

Final Technical Report:
Variational Transition State Theory

Date of report: September 29, 2016

Grant number: US DEPT OF ENERGY / DE-FG02-86ER13579

Start Date: 07/01/1999

End Date: 05/31/2016

PI: Dr. Donald G. Truhlar

This is the final report on a project involving the development and applications of variational transition state theory. This project involved the development of variational transition state theory for gas-phase reactions, including optimized multidimensional tunneling contributions and the application of this theory to gas-phase reactions with a special emphasis on developing reaction rate theory in directions that are important for applications to combustion. The development of variational transition state theory with optimized multidimensional tunneling as a useful computational tool for combustion kinetics involved eight objectives:

- (i) developing and applying new methods of electronic structure calculations (both multi-coefficient wave function theory and density functional theory) for potential energy surfaces underlying dynamics calculations, which are an implicit surfaces defined by electronic structure model chemistries;
- (ii) developing methods to interface reaction-path, reaction-swath, and variable-reaction-coordinate dynamics calculations with electronic structure theory, either by straight direct dynamics or by an interpolation of electronic structure calculations;
- (iii) developing methods to treat vibrational anharmonicity -- both of high-frequency modes and torsions -- and vibration-rotation coupling;
- (iv) developing efficient methods to calculate accurate rate constants from the results of the electronic structure calculations, statistical mechanical treatments of vibrations, rotations, and multiple structures, and semiclassical treatments of tunneling;
- (v) developing multi-structural and multi-path variational transition state theory for extending transition state theory to complex molecules with multiple conformations;
- (vi) developing system-specific quantum Rice-Ramsperger-Kassel theory as a convenient way to treat pressure effects in unimolecular reactions and chemical activation;
- (vii) development and implementation of practical techniques, algorithms, and software for applying the theory to various classes of reactions and transition states, and especially developing and distributing the POLYRATE and GAUSSRATE programs; and
- (viii) applications to specific reactions, with special emphasis on combustion reactions and reactions that provide good test cases for methods needed to study combustion reactions.

Journal articles

- 1) "Statistical Thermodynamics of Bond Torsion Modes," Y.-Y. Chuang and D. G. Truhlar, *Journal of Chemical Physics* 112, 1221-1228 (2000). Errata: 121, 7036 (2004), 124, 179903/1-2 (2006).
- 2) "Multilevel Geometry Optimization," J. M. Rodgers, P. L. Fast, and D. G. Truhlar, *Journal of Chemical Physics* 112, 3141-3147 (2000).
- 3) "Comment on Rate Constants for Reactions of Tritium Atoms with H₂, D₂, and HD," J. Srinivasan and D. G. Truhlar, *Journal of Physical Chemistry A* 104, 1965-1967 (2000).
- 4) "How Should We Calculate Transition State Geometries for Radical Reactions? The Effect of Spin Contamination on the Prediction of Geometries for Open-Shell Saddle Points," Y.-Y. Chuang, E. L. Coitiño, and D. G. Truhlar, *Journal of Physical Chemistry A* 104, 446-450 (2000).
- 5) "Potential Energy Surface, Thermal and State-Selected Rate Constants and Kinetic Isotope Effects for Cl + CH₄ → HCl + CH₃" J. C. Corchado, D. G. Truhlar, and J. Espinosa-Garcia, *Journal of Chemical Physics* 112, 9375-9389 (2000).
- 6) "Multiconfiguration Molecular Mechanics Algorithm for Potential Energy Surfaces of Chemical Reactions," Y. Kim, J. C. Corchado, J. Villà, J. Xing, and D. G. Truhlar, *Journal of Chemical Physics* 112, 2718-2735 (2000).
[dx.doi.org/10.1063/1.480846](https://doi.org/10.1063/1.480846)
- 7) "MC-QCISD: Multi-Coefficient Correlation Method Based on Quadratic Configuration Interaction with Single and Double Excitations," P. L. Fast and D. G. Truhlar, *Journal of Physical Chemistry A* 104, 6111-6116 (2000).
- 8) "Adiabatic Connection for Kinetics," B. J. Lynch, P. L. Fast, M. Harris, and D. G. Truhlar, *Journal of Physical Chemistry A* 104, 4811-4815 (2000).
- 9) "Improved Algorithm for Corner Cutting Calculations," A. Fernandez-Ramos and D. G. Truhlar, *Journal of Chemical Physics* 114, 1491-1496 (2001).
- 10) "Thermal and State-Selected Rate Coefficients for the O(³P) + HCl Reaction and New Calculations of the Barrier Height and Width," S. Skokov, S. Zou, J. M. Bowman, T. C. Allison, D. G. Truhlar, Y. Lin, B. Ramachandran, B. C. Garrett, and B. J. Lynch, *Journal of Physical Chemistry A* 105, 2298-2307 (2001). (Aron Kuppermann Festschrift)
- 11) "How Well Can Hybrid Density Functional Methods Predict Transition State Geometries and Barrier Heights?" B. J. Lynch and D. G. Truhlar, *Journal of Physical Chemistry A* 105, 2936-2941 (2001).
- 12) "Multi-Coefficient Correlation Method: Comparison of Specific-Range Reaction Parameters to General Reaction Parameters for C_nH_xO_y Compounds," P. L. Fast, N. Schultz, and D. G. Truhlar, *Journal of Physical Chemistry A* 105, 4143-4149 (2001).
- 13) "POTLIB 2001: A Potential Energy Surface Library for Chemical Systems," R. J. Duchovic, Y. L. Volobuev, G. C. Lynch, T. C. Allison, J. C. Corchado, D. G. Truhlar, A. F. Wagner, and B. C. Garrett, *Computer Physics Communications* 144, 169-187 (2002). Erratum: 156, 319-322 (2004).

