhancing the ocean-ice drag could slow down the transpolar drift, reducing the export of sea ice
through Fram Strait and accumulating sea ice in the central Arctic. This would be consistent with
previous studies suggesting that Arctic ice thickness is affected by Fram Strait sea ice export
[Langehaug et al., 2013]. Sea ice volume is also sensitive to the aspect ratio of the elliptical yield
curve (ecc). In Figure 11i, sea ice volume decreases as ecc increases. Increasing ecc diminishes
the capacity of the ice pack to withstand shear stress and the reduction in ice volume results from

increased ice velocities and larger exports by the transpolar drift.

The simulated sea ice volume is also sensitive to the choice of sea ice and snow densities
(rhoi_and rhos, respectively). Their main effects in Figure 11f and h show that the September

Arctic sea volume monotonically increases as both rhoi and rhos increase. These parameters are
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used in both dynamic and thermodynamic modules and affect CICE model estimates in different
ways. Figure 11h would suggest that the predominant effect of the snow density on September
Arctic sea ice volume is reduced insulation in winter (and increased ice growth) due to the
thinning of snow layers as snow density increases. Finally, Figure 11f shows that increasing rhoi
results in higher Arctic ice volume, consistent with increasing compressive and shear strength of
the 1ce pack [Rothrock, 1975; Liscomb et al., 2007]. The transpolar drift slows down under
relatively more resistant sea ice pack, and subsequent accumulation of sea ice occurs in the

central Arctic.

5.2. Interactions

We present only the three most important interactions (out of 44) based on F-statistics
obtained. upon fitting the additive model derived from equation (1). These correspond to the
interactions of ksno with lambda pond, rsnw mlt, and R snw. Figure 12 shows these
interactions as bivariate functions accounting for the fact that the effect of one parameter on the
model predictions might depend on the value of another parameter. Interaction in this context
means that the combined effect of interacting parameters is different from the sum of their main
effects. The interactions can be thought of as “effect modification” terms to be applied to the

main effects, depending on the value of the interacting parameter.

Figure 12a shows the second order interaction between ksno and lambda pond. At low values
of lambda _pond, the sea ice volume decreases as ksno increases, which has the effect of
flattening the main effect of ksno in Figure 11a. At high values of lambda_pond the second order
interaction along ksno has the opposite effect, and has the effect of steepening the main effect of
ksno. The effect of ksno on the sea ice volume, up to the second order, is then more pronounced
in the absence of melt ponds (high lambda pond) than in a scenario with large amounts of melt
ponds (low lambda_pond). Clearly, as melt ponds become more ubiquitous over the ice pack, sea
ice melting becomes more important due to increased absorption of solar radiation. The fraction
of sea ice covered by snow decreases and so does the overall effect of heat conduction through
the snow pack. The ksno-lambda_pond interaction (Figure 12a) also modifies the main effect of
lambda_pond on sea ice volume in Figure 11b, indicating that at relatively low values of ksno,

the ice volume decreases as lambda _pond increases, which would flatten the main effect of
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lambda_pond in Figure 11b. At high values of ksno, the interaction is an increasing function of
lamba_pond, which would steepen the main effect of lambda pond in Figure 11b. The
steepening of the main effect indicates that sensitivity to lambda_pond increases, and vice versa.
When the conductivity of the snow pack (ksno) is high there is considerable sea ice coverage,
which could sustain large coverage by melt ponds, which in turn would have a large effect on
melt rates and volume changes. If ksno is relatively low, the ice pack shrinks considerably and it
is easy for melt ponds to become ubiquitous on the ice pack, where any addition of ponds has no

further effect on the ice volume.

