

2015 U.S DOE OE Peer Review

DOE/EPRI Electricity Storage Handbook (ESHB)

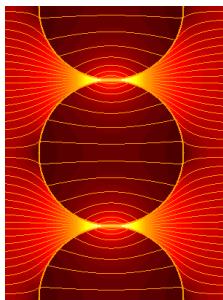
in Collaboration with NRECA

Updates

Jacquelynne Hernández

Portland, Oregon (USA)

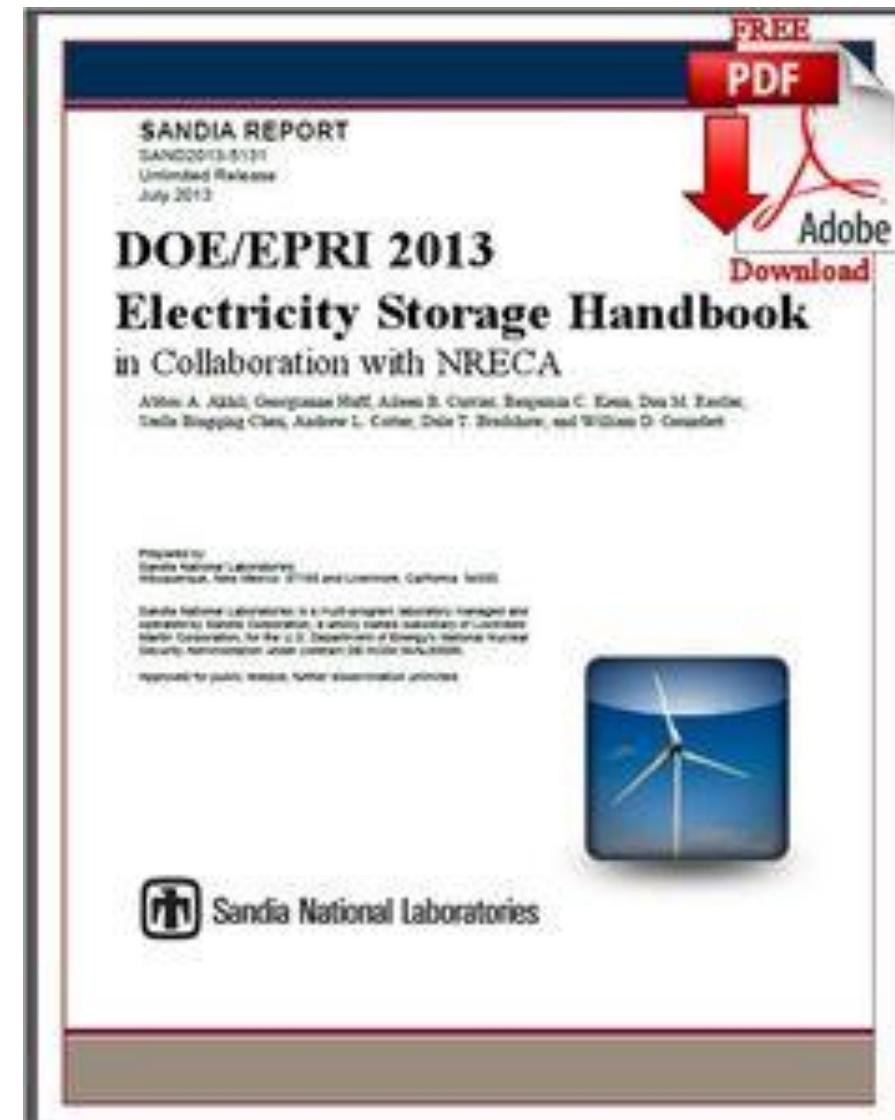
September 2015


SAND Number: 2015-

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

*Exceptional
service
in the
national
interest*

Sandia
National
Laboratories


ESHB - Project Rationale

- Why are we doing it?
 - Specific and Existing problem
 - What is the problem that the project is working to solve?
 - What will this research bring to Stationary Energy Storage?
- Why is it innovative?