- 14) "Molecular Mechanics for Chemical Reactions. A Standard Strategy for Using Multi-Configuration Molecular Mechanics for Variational Transition State Theory with Optimized Multidimensional Tunneling," T. Albu, J. C. Corchado, and D. G. Truhlar, *Journal of Physical Chemistry A* 105, 8465-8487 (2001).
- 15) "Test of Variational Transition State Theory with Multidimensional Tunneling Contributions Against an Accurate Full-dimensional Rate Constant Calculation for a Six-Atom System," J. Pu, J. C. Corchado, and D. G. Truhlar, *Journal of Chemical Physics* 115, 6266-6267 (2001).
- 16) "Parameterized Direct Dynamics Study of Rate Constants of H with CH₄ from 250 to 2400 K," J. Pu and D. G. Truhlar, *Journal of Chemical Physics* 116, 1468-1478 (2002).
- 17) "What are the Best Affordable Multi-Coefficient Strategies for Calculating Transition State Geometries and Barrier Heights?" B. J. Lynch and D. G. Truhlar, *Journal of Physical Chemistry A* 106, 842-846 (2002).
- 18) "Interpolated Algorithms for Large-Curvature Tunneling Calculations," A. Fernandez-Ramos, D. G. Truhlar, J. C. Corchado, and J. Espinosa-Garcia, *Journal of Physical Chemistry A* 106, 4957-4960 (2002).
- 19) "Tests of Potential Energy Surfaces for H + CH₄ \longleftrightarrow CH₃ + H₂: Deuterium and Muonium Kinetic Isotope Effects for the Forward and Reverse Reaction," J. Pu and D. G. Truhlar, *Journal of Chemical Physics* 117, 10675-10687 (2002).
- 20) "Obtaining the Right Orbitals is the Key to Calculating Accurate Binding Energies for Cu⁺ Ion," B. J. Lynch and D. G. Truhlar, *Chemical Physics Letters* 361, 251-258 (2002).
- 21) "Validation of Variational Transition State Theory with Multidimensional Tunneling Contributions Against Accurate Quantum Mechanical Dynamics for H + CH₄ \rightarrow H₂ + CH₃ in an Extended Temperature Interval," J. Pu and D. G. Truhlar, *Journal of Chemical Physics* 117, 1479-1481 (2002).
- 22) "Reply to Comment on Molecular Mechanics for Chemical Reactions," D. G. Truhlar, *Journal of Physical Chemistry A* 106, 5048-5051 (2002).
- 23) "Reduced Mass in the One-Dimensional Treatment of Tunneling," D. G. Truhlar and B. C. Garrett, *Journal of Physical Chemistry A* 107, 4006-4007 (2003).
- 24) "The Effectiveness of Diffuse Basis Functions for Calculating Relative Energies by Density Functional Theory," B. J. Lynch, Y. Zhao, and D. G. Truhlar, *Journal of Physical Chemistry A* 107, 1384-1388 (2003).
- 25) "Robust and Affordable Multi-Coefficient Methods for Thermochemistry and Thermochemical Kinetics: The MCCR/3 Suite and SAC/3," B. J. Lynch and D. G. Truhlar, *Journal of Physical Chemistry A* 107, 3898-3906 (2003).
- 26) "Generalized Transition State Theory in Terms of the Potential of Mean Force," G. K. Schenter, B. C. Garrett, and D. G. Truhlar, *Journal of Chemical Physics* 119, 5828-5833 (2003).
- 27) "Force Field Variations along the Torsional Coordinates of CH₃OH and CH₃CHO," T. V. Albu and D. G. Truhlar, *Journal of Molecular Spectroscopy* 219, 129-131 (2003).
- 28) "H + H₂ Thermal Reaction: A Convergence of Theory and Experiment," S. L. Mielke, K. A. Peterson, D. W. Schwenke, B. C. Garrett, D. G. Truhlar, J. V.

Michael, M.-C. Su, and J. W. Sutherland, *Physical Review Letters* 91, 63201/1-4 (2003). dx.doi.org/10.1103/PhysRevLett.91.063201

29) "Small Basis Sets for Calculations of Barrier Heights, Energies of Reaction, Electron Affinities, Geometries, and Dipole Moments," B. J. Lynch and D. G. Truhlar, *Theoretical Chemistry Accounts* 111, 335-344 (2004). (Jacopo Tomasi Honorary Issue).