Another important interaction occurs between ksno and rsnw_mlt. Low values of ksno in
Figure 12b tend to flatten the main effect of rsnw_mlit in Figure 11c, and high values of ksno, to
steepen the main effect of rsnw_mlit. The sensitivity of ice volume to ponded ice is large when
there is large sea ice coverage, and ponds appear more quickly as the maximum melting snow
grain size (rsnw_mlt) increases, because the snow albedo is less constrained towards high values.
If on the other hand, the overall amount of sea ice is relatively low (low ksno), the surface of the
ice pack quickly fills with ponds so that increasing rsnw_mlit no longer changes considerably the
ponded ice albedo nor the total sea ice volume. When the maximum melting snow grain size
(rsnw_mlt) is small, the ksno-rsnw_mlt interaction (Figure 12b) tends to steepen the main effect
of ksno in Figure 11a. Low rsnw_mlt values limit the amount of solar radiation absorbed by the
snow pack resulting in relatively less ponded ice, which enhances the sensitivity to heat
conduction through snow layers. The opposite effect takes place as the main effect of ksno is
flattened by the interaction of ksno-rsnw_mlt at relatively large snow maximum melting grain

sizes.

Similar to the ksno-rsnw_mlt, the interaction between ksno-R_snw also indicates an interplay
between snow grain size and snow conductivity (Figure 12c). Both rsnw _mlit and R _snw affect
directly the snow grain size and therefore the snow albedo. Note, however, that by increasing
R snw the snow grain size decreases as parameterized in the delta-Eddington formulation for
shortwave radiation. Thus at high values of ksno, the interaction between ksno and R snw

increases the sensitivity of the main effect of R snw, and vice versa (Figure 12¢ and Figure 11d).
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Again, as with the interaction between ksno-rsnw_mlt, smaller grain sizes (or large R snw)

increase the sensitivity of the model to snow conductivity (ksno).

6. Summary and conclusions

This study presents a new approach for quantifying uncertainty in complex sea ice models
that shows promise for applications in the context of fully coupled climate models. We have
conducted a variance-based global sensitivity analysis of the Los Alamos sea ice model (CICE)
to quantify the sensitivity of simulated sea ice conditions to input parameters in the model. This
approach explores the sensitivity of the model over the full range of uncertainty of 39 input
parameters. In the method used here there are no implicit assumptions on linearity or additivity
of the. model. We used a Gaussian process emulator to approximate model estimates of sea ice
extent, area and volume. The emulation approach allowed numerous estimates of model
predictions which are required to estimate key sensitivity measurements, the first order and the
total sensitivity indices. By computing these effects we were able to identify the model
parameters whose uncertainty contribute considerably to the model uncertainty, and elucidate the
importance of interactions among input parameters. The estimation of the sensitivity indices are
quantities to be used for research prioritization and establishing what parameters could be fixed
to default values without significantly affecting the sensitivity of the model predictions. It is
recommended that further research efforts are made to acquire more knowledge about the
accurate value of parameters with high first order sensitivity indices, including calibration

activities.

The main physical result of this study is the identification of sea ice processes and parameters
to which the CICE model is most sensitive. These include snow conductivity (ksno), drainage of
melt ponds (lambda_pond), snow grain size (involving rsnw_mlt, R_snw), the thickness of the
ice scattering layer (hi_ssl), snow and ice densities (vhos and rhoi, respectively), the ice-ocean
drag (involving dragio), and the aspect ratio of the yield curve (ecc). Their effects on sea ice
predictions were shown to vary throughout the year indicating seasonality of the main processes
affecting sea ice extent, area, and volume. It was also shown that in comparison with the

southern hemisphere, there are more active parameters driving the sensitivity of the model in the
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northern hemisphere. Interactions among parameters are also more important in the northern

hemisphere than in the southern hemisphere.

We also interpreted the main processes driving the sensitivity of the model by interpreting the
functional relationships between September Arctic sea ice volume and the most important
parameters according to the sensitivity indices. Several of the main effects are non-linear
relationships, in which the sea ice sensitivity to an individual parameter depends on the value of
the parameter itself (e.g. drainage of melt ponds, ice-ocean drag, or the maximum snow grain
size). The analysis also identified the most important interactions among input parameters, which
have the effect of modifying the main effects of individual parameters, depending on what value
the other interacting parameter takes. We found that important interactions between the snow
conductivity (ksno) and the drainage of melt ponds (lambda pond), and between the snow
conductivity and the snow grain size (rsnw_mlit, R_snw). Previous studies had already identified
the large sensitivity of sea ice variables to snow conductivity, but its interactions with the snow
and melt pond parameters had not yet been identified. These interactions indicate an interplay
between the conduction of heat through the snow pack and its effect on the ice volume, and the
relative amounts of ponded sea ice which affect the albedo and melting rates of sea ice. It follows
that interactions among parameters can be important, and that sensitivity studies in climate
applications must consider these types of effects because additivity of main effects may not be

justified.

