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3D in the Meta-Atom Sense ®
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Polymer-Based MPL




Polymer-Based MPL Process Flow Bl
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Polymer-Based MPL Structures G
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CMOS-Compatible MPL
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Sources of Pattern Distortion G
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3D um-scale Metamaterials @
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3D um-scale Metamaterials @
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3D um-scale Artificial Dielectrics




2-D Lattice + Basis ®
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Dynamic MPL
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Dynamic MPL
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Dynamic MPL
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Dynamic MPL
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Etching with MPL
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MPL Process Flow for Etching G

Question: Since dry etching is also a low-pressure operation, can we
directionally etch sidewalls in an MPL-centric process flow?
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Directional Processing - Actual CEE

Plasma Etching
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Plasma Sheath Conforms to Die ®

What You Would Like What You Get
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Use Faraday Cage to Reorient The @
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Oblique Directional Etching in the @
Literature
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Oblique Directional Etching in the @

Literature
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MPL-Etching
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Optical Characterization
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Polarization Dependent Reflectivity
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Measured Data — Naked Boxes

Total reflectivity = Diffuse + Specular Signals
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Measured Data — Naked Boxes
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Polarization Dependent Reflectivity
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2-SRR Basis
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Conclusions CE

= MPL is capable of creating all 5 2D-Bravais Lattices.

= Using Layer-by-layer techniques access to all 14 3D-Bravais
Lattices is possible.

= Dynamic MPL is capable of creating complex 3D traces inside
the unit cell.

= MPL can be extended to etching using a Faraday cage.

= CMOS compatible structures show significantly reduced
material absorption and obvious polarization dependent
resonances.

= Roughening the backside is important to remove contribution
of backside scattering in silicon substrate due to IR
transparency of silicon.
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BACKUP SLIDES
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Wafer Scale Oblique Angle Etching @
Fixture
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Polymer Based MPL
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