30) "Small Representative Benchmarks for Thermochemical Calculations," B. J. Lynch and D. G. Truhlar, *Journal of Physical Chemistry A* 107, 8996-8999 (2003). Erratum: 108, 1460 (2003).

31) "Benchmark Results for Hydrogen Atom Transfer Between Carbon Centers and Validation of Electronic Structure Methods for Bond Energies and Barrier Heights," A. Dybala-Defrattyka, P. Paneth, J. Pu, and D. G. Truhlar, *Journal of Physical Chemistry A* 108, 2475-2486 (2004).

32) "Tests of Second-Generation and Third-Generation Density Functionals for Thermochemical Kinetics," Y. Zhao, J. Pu, B. J. Lynch and D. G. Truhlar, *Phys. Chem. Chem. Phys.* 6, 673-676 (2004).

33) "Development and Assessment of a New Hybrid Density Functional Method for Thermochemical Kinetics," Y. Zhao, B. J. Lynch and D. G. Truhlar, *J. Phys. Chem. A* 108, 2715-2719 (2004).

34) "Efficient Molecular Mechanics for Chemical Reactions: Multiconfiguration Molecular Mechanics using Partial Electronic Structure Hessians," H. Lin, J. Pu, T. V. Albu, and D. G. Truhlar, *Journal of Physical Chemistry A* 108, 4112-4124 (2004).

35) "Doubly Hybrid Meta DFT: New Multi-Coefficient Correlation and Density Functional Methods for Thermochemistry and Thermochemical Kinetics," Y. Zhao, B. J. Lynch, and D. G. Truhlar, *Journal of Physical Chemistry A* 108, 4786-4791 (2004).

36) "Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions," Y. Zhao and D. G. Truhlar, *Journal of Physical Chemistry A* 108, 6908-6918 (2004).

37) "Use of Block Hessians for the Optimization of Molecular Geometries," J. Pu and D. G. Truhlar, *Journal of Chemical Theory and Computation* 1, 54-60 (2005).

38) "Variational Transition State Theory," B. C. Garrett and D. G. Truhlar, see no. 75 in chapter list.

39) "The 6-31B(d) Basis Set and the BMC-QCISD and BMC-CCSD Multi-Coefficient Correlation Methods," B. J. Lynch, Y. Zhao, and D. G. Truhlar, *Journal of Physical Chemistry A* 109, 1643-1649 (2005).

40) "Multi-Coefficient Extrapolated Density Functional Theory for Thermochemistry and Thermochemical Kinetics," Y. Zhao, B. J. Lynch, and D. G. Truhlar, *Physical Chemistry Chemical Physics* 7, 43-52 (2005).

41) "Benchmark Calculations of Reaction Energies, Barrier Heights, and Transition State Geometries for Hydrogen Abstraction from Methanol by a Hydrogen

Atom," J. Pu and D. G. Truhlar, *Journal of Physical Chemistry A* 109, 773-778 (2005).

42) "Benchmark Database of Barrier Heights for Heavy Atom Transfer, Nucleophilic Substitution, Association, and Unimolecular Reactions and Its Use to Test Theoretical Methods," Y. Zhao, N. González-García, and D. G. Truhlar, *Journal of Physical Chemistry A* 109, 2012-2018 (2005), 110, 4942(E) (2006).

43) "Temperature Dependence of Carbon-13 Kinetic Isotope Effects of Importance to Global Climate Change," H. Lin, Y. Zhao, B. A. Ellingson, J. Pu, and D. G. Truhlar, *Journal of the American Chemical Society* 127, 2830-2831 (2005).

44) "Redistributed Charge and Dipole Schemes for Combined Quantum Mechanical and Molecular Mechanical Calculations," H. Lin and D. G. Truhlar, *Journal of Physical Chemistry A* 109, 3991-4004 (2005).

45) "Benchmark Databases for Nonbonded Interactions and Their Use to Test Density Functional Theory," Y. Zhao and D. G. Truhlar, *Journal of Chemical Theory and Computation* 1, 415-432 (2005).

46) "Databases for Transition Element Bonding: Metal–Metal Bond Energies and Bond Lengths and Their Use to Test Hybrid, Hybrid Meta, and Meta Density Functionals and Generalized Gradient Approximations," N. E. Schultz, Y. Zhao, and D. G. Truhlar, *Journal of Physical Chemistry A* 109, 4388-4403 (2005).

47) "Design of Density Functionals that are Broadly Accurate for Thermochemistry, Thermochemical Kinetics, and Nonbonded Interactions," Y. Zhao and D. G. Truhlar, *Journal of Physical Chemistry A* 109, 5656-5667 (2005).
[dx.doi.org/10.1021/jp050536c](https://doi.org/10.1021/jp050536c)

48) "Multi-Coefficient Extrapolated DFT Studies of $\pi \cdots \pi$ Interactions: The Benzene Dimer," Y. Zhao and D. G. Truhlar, *Journal of Physical Chemistry A* 109, 4209-4212 (2005).