This study' also found that model estimates of sea ice volume generally display more
parametric uncertainty than estimates of sea ice extent and area. Model estimates have more
uncertainty associated with parameters during summer than in winter. In particular, fall and
winter estimates of sea ice area and extent have very little parametric uncertainty in both the
northern and the southern hemisphere. Model predictions of sea ice extent and area during these
seasons are expected to be affected more by atmospheric and oceanic forcing, than by parametric
uncertainty. Summer predictions of sea ice conditions are largely affected by parametric
uncertainty, and efforts should be made to reduce this source of uncertainty to achieve more

robust prediction systems.
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We acknowledge the fact that the sensitivity of a coupled atmosphere-ocean-ice system might
differ from the results obtained in this study because of feedbacks among these components,
which can affect wind patterns and heat transport through changes in clouds and atmospheric
boundary layer [Taylor et al., 2013; Rae et al., 2014]. We will examine this issue for a reduced
number of model parameters in a future study. We also point out that bringing more complexity
to climate models requires a good characterization of new uncertainties incorporated in the
modeling framework, as well as a complete assessment of the model sensitivity to new
parameters included by new developments. This study has addressed this issue for the latest

version of the CICE sea ice model, which includes numerous new physical parameterizations.

Acknowledgements

We want to thank Andrew Roberts and two anonymous reviewers for useful discussions and
suggestions on the manuscript. This study has been supported by the Regional and Global
Climate Modeling (RGCM) Program of the Office of Biological and Environmental Research
(BER) within the U.S. Department of Energy’s Office of Science. We thank the Earth System
Modeling (ESM) Program, also within BER, for use of the column-package version of CICES, as
developed for the Accelerated Climate Model for Energy (ACME). The sea ice observational
data used in this study was obtained freely from the National Snow and Ice data Center and from
papers properly cited and referred to in the reference list. The source code for CICE 5.1 and

other data are available from the authors upon request at jorge.urrego.blanco@]lanl.gov.

This article is protected by copyright. All rights reserved.



29
Appendix. Estimation of sensitivity indices

The direct estimation of the sensitivity indices (section 2) is made using the mean predictions
produced by the emulator. Evaluation of equations (4) and (5) involves evaluation of integrals
which is typically done using Monte Carlo, or quasi-Monte Carlo numerical integration. In
practice, several estimators have been derived in previous studies [Sobol’, 2001; Saltelli et al.,
2010; Owen, 2013]. We have followed [Saltelli et al., 2010] and used the following estimators

for the sensitivity indices in terms of emulations estimates at sampling matrices A, B, and A ,

each containing N emulator runs.

Ve, (Bx (V1XD) NZf(B),(f(A) f@))) (A1)

and

Ex_, (i, (V1X.0) ZNZ(f(A), f(A),)? (A2)

These matrices have dimensions N X p corresponding to N emulator predictions and p
parameters. The matrices A and B are Sobol’ sequences with N sample points. To obtain Ak,
for{i =1, ...,p}, the it" column of matrix A is replaced by the column it" of B. To obtain the

sensitivity indices, equations (A1) and (A2) need to be normalized by the total variance V(Y)

which is estimated as the variance over all the emulation predictions of A and B.
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Tables

Table 1. Uncertain input parameters in CICE v5.1 for the configuration used in this study. The parameters have been

grouped in broad categories indicating the model physics they more directly affect.

rhos snow density
rhoi ice density
Ridging
Melt ponds astar participation function e-folding scale

rfracmin ~ min. fraction of melt water added to ponds mu_rdg redistribution parameter

rfracmax  max. fraction of melt water added to ponds ~ C, energy dissipated due to shear

pndaspect aspect ratio of pond changes C. frictional dissipation

hsl snow depth transition to pond ice fsnowrdg snow fraction surviving ridging

Dynamics Mushy thermodynamics

iceruf roughness for neutral air-ice drag kb thermal conductivity of brine

dragio neutral ocean-ice drag kappal thermal diffusivity of brine

ecc yield curve aspect ratio ksno thermal conductivity of snow
cp_ice sea ice heat capacity