ESHB Update -

Project Background Info

The purpose of the DOE/EPRI Electricity Storage Handbook, referred to here as the ESHB, is to serve as a **resource for making decisions** on technical devices, equipment, facilities, systems, and installations based on respective use cases, services, costs and benefits for the **emerging technologies and applications** associated with electrical **energy storage**. Stakeholders who require this type of information include, but are not limited to, large electricity utility and rural cooperative engineers, investors, venture capitalists, resource planners, and end-users.

ESHB Update -

Project Background Info

How does this project fit into the SNL
Energy Storage Demonstrations?

Clean Energy States Alliance CESA

Alaska

New Hampshire

California

New Mexico

Connecticut

New York

Hawai'i

Oregon

Massachusetts

Pennsylvania

Vermont

Testing and Analysis

Cells

Modules

Systems

DoD Microgrid/FOB

Industry Collaboration

Enervault

Helix

Duke Energy

EMA/ Singapore
Power

DOE/EPRI Electricity
Storage Handbook

Bermuda
Electric/Light

Optimization & Commissioning

Safety &
Standardization

Metrics/
Standardization

Performance
Protocols

ESHB Update - Project Rationale

Why are we doing it?

- Updates 2013 iteration handbook
- Fills an industry-wide need
- Establishes single-point resource
- Describes the services and applications of energy storage
 - in/on the grid
 - the current storage technologies
 - commercial status
 - system costs
 - performance metrics

ESHB Update Project Rationale

Why is it innovative?

The Handbook is jointly sponsored by the U.S. Department of Energy and the Electric Power Research Institute in collaboration with the National Rural Electric Cooperative Association.

ESHB Update - Improvements

Ready Reference Resource Guide (3RG)

Overview Summary of Existing Document

ESHB Update - Improvements

SANDIA REPORT
SAND2015-4982 M
Unlimited Release
July 2015

DOE/ EPRI 2013
Electricity Storage
Handbook

In Collaboration
with NRECA

ESHB^{3RG}

Ready Reference Resource Guide

Ready Resource Reference
Guide Organized by
Jacquelynne Hernández

Energy Storage Handbook

ESHB^{3RG}

Table of Contents

Topic	Core Discipline	3RG Page(s)	ESHB Full
Introduction		3	
ESHB Chapter 1 Summary	Storage Services & Benefits	4-5	1-28
ESHB Chapter 2 Summary	Storage Technologies	6-7	29-111
ESHB Chapter 3 Summary	Methods and Tools for Evaluating	8-9	112-123
ESHB Chapter 4 Summary	Storage Systems Procurement & Installation	10-11	124-144
ESHB Appendices Summary		12-13	
ESHB Road maps		14-16	

Topic
Core Discipline
3RG Pages
Full ESHG Reference

Prepared by Sandia National Laboratories Albuquerque, New Mexico and Livermore, California 94550
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, for
the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

ESHB Update:

Improvements & Future Work

■ Thermal Energy Storage

Dale Bradshaw

Scope

Great River Energy (GRE), a Minnesota-based generation and transmission (G&T) electric cooperative, evaluated ten dynamically dispatched hot water heaters to determine the benefits of grid-interactive energy thermal storage (GETS). The overall goals were to validate and verify the GETS technology and determine their value in demand reduction and for providing such ancillary services to the Midcontinent Independent System Operator (MISO) electricity market.

Steffes Data on Temperature, Power, and Energy for an Individual Water Heater

ESHB Update:

Improvements & Future Work

Flywheels Basics – *Don Bender SNL/CA*

Grid-Connected Power Management	Industry	Applications
	Frequency Regulation	Flywheels are used to provide frequency regulation services at two 20 MW facilities
Industrial and Commercial Power Management		
	Transit	Flywheels produced by Calnetix and URENCO have been demonstrated in a number of transit systems for trackside energy recovery.
	Mining	The Usibili mine in Healy, Alaska uses a 40-ton flywheel to smooth the demand for electricity from a 6 MW dragline
Pulsed Power		
	Electromagnetic Aircraft Launch	80 MW flywheel alternators are being developed to launch aircraft from the next generation of aircraft carriers
Uninterruptible Power Supplies		The global market for UPS systems is on the order of \$10B per year. Rotary systems account for about 5% of the total UPS market. Among large systems (>2MW), rotary UPS account for 35% of the world market
Mobile		
	Materials Handling	Flywheels recover energy and reduce emissions from raising and lowering loads with Rubber Tired Gantry Cranes at container terminals
	Motorsport	Flywheel hybrid powertrains were used successfully in the Audi R18 e-Tron LMP1s that won at Le Mans in 2012, 2013 and 2014