49) "How Well Can New-Generation Density Functional Methods Describe Stacking Interactions in Biological Systems?" Y. Zhao and D. G. Truhlar, *Phys. Chem. Chem. Phys* 7, 2701-2705 (2005).

50) 719. "Infinite-Basis Calculations of Binding Energies for the Hydrogen Bonded and Stacked Tetramers of Formic Acid and Formamide and Their use for Validation of Hybrid DFT and Ab Initio Methods," Y. Zhao and D. G. Truhlar, *Journal of Physical Chemistry A* 109, 6624-6627 (2005).

51) "How Well Can Density Functional Methods Describe Hydrogen Bonds to pi Acceptors?" Y. Zhao, O. Tishchenko, and D. G. Truhlar, *Journal of Physical Chemistry B* 109, 19046-19051 (2005).

52) "A New Algorithm for Efficient Direct Dynamics Calculations of Large-Curvature Tunneling and Its Application to Radical Reactions with 9–15 Atoms," A. Fernández-Ramos and D. G. Truhlar, *Journal of Chemical Theory and Computation* 1, 1063-1078 (2005).

53) "Density Functionals for Inorganometallic and Organometallic Chemistry," N. E. Schultz, Y. Zhao, and D. G. Truhlar, *Journal of Physical Chemistry A* 109, 11127-11143 (2005).

54) "Combined Valence Bond-Molecular Mechanics Potential Energy Surface and Direct Dynamics Study of Rate Constants and Kinetic Isotope Effects for the H

+ C₂H₆ Reaction," A. Chakraborty, Y. Zhao, H. Lin, and D. G. Truhlar, *Journal of Chemical Physics* 124, 44315/1-044315/14 (2006).

55) "Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions," Y. Zhao, N. E. Schultz, and D. G. Truhlar, *Journal of Chemical Theory and Computation* 2, 364-382 (2006). [dx.doi.org/10.1021/ct0502763](https://doi.org/10.1021/ct0502763)

56) "Searching for Saddle Points by Using the Nudged Elastic Band Method: An Implementation for Gas-Phase Systems," N. Gonzalez-Garcia, J. Pu, A. Gonzalez-Lafont, J. M. Lluch, and D. G. Truhlar, *Journal of Chemical Theory and Computation* 2, 895-904 (2006).

57) "Modeling the Kinetics of Bimolecular Reactions," A. Fernández-Ramos, J. A. Miller, S. J. Klippenstein, and D. G. Truhlar, *Chemical Reviews* 106, 4518-4584 (2006).

58) "Statistical Thermodynamics of Bond Torsional Modes: Tests of Separable, Almost-Separable, and Improved Pitzer-Gwinn Approximations," B. A. Ellingson, V. A. Lynch, S. L. Mielke, and D. G. Truhlar, *Journal of Chemical Physics* 125, 84305/1-17 (2006).

59) "Assessment of Density Functionals for Pi Systems: Energy Differences Between Cumulenes and Poly-ynes and Proton Affinities, Bond Length Alternation, and Torsional Potentials of Conjugated Polyenes, and Proton Affinities of Conjugated Schiff Bases," Y. Zhao and D. G. Truhlar, *Journal of Physical Chemistry A* 110, 10478-10486 (2006).

60) "Optimizing the Performance of the Multiconfiguration Molecular Mechanics Method," O. Tishchenko and D. G. Truhlar, *Journal of Physical Chemistry A* 110, 13530-13536 (2006).

61) "A New Local Density Functional for Main Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions," Y. Zhao and D. G. Truhlar, *Journal of Chemical Physics* 125, 194101/1-18 (2006). [dx.doi.org/10.1063/1.2370993](https://doi.org/10.1063/1.2370993) DOE, NSF, ONR, NSF-ITR.

62) "Representative Benchmark Suites for Barrier Heights of Diverse Reaction Types and Assessment of Electronic Structure Methods for Thermochemical Kinetics," J. Zheng, Y. Zhao, and D. G. Truhlar, *Journal of Chemical Theory and Computation* 3, 569-582 (2007).

63) "Global Potential Energy Surfaces with Correct Permutation Symmetry by Multi-Configuration Molecular Mechanics," O. Tishchenko and D. G. Truhlar, *Journal of Chemical Theory and Computation* 3, 938-948 (2007).

64) "The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals," Y. Zhao and D. G. Truhlar, *Theoretical Chemistry Accounts* 120, 215-241 (2008) (Contribution to the Mark S. Gordon 65th Birthday Festschrift Issue). [dx.doi.org/10.1007/s00214-007-0310-x](https://doi.org/10.1007/s00214-007-0310-x). Erratum: 119, 525 (2008).

65) "Thermochemical Kinetics of Hydrogen-Atom Transfers Between Methyl, Methane, Ethynyl, Ethyne, and Hydrogen," J. Zheng, Y. Zhao, and D. G. Truhlar, *Journal of Physical Chemistry A* 111, 4632-4642 (2007).