Radiation phi_i_mushy solid fraction at lower interface

rsnw_fresh ~ fresh snow grain size a rapid mode  brine channel diameter

rsnw_mlt max. melting snow grain size Rac rapid mode critical Rayleigh number

rsnw_nonmelt non-melting snow grain size dSdt_slow_mode slow drainage strength

rsnw_sig sigma of snow grain size phic liquid fraction for impermeability

dT _mlt melt/no-melt snow grain Atemp. advection limit max. fraction of brine advection

hi ssl ice scattering layer lambda pond  drainage time-scale of ponds

hs_ssl snow scattering layer viscosity dyn  brine dynamic viscosity

hp0 pond depth for transition to bare ice.

R ice sigma coeff. for albedo of bare ice

R pnd sigma coeff. ponded ice albedo.

kalg algae absorption coefficient.

R _snw sigma coeff. for snow grain

fr min overcast factor for snow grain
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Table 2. Prior probability distributions and range of variation of 39 CICE input parameters explored in the

sensitivity analysis. The assumed probability density functions are indicated as N (normal), U (uniform), T

(triangular), LN (log-normal), LU (log-uniform), LT (log-triangular), and LogitN (Logit normal).

name pdf min max units References
rhos N 260 410 kg m” [Derksen et al., 2014]
rhoi N 839 959 kg m” [Alexandrov et al., 2010]
kb 0.49 0.6 W s K [Thomas and Dieckmann, 2009]
. . . [Notz and Worster, 2009,
kappal U 3x10° 19x10° m’s
Emms and Fowler, 1994]
ksno 0.03 0.65 Wm K" [Lecomte et al., 2013; Sturm et al., 1997]
cp_ice 1800 3800 Jkg' K" [Thomas and Dieckmann, 2009]
phi_i mushy U 0.55 0.95 - [Turner et al., 2013]
a_rapid_mode LU 6x107 4x10°  m [Weeks and Hibler, 2010; Turner et al., 2013]
- [Nield and Bejan, 2006; Jones and Worster, 2014,
Rac_rapid mode U 1 50 -
Turner et al., 2013]
dSdt_slow-mode ~ LU  -1.7x10° -1.7x10" ms"' K"  [Turner et al., 2013]
phi ¢ slow mode LT 0.027 0.1 - [Gold et al., 2007; Turner et al., 2013]
advection_limit U 0.001 0.015 - [Hunke et al., 2015]
lambda_pond LU 1.15x10%  1.15x10* s [Hunke et al., 2015]
viscosity dyn N 1.6x10°  3.6x10° Kgm's' [Krembs etal., 2011; Seuront et al., 2010]
[Holland et al., 2012]
rfracmin LogitN 0 1 -
Hunke et al., 2013]
rfracmax LogitN 0 1 - [Hunke et al., 2013]
[Perovich et al., 2003; Holland et al., 2012,
pndaspect U 0.4 1.2 -
Hunke et al., 2013]
[Wiscombe and Warren, 1980,
hs1 T 0 0.1 m
Brandt et al., 2005]
rsnw_fresh T 20 300 um [doki et al., 2000; Wiebe et al., 2013]
rsnw_mlt T 250 3000 pm [Meinander et al., 2013]
rsnw_nonmelt U 20 500 pm [Hunke et al., 2015]
rsnw_sig U 100 400 um [Hunke et al., 2015]
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name pdf min max units References
dT_mlt U 1 2 K [Briegleb and Light, 2007]
hi_ssl LN 0.003 0.1 m [Briegleb and Light, 2007; Nicolaus et al., 2012]
hs ssl LN 0.003 0.1 m [Briegleb and Light, 2007]
hpO U 0.0 0.30 m [Hunke et al., 2015]
R ice -2 2 - [Briegleb and Light, 2007
R pnd -2 2 - [Briegleb and Light, 2007
kalg LU 0.001 24 m’ [Briegleb and Light, 2007]
R _snw U -2 2 - [Briegleb and Light, 2007]
fr min 0.5 1.0 - [Briegleb and Light, 2007; Hunke et al., 2015]
[Koch, 1988; Stossel, 1992;
iceruf LN 0.1x10*  19.8x10* m Vickers and Mahrt, 2006;
Andreas et al., 2010a; Andreas et al., 2010b]
dragio LN  02x10°  160x10° [Lu et al., 2011]
ecc 0.5 5 - [Flato and Hibler III, 1995; Lepparanta, 2011]
astar U 0.01 0.07 - [Liscomb et al., 2007]
mu rdg U : . 05 [Liscomb et al., 2007; Hunke, 2010,
Kim et al., 2006, Uotila et al., 2012]
C LogitN 0 1 - [Flato and Hibler 111, 1995]
Cs U 0 50 - [Flato and Hibler 111, 1995; Hopkins, 1998]
fsnowrdg LogitN 0 1 - [Vaconppenolle, 2012; Hunke et al., 2015]
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Figures

