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Postcards from Albuquerque




Outline

1. Formation of 3D Carbon Scaffolds
2. Physical Properties of 3D Carbon Scaffolds
3. Conversion to few-layer 3D Graphene

4. Application: Non Enzymatic Glucose Sensor

5. Application: SERS Substrate




Faces of Carbon

sp> bonds
Diamond

rial

Hardest mate
Good abrasive
Electrical insulator
Good thermal conductor
Optically transparent

Images from Wikipedia

Amorphous
Carbon

High Modulus |
Tunable DC Conductor
Optically Opaque

* Highest elemental melting point
(sublimes at ~3900K)

* Forms ~ 10 million different compounds

» Resistant to acids, bases and all but the
strongest oxidizers

iologically compatible

sp? bonds
Graphite

One of the softest materials
Good lubricant

Electrical Conductor

Can act as thermal insulation
Optically opaque
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Synthesis Route to Amorphous Carbon:
Pyrolysis of Organic Polymers

Organic Polymer = Pyrolysis =% Amorphous Carbon

Surface
Termination
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Typical Photopatternable Organic Polymers
Polymethyl Methacrylate Epoxide Resist Phenol formaldehyde resin
(PMMA) (SU 8) (novolac photoresist)
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Visual History and
Properties of Pyrolyzed Resist
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Interferometric Lithography
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Sub-Micron 3D Resist Patterns
Via Interferometric Lithography
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Conversion of 2-D Resist Structure to
-D Carbon Structure
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Conversion of 3-D Resist Structure to
3
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Properties of 3-D Carbon
Scatfolds




Raman Spectroscopy of Pyrolyzed Resist
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Nearly Atomically Smooth Surface

émoothness of bare carbon — , ,
Ultra small, uniform NP formation

no preferential nucleation sites

EHT = 200ky  WD= 3mm  Signal A=lInLens  File Mar
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Burckel et al, Small, S, pp2792-2796 (2009). h Laboratories




Electrodeposition Conditions
Impact Nanoparticle Morphology

100 s Deposition 50 s Deposition 100 s Deposition

o 4
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Impact of Carbon Hydrophobicity

3D carbon
1s hydrophobic

Deposition from Deposition from
Aqueous Solution




Vertical vs. Horizontal Shrinkage

Significant Hl%l Pa.rttlcle
vertical Tl
shrinkage

Extremely small,
highly uniform
NPs

Inhomogeneous
wetting
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Modification of Carbon Scaffold: PVD

Pt deposition occurs ¢ Pt deposition occurs
even in non-line-of-sight _ throughout entire thickness
locations S ~ of scaffold 2 o

W, HV WD | det mag mode ——— 500 nm —— \ HV WD | det mag mode ——500 nm ——
#110.00kV| 5.0 mm | TLD | 120 003 x| SE % [10.00kV|50mm | TLD [ 120 000 x| SE

Pt sputtered @ 1A/s
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Pyrolyzed Carbon GaN Growth Masks
(High Temperature Stability)

Resist Carbon Nucleation Layer
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Burckel, et. al. “Lithographically defined carbon growth templates for ELOG of GaN,” ,I,l ﬁg?igir?al
Journal of Crystal Growth, 310, 3113-3116 (2008).

Lahoratories




3D Carbon Electrodes

Bare Carbon Electrodeposited Electrolessly-Deposited
Scaffold N Au Nanoparticles Pd nanoparticles
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Enhanced Mass Transport
(Fluidic Impact of um Pores)

N | | Electrodeposited Conducting
| e : - Polymers
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Hierarchical Nano-Microporous Au-C

Electrodeposition

or Sputter

Ally fii on 3 Nanoporous tilm on 3D

3D Macroporous carbon
Macroporous carbon Macroporous carbon
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Sattayasamitsathit, et. al. “Highly ordered tailored 3D hierarchical nano-microporous Au-C architectures,” J. of Mat Chem, 22, 11 "'11 wa g?c'.,ies



3-D Few-Layer
Graphene

Xiao et al, ACS Nano, 6, pp. 3573-3579 (2012).




3D Graphene From Nickel Foam

Before CVD After CVD
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Chemical Conversion to Graphene

Annealing



SEM Images of Conversion Steps

_.

Amorphous Conformal
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Xiao et al, ACS Nano, 6, pp. 3573-3579 (2012). ) aoa
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SEM Images of 3D Graphene
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Confirmation 3D Graphene: XPS
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X-ray photoelectron spectroscopy — surface measurement technique
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3D Graphene: Micro-Raman
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Nickel-Graphene Composite Scatfolds

(Morphology vs Electrochemical Performance)

g| A Electrochemical detection of
E | T glucose.
"é Pl a-_;m;i]:“ 0.02
é (Mgt JHl J\L A
" 0.01

10 20 30 40 50 60
Two-Theta (degrees)

o
-
(mM)
- - . 1% cycle
100
T -0.01 250t
L 500™
g 00 01 02 03 04 05 06 00 01 02 03 04 05 08
g 15F potential (V)

0.00 -

current (Alcm?)

potential (V)
Af 60+
al Raman - w: 157 D Sputtered Ni: 0.60V
—-_— ) Ni graphene: 0.60V
@ 4. % 404 ,:E— Ni graphene: 0.55 V
1 4 Ni hene: 0.45V
£ g 5 %l ﬁ 10 i graphene;
——JUL_—M § =] £
2 { -
M " ri r e t ]
1000 1500 2000 2500 3000 E 191 g
Raman Shift lcm"l 3 3
" o ©