ESHB Update:

Improvements & Future Work

Safety: ESS Grid-Level Testing & Analysis – David Rosewater

Complex System Complex Investigation

- Challenges to Testing
 - Large systems present a challenge to testing
 - Multiple labs may be required for testing
 - Environmental chamber limitations
 - Availability of samples for testing
 - Fire Testing
 - Lab safety
 - Unique/New chemistries may present a challenge
- Challenges to construction review
 - Stakeholders unfamiliar with process
 - FMEA
 - Functional Safety
 - Components without appropriate
 - Certifications/ratings
 - Determine cells are within operating region
 - Obtaining necessary information to
 - determine compliance

Hazard Analysis Approaches

CAST Causal Analysis using System Theory

STPA
Systems Theoretic Process Analysis

STAMP
Systems Theoretic Accident Model and Process

Nancy Leveson

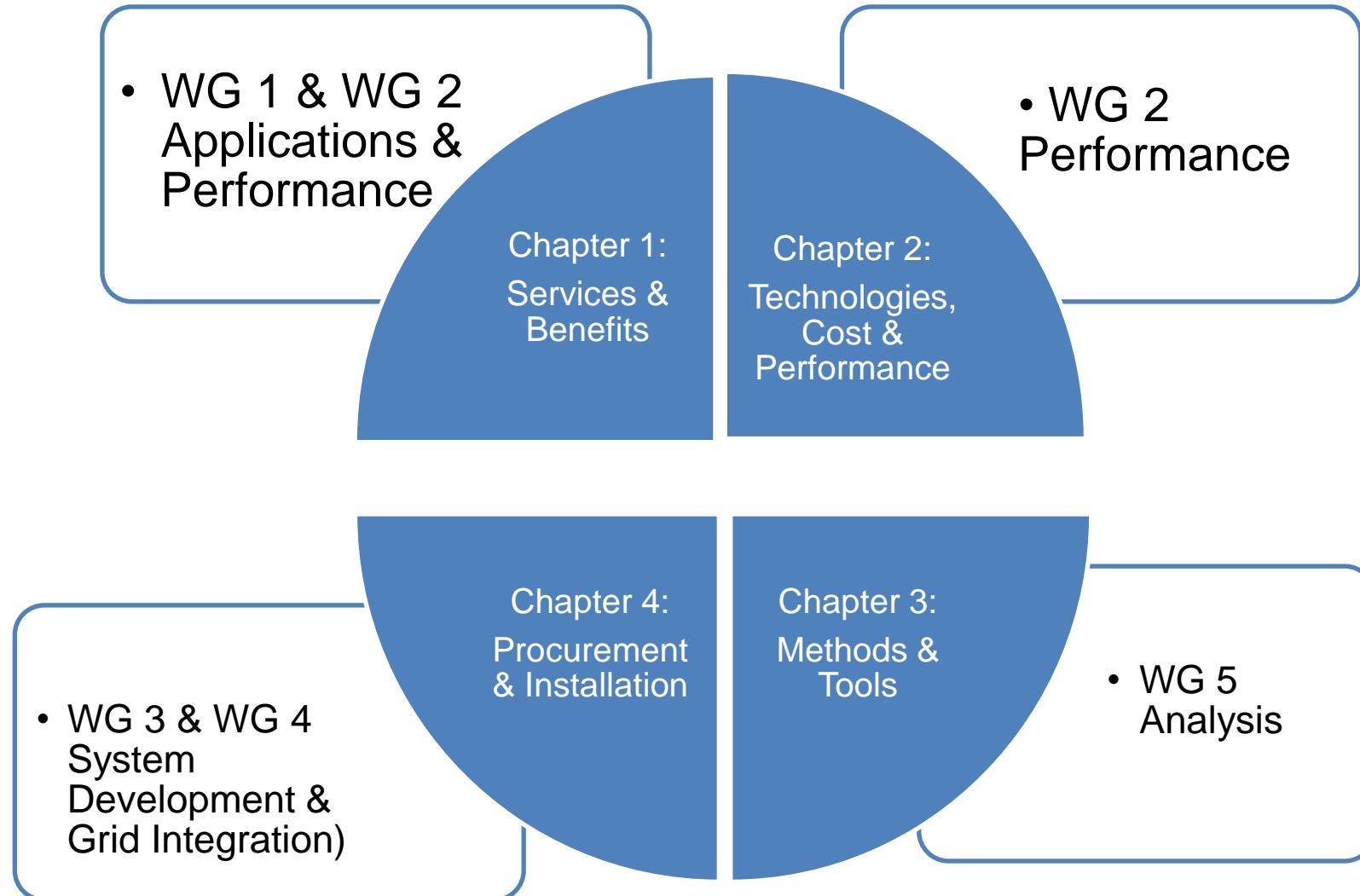
ESHB Update:

Improvements & Future Work

EPRI Energy Storage Integration Council (ESIC)

ESIC Mission : A **forum** in which electric utilities guide a discussion with energy storage vendors, government organizations, and other stakeholders to develop reliable, safe, and cost-effective energy storage options for the utility industry.

Background


The initial focus of ESIC is to find common solutions to definition and deployment for distribution system-connected energy storage system, encompassing the utility scope from customer meter to 69kV

ESIC Working Groups Overview

- **WG 1 - Applications:** The Applications working group is focused on **developing the functional and technical requirements of energy storage in distribution-connected use cases.**
 - Chair: Bruno Prestat, Électricité de France (EdF)
- **WG 2 - Performance:** The Performance group focuses on development of **common metrics of performance for energy storage system, test protocols**, and reference duty cycles to understand fully integrated energy storage system performance on a consistent basis.
 - Chair: Naum Pinsky, Southern California Edison (SCE)
- **WG 3 - System Development:** The System Development group is focused on developing common approaches to component and **system standardization, technical specification, safety**, and communications and control.
 - Chair: Ryan Franks, National Electrical Manufacturers Association (NEMA)
- **WG 4 - Grid Integration:** This group is focusing on installation and commissioning of storage for grid purposes. The group focuses on the actual **deployment and usage of storage**, they also are responsible for controls, dispatch, and protection of storage once installed.
 - Chair: Thomas Golden, Duke Energy
- **WG 5 - Analysis:** This group is focusing on developing methods and defining data and model requirements for considering energy storage in **planning and operations processes**. This group is focusing on installation and commissioning of storage for grid purposes.
 - Chair: Udi Helman, Helman Analytics

ESHB Update - Improvements

Interconnections of ESHB and ESIC Working Groups

ESHB –Future Work

- Thermal Energy Storage Insights and Results
- Flywheels
- Energy Storage System Costs Revisions
- Energy Storage Safety: Standards/Best Practices
- ESIC Collaborations
- Dale Bradshaw
- Don Bender
- Haresh Kamath
- David Rosewater
- Abbas Akhil

Path Forward

E-mail from G. Huff/ August 12, 1025

In the last two years, we made a few minor updates to the handbook.

Among those revisions include:

- subchapter highlighting tools available to use to evaluate a storage solution from a modeling and simulation standpoint,
- additional information regarding ES models and tools in Appendix A,
- clarifications and expansions of three energy and power cost components,
- expanded derivation of the Total Plant Cost (TPC) and referenced costs that are components of the TPC,
- additional explanation of equipment costs.
- webpage for input <http://www.sandia.gov/ess/handbook.php>

As we are gearing up to make some major modifications/ updates to the handbook, I would like to ask for you to lend us your expertise in providing guidance.

ESHB Update Conclusions

We are using the proper framework to deliver to industry a much needed tool with the ESHB.

We provide basic information to help the user develop perspective, understand the type questions to ask, and to be confident in the answers provided.

Definition: A framework is a model. It is a hypothetical description of a complex entity or process. The description includes the underlying structure for a group of components or elements that work interactively to support an issue or concept such that one responding to questions or problems delivers consistent output, answers, or potential solutions.

Contact Information

Thank you to DOE/OE for the funding to complete this project and for your attention!

If you have questions, contact

J. Hernández: jhernan@sandia.gov