Figure 1. Frequency histograms of the 1980-2009 monthly mean sea ice extent (a, b), area (c, d), and volume (e, f)
in the northern hemisphere during September (left) and March (right). Data includes model predictions from 302

model runs at different input parameter combinations according to the experimental design described in section 3.3.

Figure 2. Frequency histograms of the 1980-2009 monthly mean sea ice extent (a, b), area (c, d), and volume (e, f)

in the southern hemisphere during September (left) and March (right), as in Figure 1.

Figure 3. The 1980-2009 monthly mean sea ice extent (a, b), area (¢, d), and volume (e, f) in the ensemble of 302
model runs at different input parameter combinations according to the experimental design in section 3.3. The
ensemble model mean +/- one standard deviation are given by blue dots and whiskers, respectively. For comparison,
observational estimates are included as red dots [Fetterer et al., 2002; Kurtz and Markus, 2012; Zygmuntowska et
al., 2014] and the estimates from a CICE run using default parameter values as yellow dots. The shaded region

encloses the envelope of 302 ensemble model predictions.

Figure 4. Root-mean-square error (RMSE) of the Gaussian process emulators for each model output variable, fitted

to monthly mean model predictions from 397 runs.

Figure 5. Comparison of mean emulation prediction and simulated September mean sea ice volume in the northern
hemisphere in 9 cross-validation datasets. Diagonal lines indicate perfect agreement between emulated and

simulated ice volume, and whiskers indicate one emulator standard deviation from the mean prediction.

Figure 6. Comparison of mean emulation prediction and simulated September mean sea ice volume in the southern
hemisphere in 9 cross-validation datasets. Diagonal lines indicate perfect agreement between emulated and

simulated ice volume, and whiskers indicate one emulator standard deviation from the mean prediction.

Figure 7. Seasonal variation of the total indices of six input parameters affecting uncertainty of sea ice extent, area,

and volume in the northern hemisphere.

Figure 8. Seasonal variation of the total indices of four input parameters affecting uncertainty of sea ice extent, area,

and volume in the southern hemisphere.
Figure 9. The first order (blue) and total (red) sensitivity indices of 39 input parameters affecting sea ice volume in

the northern hemisphere during (a) September, (b) December, (c) March, and (d) June. The parameters are listed in

descending order of importance for the end of summer (September) sea ice volume.
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Figure 10. The first order (blue) and total (red) sensitivity indices of 39 input parameters affecting sea ice volume in
the southern hemisphere during (a) September, (b) December, (c) March, and (d) June. The parameters are listed in
descending order of importance for the end of summer (September) sea ice volume in the northern hemisphere as in

Figure 9.

Figure 11. Main effects of the most important parameters affecting September sea ice volume in the northern
hemisphere (Figure 9). The main effects (black curves) represent the first order terms in equation (1) as anomalies
around an expected value (fy). Red lines represent the 95% confidence intervals of the main effects. Horizontal axes

are normalized for the minimum and maximum values for each parameter as in Table 2.

Figure 12. Second order interactions affecting September sea ice volume in the northern hemisphere including (a)
ksno-lambda_pond, (b) ksno-rsnw_mlt, and (c) ksno-R_snw. The interactions represent second order terms in
equation (1) ‘as anomalies around an expected value (f;). The figure axes are normalized between 0 and 1 for the

minimum and maximum values for each parameter as in Table 2.
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