66) "Symmetry Numbers and Chemical Reaction Rates," A. Fernández-Ramos, B. A. Ellingson, R. Meana-Pañeda, J. M. C. Marques, and D. G. Truhlar, *Theoretical Chemistry Accounts* 118, 813-826 (2007).

67) "Multi-Coefficient Gaussian-3 Calculation of the Rate Constant for the OH + CH₄ Reaction and its ¹²C/¹³C Kinetic Isotope Effect with Emphasis on the Effects of Coordinate System and Torsional Treatment," B. A. Ellingson, J. Pu, H. Lin, Y. Zhao, and D. G. Truhlar, *Journal of Physical Chemistry A* 111, 11706-11717 (2007).

68) "Explanation of the Unusual Temperature Dependence of the Atmospherically Important OH + H₂S → H₂O + SH Reaction and Prediction of the Rate Constant at Combustion Temperatures," B. A. Ellingson, and D. G. Truhlar, *Journal of the American Chemical Society* 129, 12765-12771 (2007).
[dx.doi.org/10.1021/ja072538b](https://doi.org/10.1021/ja072538b)

69) "Computational Chemistry of Polyatomic Reaction Kinetics and Dynamics: The Quest for an Accurate CH₅ Potential Energy Surface," T. V. Albu, J. Espinosa-García, D. G. Truhlar, *Chemical Reviews* 107, 5101-5132 (2007).

70) "Reactions of Hydrogen Atom with Hydrogen Peroxide," B. A. Ellingson, D. P. Theis, O. Tishchenko, J. Zheng, and D. G. Truhlar, *Journal of Physical Chemistry A* 111, 13554-13566 (2007).

71) "Non-Born–Oppenheimer Molecular Dynamics of Na...FH Photodissociation," A. W. Jasper and D. G. Truhlar, *Journal of Chemical Physics* 127, 194306/1-7 (2007). [dx.doi.org/10.1063/1.2798763](https://doi.org/10.1063/1.2798763)

72) "A Comparative Assessment of the Perturbative and Renormalized Coupled Cluster Theories with a Non-iterative Treatment of Triple Excitations for Thermochemical Kinetics, Including a Study of Basis Set and Core Correlation Effects," J. Zheng, J. R. Gour, J. J. Lutz, M. Włoch, P. Piecuch, and D. G. Truhlar, *Journal of Chemical Physics* 128, 044108/1-7 (2008).
[dx.doi.org/10.1063/1.2825596](https://doi.org/10.1063/1.2825596)

73) "How Well Can New-Generation Density Functionals Describe the Energetics of Bond Dissociation Reactions Producing Radicals?" Y. Zhao and D. G. Truhlar, *Journal of Physical Chemistry A* 112, 1095-1099 (2008).
[dx.doi.org/10.1021/jp7109127](https://doi.org/10.1021/jp7109127)

74) "VBSM: A Solvation Model Based on Valence Bond Theory," P. Su, W. Wu, C. J. Cramer, C. P. Kelly, and D. G. Truhlar, *Journal of Physical Chemistry A* 112, 12761-12768 (2008). (Sason Shaik Festschrift) [dx.doi.org/10.1021/jp711655k](https://doi.org/10.1021/jp711655k)

75) "Assessment of New Meta and Hybrid Meta Density Functionals for Predicting the Geometry and Binding Energy of a Challenging System: the Dimer of H₂S and Benzene," H. R. Leverenz and D. G. Truhlar, *Journal of Physical Chemistry A* 112, 6009-6016 (2008). [dx.doi.org/10.1021/jp8018364](https://doi.org/10.1021/jp8018364)

76) "Multireference Model Chemistries for Thermochemical Kinetics," O. Tishchenko, J. Zheng, and D. G. Truhlar, *Journal of Chemical Theory and Computation* 4, 1208-1219 (2008). [dx.doi.org/10.1021/ct800077r](https://doi.org/10.1021/ct800077r)

77) "Effects of ^{18}O Isotopic Substitution on the Rotational Spectra and Potential Splitting in the $\text{OH}-\text{H}_2\text{O}$ Complex: Improved Measurements for $^{16}\text{OH}-^{16}\text{OH}_2$ and $^{18}\text{OH}-^{18}\text{OH}_2$, New Measurements for the Mixed Isotopic Forms, and Ab Initio Calculations of the $^2\text{A}' - ^2\text{A}''$ Energy Separation," C. S. Brauer, G. Sedo, E. Dahlke, S. Wu, E. Grumstrup, K. R. Leopold, M. D. Marshall, H. O. Leung, and D. G. Truhlar, *Journal of Chemical Physics* 129, 104304/1-11 (2008). dx.doi.org/10.1063/1.2973638

78) "Density Functional Study of Methyl Radical Association Reaction Kinetics," J. Zheng, S. Zhang, and D. G. Truhlar, *Journal of Physical Chemistry A* 112, 11509-11513 (2008). dx.doi.org/10.1021/jp806617m

