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I1I-N Nanostructures for low-cost,

Vertical device integration

benefit: higher effective device area (cost/droop)

Nonpolar sidewall nanowires Nonpolar sidewall nanowalls
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ex: AR=3, FF=0.5 — 6.9x% increase! ex: p=0.5 um, h=3 um — 12% increase!

Microrod LEDs (Osram Opto)

|| Top-down GaN
nanowalls

G. T. Wang (Sandia)

Microwire LED IQE~65% ) 521:2‘.’]3:3’ AN
Nonpaolar

<1-100>
Cpd Semiconductor Mag: What’s The Best «

Business Model For Nanowire LEDs? (Dec. 14)

Complex 3D growth and injection Dapkus (USC), APL 100 033119 (2012)
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reduced droop LEDs|rh

Use of alternative substrates

benetfit: lower cost, new form factors

Core-shell NW LEDS grown on 8” Si
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Nanowire LEDs grown on SiO, GaN NWs on tungsten foil
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Flexible core-shell NW LEDs by MOCVD

CNRS (Grenoble), NL, just accepted 8/31/15
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11I-N Nanostructures for the Green-Yellow-Red Gap () o _

benefit: strain accommodation allows heterostructures with high In content (e.g. green-yellow-red gap)

Axial c-plane InGaN disc/dot-in-a-wire grown by MBE: long wavelength emission demonstrated

Red emitting InGaN disks-in-wire ~52% IQE Near IR InGaN LEDs at 1.46 pm Phosphor-free RGB nanowire arrays on Si
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Bhattacharya (U. Michigan) APL 102 071101 (2013) Kishino (Sophia U.), APE 5 031001 (2012) Z. Mi (McGill U.), Opt. Exp. 22 A1768 (2014)
Can axial heterostructures be replicated with MOCVD? Uniform injection of NW arrays an issue

{10-11} Semipolar nanostructures: potentially higher In incorporation
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Wernicke (TU Berlin), SST 27 024014 (2012) Corner effects (nonuniform In incorporation), material quality?
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111-N Nanowire and Quantum Dot Lasers i) it

Potential benefits: long wavelengths, low thresholds, higher efficiencies, wavelength tuning, nanophotonics

Ultralow threshold full-color plasmonic lasers (Gwo) Top-down nanowire photonic crystal laser pixels
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Ultralow continuous wave threshold across visible spectrum (single NWs on Ag)

J. B. Wright et al. (Sandia) Sci. Rep. 3, Art. #: 2982 (2013)
60 nm A tuning demonstrated purely by PC geometry

Ultralow threshold electrically injected AlIGaN nanowire array UV random

laser on Si by MBE e
y y Red Edge-Emitting QD Lasers by MBE
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Electrically injected lasing at 263 nm @ 0.6 kA/cm? threshold, deepest UV reported to date Bhattacharya (U. Michigan) IEEE J. Quant. Electr. 49 923 (2013)
~36% IQE at 630 nm, 2.5 kA/cm? threshold
Aboslute EQEs and Output Powers? Electrical Injection for single NWs? MOCVD Compatible Processes?
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Tailored Quantum-Scale and 3D Nanostructures
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Can hybrid approaches that advance and integrate bottom-up and top-down approaches be
exploited to realize new classes of architecturally tailored 3D semiconductor nano and meso
structures with novel and enhanced optoelectronic properties & functionalities?

I T —
GaN nanotube: hexagonal inner
shape and rounded outer shape

Understanding 3D nanoscale shape evolution via bottom-up growth and top-down etch

processes

InGaN QDs created by self-
terminating quantum-size-

controlled photoelectrochemical
etching - Al

Tsao et al. (Sandia) Nano Lett. 14 5616 (2014)
New paradigm of "quantum nanofabrication”

— using quantum size effects for precise size
control of sub 10 nm quantum structures

GaN core radius, ¥

After Fig. 4(b) in: Raychaudhuri & Yu
J. Vac. Sci. Technol. B 24 (2006) 2053

In,Ga,_N shell thickness, 1

Radial
hybrid
nanowire
architecture

Compliant synthesis of hybrid integrated
nanostructures across materials systems

Hierarchical approaches to create 3D
hierachical mesostructures with
deterministic placement of elements

i‘\ Single dislocation
captured in GaN
nanowire LED

0.2 um

Using nanostructures to probe
property-structure relationship
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I1I-N Nanostructures for the Green-Yellow-Red Gap () i
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Benefit: strain accommodation allows heterostructures with high In content (e.g. green-yellow-red gap)

Axial c-plane InGaN disc/dot-in-a-wire

grown by MBE
Semipolar nanostructures
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Red emitting 650 nm InGaN disk8liaitacharya (Michigan) APL 102 071101 (2013)
wire with ~52% IQE
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Phosphor-free RGB nanowire arrays ; 1apm

integrated on Si 7. Mi (McGillU.), Opt. Exp. 22 A1768 (2014) InGaN nanowire pseudo-templates?
Wunderer (U. Ulm), PSSb 24

Can process be replicated with MOCVD?
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