Journal of

Materials Chemistry

a4 4
. » g

. o 1 20 30 4 50
L) % potential (V) time (s)

3

Y W ™) Sandia

AP —zo— RSCRublishing [Fm e —— National
Xiao, et. al. “Three dimensional nickel-graphene core-shell electrodes,” J. of Mat Chem, 22, 23749-23754 (24 zab:mratories



Deposition Condition Control Over
Nanostructure Morpholog

Au Nanoparticles :
Effect of Au Conc
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Interferometrically Patterned Carbon
: 3 =- Carbon

&= = Photonics

Structured

Emitters

Ultra-Capacitor/Energy Storage

High Surface Area
Catsis/Sensor Platform

Convert 1D, 2D and 3D

'/ sub-micron photoresist patterns
created with interferometric
lithography into
pyrolytic carbon

Biological Platform



Conclusions

* Lithographically structured pyrolyzed carbon provides a path toward
leveraging inherent physical properties of elemental carbon in
technologically relevant applications.

* Lithographically patterned carbon structures can be modified either
electrochemically or through PVD to create a variety of sensor platforms.

* 3D amorphous carbon can be converted to 3D few layer graphene chemically

* Demonstrated 10 mm detection limit for glucose with fast response times (~5s
95% response).

* Demonstrated SERS platform with spatially homogeneous enhancement factor of
~ 5x10°.
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How Fast Can We Pyrolyze?

(Morphology vs Electrochemical Performance)
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Non-Limiting Hydrogen Electrosorption
(Gas/Fluid Phase Impact of Hydrophobicity)

All Fluid Phase
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modified porous carbon electrodes,” Electroanalysis, 24, 153-157 (2012).



Lithographically Patterned Carbon
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Electrode Characterization —
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Electrode Response vs Pd Particle Size

Pd deposition
10s
20s
40 s
80s
160 s

j/mA.cm™

0.|5 | 0:0 | -0|.5
E/Vvs SCE
Cyclic voltammograms of Pd/Porous at variable Pd loading in 0.1 M

NaOH + 5 mM glucose. The dashed line is from Pd/GC for comparison.

Scan rate: 20 mV/s.
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3-D Carbon Electrode
Application:
Surface Enhanced Raman
Scattering (SERS)
Sensor Platform

Xiao et al, Chem. Commun., 47, pp. 9858-9860 (2011).
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PVD Ag Scaffold Modification

Sputtered Ag (1 A/s)
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Sputtering coats bottom side too!

HV WD | det :'__rnag | mode |
“110.00kV 49 mm |ETD | 80000x| SE ' m Sandia
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Xiao et al, Chem. Commun., 47, pp. 9858-9860 (2011).




SERs Signals for 3 Organic Molecules

Rhodamine 6G
| 500 counts.s . mW-!

Increase in signal not
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Enhancement Factor: 4-aminothiophenol

_ Measure # of molecules

4-aminothiophenol
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No Spatial Hotspots

Spatially resolved MaX S}gnal only ~ factor of 2.5
Raman Mapping Min Signal
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Area i iy
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3-D Carbon Electrode
Application:
Non-Enzymatic Detection of
Glucose

Xiao et al., Biosensors and Bioelectronics, 26, pp 3641-3646 (2011)
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Why is Glucose Oxidation Important?

BLYCOGEN
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Electrodeposition of Pd Nanoparticles

Sandia

1., Biosensors and Bioelectronics, 26, pp 3641-3646 (201 1)’3 i



Electrode Response to Glucose Additions

um concentrations mm concentrations
0 -
N _
1 -
: § 2
< < |
E £ s i
2 T T T 6] T = : T
0.5 0.0 -0.5 0.5 100 -0.5
E/Vvs.SCE E/Vvs SCE

Linear scan voltammograms of Pd/Porous in 0.1 M NaOH + x M glucose. Pd deposition: 100s,
Scan rate: 20 mV/s.

Potential was cycled hundreds of times without noticeable
current decay — SEM images indicate no change in Pd particles.
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Current and Potential Response
to Glucose Concentration

Both current and peak potential
respond to glucose concentration

0- 0.0 — 4'/__,/1 mM glucose
J | L.._..
-1+ 0.0 > \_T-,--'\ 2 mM glUCDSE
T~ W .
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° 2 N 6- 8 L 0 500 1000
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Time /s

Plots of corresponding current and peak potential vs. glucose concentration. Pd
deposition: 100s, Scan rate: 20 mV/s (A) and typical amperometric response of a
Pd/Porous towards successive additions of glucose in 0.1 M NaOH with continuous
stirring. The inset figure shows the current-concentration relationship (B).
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Electrode Response vs Ascorbic Acid

Typical ascorbic acid concentration in blood - ~0.1mM

0.5 | 0.0
E/Vvs Ag/AgClI
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2
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B 0,0.1,0.2,

0.4 and 0.6 mM

0.5 | 0.0 | 0.5
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Response of 3mM glucose in the
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mM ascorbic acid
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Superconducting Film Properties

_Resistivity
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An Unexpected Result

Before “Calcination” Burn out

I“fl"}lgate resist template What The Hell"
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