79) "The DBH24/08 Database and Its Use to Assess Electronic Structure Model Chemistries for Chemical Reaction Barrier Heights," J. Zheng, Y. Zhao, and D. G. Truhlar, *Journal of Chemical Theory and Computation* 5, 808-821 (2009). <http://dx.doi.org/10.1021/ct800568m> (John Perdew 2009 special issue)

80) "Efficient Diffuse Basis Sets: cc-pV_XZ+ and maug-cc-pV_XZ," E. Papajak, H. R. Leverenz, J. Zheng, and D. G. Truhlar, *Journal of Chemical Theory and Computation* 5, 1197-1202 (2009). dx.doi.org/10.1021/ct800575z. Errata and addendum: 5, 3330 (2009). dx.doi.org/10.1021/ct9004905.

81) "Thermochemical Kinetics for Multireference Systems: Addition Reactions of Ozone," Y. Zhao, O. Tishchenko, J. R. Gour, W. Li, J. J. Lutz, P. Piecuch, and D. G. Truhlar, *Journal of Physical Chemistry A* 113, 5786-5799 (2009). dx.doi.org/10.1021/jp811054n.

82) "Non-Hermitian Multiconfiguration Molecular Mechanics," O. Tishchenko and D. G. Truhlar, *Journal of Chemical Theory and Computation* 5, 1454-1461 (2009). dx.doi.org/10.1021/ct900077g.

83) "The Muonic He Atom and a Preliminary Study of the $4\text{He}\mu + \text{H}_2$ Reaction," D. J. Arseneau, D. G. Fleming, O. Sukhorukov, J. H. Brewer, B. C. Garrett, and D. G. Truhlar, *Physica B: Condensed Matter* 404, 946-949 (2009). dx.doi.org/10.1016/j.physb.2008.11.13 (Proceedings of the Eleventh International Conference on Muon Spin Rotation, Relaxation and Resonance)

84) "Direct Dynamics Study of Hydrogen-Transfer Isomerization of 1-Pentyl and 1-Hexyl Radicals," J. Zheng and D. G. Truhlar, *Journal of Physical Chemistry A* 113, 11919-11925 (2009). dx.doi.org/10.1021/jp903345x.

85) "Steric Effects and Solvent Effects on $\text{S}_{\text{N}}2$ Reactions," Y. Kim, C. J. Cramer, and D. G. Truhlar, *Journal of Physical Chemistry A* 113, 9109-9114 (2009). dx.doi.org/10.1021/jp905429p

86) "Homogeneous Nucleation with Magic Numbers: Aluminum," S. L. Girshick, P. Agarwal, and D. G. Truhlar, *Journal of Chemical Physics* 131, 134305/1-11 (2009). dx.doi.org/10.1063/1.3239469

87) "Phase Space Prediction of Product Branching Ratios: Canonical Competitive Nonstatistical Model," J. Zheng, E. Papajak, and D. G. Truhlar, *Journal of the American Chemical Society* 131, 15754-15760 (2009). dx.doi.org/10.1021/ja904405v.

88) "Least-Action Tunneling Transmission Coefficient for Polyatomic Reactions," R. Meana Pañeda, D. G. Truhlar, and A. Fernández-Ramos, *Journal of*

Chemical Theory and Computation 6, 6-17 (2010).
[dx.doi.org/10.1021/ct900420e](https://doi.org/10.1021/ct900420e)

89) “Efficient Diffuse Basis Sets for Density Functional Theory,” E. Papajak and D. G. Truhlar, Journal of Chemical Theory and Computation 6, 597-601 (2010).
[dx.doi.org/10.1021/ct900566x](https://doi.org/10.1021/ct900566x). (Letter)

90) “Kinetics of Hydrogen-Transfer Isomerizations of Butoxyl Radicals,” J. Zheng and D. G. Truhlar, Physical Chemistry Chemical Physics 12, 7782-7793 (2010).
[dx.doi.org/10.1039/b927504e](https://doi.org/10.1039/b927504e).

91) “Communication: Energetics of Reaction Pathways for Reactions of Ethenol with the Hydroxyl Radical: The Importance of Internal Hydrogen Bonding at the Transition State,” O. Tishchenko, S. Ilieva, and D. G. Truhlar, Journal of Chemical Physics 133, 021102/1-4 (2010). [dx.doi.org/10.1063/1.3455996](https://doi.org/10.1063/1.3455996)

92) “Direct Dynamics Implementation of the Least-Action Tunneling Transmission Coefficient. Application to the $\text{CH}_4/\text{CD}_3\text{H}/\text{CD}_4 + \text{CF}_3$ Abstraction Reactions,” R. Meana Pañeda, D. G. Truhlar, and A. Fernández-Ramos, Journal of Chemical Theory and Computation 6, 3015-3025 (2010).
[dx.doi.org/10.1021/ct100285a](https://doi.org/10.1021/ct100285a) DOE

