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Superior Properties of Wide-Bandgap Materials )
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Superior properties of post-silicon materials

translate to better power electronics performance
Lower switching and conduction losses (higher
efficiency)
Higher voltage operation (fewer power stages)
Higher temperature and thermal conductivity
(reduced thermal management)
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WBG Impacts Power Conversion [@)&:.

Systems
« WBG semiconductors can
have a strong impact on Si IGBT Module
system size and weight due 13.5kV, 100 A
to higher switching

SiC MOSFET Module
frequency and reduced 10 kV. 120 A

thermal management

requirements

 SiC10 kV Modules are 9%
Weight and 12% Volume
of IGBT 13.5 kV Module

* But their reliability is far
less mature than traditional
Si devices!

M. K. Das et al., ICSCRM 2011




Project Overview ) 5.

 Wide-bandgap semiconductors have material properties that
make them theoretically superior to Silicon for power device

applications

 Lower power loss and reduced cooling requirements would increase the
efficiency and reduce the size and complexity of power conversion
systems linking energy storage to the grid, thus reducing overall system

cost

 However, wide-bandgap materials and devices are far less mature than
their Si counterparts; many questions remain regarding their reliability,
limiting their implementation in systems

* Goal: Understand the reliability physics of wide-bandgap
power switches and how it impacts circuit- and system-level

performance




Over 25 Papers ) i
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Current Year Overview

While much progress has been made, reliability issues with the SiC/SiO, interface
remain. This year we demonstrate that using phosphorus passivation reduces the
concentration of ‘fast interface states,” which are likely responsible for reductions
in channel mobility
* Phosphorus passivation has been proposed for improving channel mobility
compared to nitrogen passivation
e We tested SiC MOS capacitors fabricated using nitrogen and phosphorus
passivation techniques and characterized them with conductance and high-
low CV measurements
 Tests across a range of temperatures indicate that devices with phosphorus
passivation showed fewer ‘fast interface states’
 ‘Fastinterface states’ are likely responsible for the lower channel mobility
seen in samples that undergo nitrogen passivation

Our work this year evaluates various SiC/SiO, passivation techniques, their effects
on interface trap densities, and how they are correlated with channel mobility. By
understanding the device physics, system level performance can be improved.




Gate Oxide Reliability Has Limited )&
the Adoption of SiC MOSFETs
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Phosphorus Passivation ) =
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* Using a phosphorus doped gate oxide
has been proposed as an alternative to
nitrogen passivation
* Higher channel mobilities observed
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D Okamoto et al., IEEE Electron Device Lett. 31 710-2 (2010)

" Fabricated MOS capacitors to study the effects of three
different passivation methods
= NO annealing (industry standard)
= N plasma
= Phosphosilicate glass (PSG) treatment

= MOS capacitors are useful for characterizing interface quality




Detecting ‘Fast Interface States’” — @&

" |nterface states with fast time constants (< 1 us) are difficult
to detect with conventional characterization techniques

" Lowering the temperature during measurement increases the
time constant and shifts the fast states into a detectable range

" More distinct peaks and larger signal

" Conductance and high-low frequency C-V measurements

) J— ||

N | —

V =11V |
o 8oL

w

60

8]
™~
-
=
=)
<

G /w (x10° S s/cm?)

p
-
i

|

- 220K |

u snvinnl sonmed s onmd o spimal iig

10°10*10°10%10’ 10°10*10°10°10” 10°10*10°10°10’ 10°10*10°10°107
w (s)




Conductance Measurements
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- PSG—sampIes showed distinct
peaks at room temperature, but
not at lower temperatures

" Lower peak magnitude indicates
lower interface trap density

PSG samples show lower concentrations
of traps with fast time constants
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Further Differentiation of Traps &

= Capture cross sections
extracted from the
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= Likely different physical
origin of traps for
different passivations




High-Low Frequency C-V ) .
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" |nterface state density can
also be characterized with C-V

" Good agreement with
conductance method
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= Samples with nitrogen
passivation show decreasing
D, as temperature decreases

Observed D, (cm?eV)

" Atlower temperatures traps
with slow time constants
become too slow to be
measured and traps with fast
time constants become
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High-Low Frequency C-V ) .
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Summary/Conclusions @z,

* Conductance and high-low frequency C-V measurements
show lower densities of ‘fast interface states’” in SiC MOS
capacitors with PSG passivation compared to nitrogen
passivation techniques

* Characterizing D, over a range of temperatures is an important
consideration

* The use of a PSG passivation reduces the density of ‘fast
interface states’

* Correlation with higher channel mobilities

* Improvements in mobility have implications at the system
level as larger current densities enable devices to further
shrink, reducing the footprint of power systems




Future Work: High Power Switching .

Characterization

OFF ON OFF High power clamped inductive load
%’ 5 switching circuit allows realistic
9 ’ characterization of power losses due to
- & . switching as a function of parameters
g g \ like frequency and duty cycle
O /! -\
} 1 I 41 1

Time

Switch power loss mechanisms:
1. Leakage

2. Turn-on
3. Conduction (Rgy)

4. Turn-off