93) “Convergent Partially Augmented Basis Sets for Post-Hartree-Fock Calculations of Molecular Properties and Reaction Barrier Heights,” E. Papajak and D. G. Truhlar, Journal of Chemical Theory and Computation 7, 10-18 (2011). [dx.doi.org/10.1021/ct1005533](https://doi.org/10.1021/ct1005533)

94) “Kinetic Isotope Effects for the Reactions of Muonic Helium and Muonium with H_2 ,” D. G. Fleming, D. J. Arseneau, O. Sukhorukov, J. H. Brewer, S. L. Mielke, G. C. Schatz, B. C. Garrett, K. A. Peterson, and D. G. Truhlar, Science 331, 448-450 (2011). [dx.doi.org/10.1126/science.1199421](https://doi.org/10.1126/science.1199421)

95) “Computational Study of the Reactions of Methanol with the Hydroperoxyl and Methyl Radicals. Part I: Accurate Thermochemistry and Barrier Heights,” I. M. Alecu and D. G. Truhlar, Journal of Physical Chemistry A 115, 2811–2829 (2011). [dx.doi.org/10.1021/jp110024e](https://doi.org/10.1021/jp110024e)

96) “High-Level Direct-Dynamics Variational Transition State Theory Calculations Including Multidimensional Tunneling of the Thermal Rate Constants, Branching Ratios, and Kinetic Isotope Effects of the Hydrogen Abstraction Reactions from Methanol by Atomic Hydrogen,” R. Meana-Pañeda, D. G. Truhlar and A. Fernández-Ramos, Journal of Chemical Physics 134, 094302/1-14 (2011). [dx.doi.org/10.1063/1.3555763](https://doi.org/10.1063/1.3555763)

97) “Practical Methods for Including Torsional Anharmonicity in Thermochemical Calculations of Complex Molecules: The Internal-Coordinate Multi-Structural Approximation,” J. Zheng, T. Yu, E. Papajak, I. M. Alecu, S. L. Mielke, and D. G. Truhlar, Physical Chemistry Chemical Physics 13, 10885-10907 (2011).
[dx.doi.org/10.1039/C0CP02644A](https://doi.org/10.1039/C0CP02644A)

98) “How Well Can Modern Density Functionals Predict Transition State Bond Distances?” X. Xu, I. M. Alecu, and D. G. Truhlar, Journal of Chemical Theory and Computation 7, 1667-1676 (2011). [dx.doi.org/10.1021/ct2001057](https://doi.org/10.1021/ct2001057).

99) “Multi-Structural Variational Transition State Theory. Kinetics of the 1,4-Hydrogen Shift Isomerization of the Pentyl Radical with Torsional

Anharmonicity," T. Yu, J. Zheng, and D. G. Truhlar, *Chemical Science* 2, 2199-2213 (2011). dx.doi.org/10.1039/C1SC00225B

100) "Thermodynamics of C–H Bond Dissociation in Hexane and Isohexane Yielding Seven Isomeric Hexyl Radicals," J. Zheng, T. Yu, and D. G. Truhlar, *Physical Chemistry Chemical Physics* 13, 19318-19324 (2011). dx.doi.org/10.1039/C1CP21829H

101) "Statistical Thermodynamics of the Isomerization Reaction Between n-Heptane and Isoheptane," T. Yu, J. Zheng, and D. G. Truhlar, *Physical Chemistry Chemical Physics* 14, 482-494 (2011). dx.doi.org/10.1039/c1cp22578b.

102) "Kinetics of the Reaction of the Heaviest Hydrogen Atom with H₂, the ⁴Heμ + H₂ → ⁴HeμH + H reaction: Experiments, Accurate Quantal Calculations, and Variational Transition State Theory, Including Kinetic Isotope Effects for a Factor of 36.1 in Isotopic Mass," D. G. Fleming, D. J. Arseneau, O. Sukhorukov, J. H. Brewer, S. L. Mielke, D. G. Truhlar, George C. Schatz, B. C. Garrett, and K. A. Peterson, *Journal of Chemical Physics* 135, 184310/1–18 (2011). dx.doi.org/10.1063/1.3657440

103) "Computational Study of the Reactions of Methanol with the Hydroperoxyl and Methyl Radicals. 2. Accurate Thermal Rate Constants," I. M. Alecu, and D. G. Truhlar, *Journal of Physical Chemistry A* 115, 14599-14611 (2011). dx.doi.org/10.1021/jp209029p

104) "Multipath Variational Transition State Theory. Rate Constant of the 1,4-Hydrogen Shift Isomerization of the 2-Cyclohexylethyl Radical," T. Yu, J. Zheng, and D. G. Truhlar, *Journal of Physical Chemistry A* 116, 297-308 (2012). dx.doi.org/10.1021/jp209146b

105) "Multi-Structural Variational Transition State Theory: Kinetics of the 1,5-Hydrogen Shift Isomerization of 1-Butoxyl Radical Including All Structures and Torsional Anharmonicity," X. Xu, E. Papajak, J. Zheng, and D. G. Truhlar, *Physical Chemistry Chemical Physics* 14, 4204-4216 (2012). dx.doi.org/10.1039/c2cp23692c.

106) "Multi-path Variational Transition State Theory for Chemical Reaction Rates of Complex Polyatomic Species: Ethanol + OH Reactions," J. Zheng and D. G. Truhlar, *Faraday Discussions* 157, 59-88 (2012). dx.doi.org/10.1039/C2FD20012K

107) "MSTor: A program for calculating partition functions, free energies, enthalpies, entropies, and heat capacities of complex molecules including torsional anharmonicity," J. Zheng, S. L Mielke, K. L Clarkson, and D. G. Truhlar, *Computer Physics Communications* 183, 1803-1812 (2012). dx.doi.org/10.1016/j.cpc.2012.03.007

108) "A Product Branching Ratio Controlled by Vibrational Adiabaticity and Variational Effects: Kinetics of the H + trans-N₂H₂ Reactions," J. Zheng, R. J. Rocha, M. Pelegrini, L. F. A. Ferrão, E. F. V. Carvalho, O. Roberto-Neto, F. B. C. Machado, and D. G. Truhlar, *Journal of Chemical Physics* 136, 184310/1-10 (2012). dx.doi.org/10.1063/1.4707734

109) "What are the Most Efficient Basis Set Strategies for Correlated Wave Function Calculations of Reaction Energies and Barrier Heights?" E. Papajak and D. G.

Truhlar, *Journal of Chemical Physics* 137, 064110/1-8 (2012).
[dx.doi.org/10.1063/1.4738980](https://doi.org/10.1063/1.4738980)

110) "Thermochemistry of Radicals Formed by Hydrogen Abstraction from 1-Butanol, 2-Methyl-1-propanol, and Butanal," E. Papajak, P. Seal, X. Xu, and D. G. Truhlar, *Journal of Chemical Physics* 137, 104314/1-13 (2012).
[dx.doi.org/10.1063/1.4742968](https://doi.org/10.1063/1.4742968)

111) "Role of Conformational Structures and Torsional Anharmonicity in Controlling Chemical Reaction Rates and Relative Yields: Butanal + HO₂ Reactions," J. Zheng, P. Seal, and D. G. Truhlar, *Chemical Science* 4, 200-212 (2013). [dx.doi.org/10.1039/c2sc21090h](https://doi.org/10.1039/c2sc21090h)

112) "Multi-Structural Variational Transition State Theory: Kinetics of the Hydrogen Abstraction from Carbon-2 of 2-Methyl-1-propanol by Hydroperoxy Radical Including All Structures and Torsional Anharmonicity," X. Xu, T. Yu, E. Papajak, and D. G. Truhlar, *Journal of Physical Chemistry A* 116, 10480-10487 (2012). [dx.doi.org/10.1021/jp307504p](https://doi.org/10.1021/jp307504p)

113) "Biofuel Combustion. Energetics and Kinetics of Hydrogen Abstraction from Carbon-1 in n-Butanol by the Hydroperoxy Radical Calculated by Coupled Cluster and Density Functional Theories and Multi-Structural Variational Transition State Theory with Multidimensional Tunneling," I. M. Alecu, J. Zheng, E. Papajak, T. Yu, and D. G. Truhlar, *Journal of Physical Chemistry A* 116, 12206-12213 (2012). [dx.doi.org/10.1021/jp308460y](https://doi.org/10.1021/jp308460y)

114) "Quantum Thermochemistry: Multi-Structural Method with Torsional Anharmonicity Based on a Coupled Torsional Potential," J. Zheng and D. G. Truhlar, *Journal of Chemical Theory and Computation* 9, 1356-1367 (2013).
[dx.doi.org/10.1021/ct3010722](https://doi.org/10.1021/ct3010722)

115) "Including Torsional Anharmonicity in Canonical and Microcanonical Reaction Path Calculations," J. Zheng and D. G. Truhlar, *Journal of Chemical Theory and Computation* 9, 2875-2881(2013). [dx.doi.org/10.1021/ct400231q](https://doi.org/10.1021/ct400231q) (letter)

116) "Chemical Kinetics and Mechanisms of Complex Systems: A Perspective on Recent Theoretical Advances," S. J. Klippenstein, V. Pande, and D. G. Truhlar, *Journal of the American Chemical Society* 136, 528-546 (2014). (Perspective Article) [dx.doi.org/10.1021/ja408723a](https://doi.org/10.1021/ja408723a)

117) "Army Ants Tunneling for Classical Simulations," J. Zheng, X. Xu, R. Meana-Pañeda, and D. G. Truhlar, *Chemical Science* 5, 2091-2099 (2014).
[dx.doi.org/10.1039/C3SC53290a](https://doi.org/10.1039/C3SC53290a)

118) "Anchor Points Reactive Potential for Bond-Breaking Reactions," K. R. Yang, X. Xu, and D. G. Truhlar, *Journal of Chemical Theory and Computation* 10, 924-933 (2014). [dx.doi.org/10.1021/ct401074s](https://doi.org/10.1021/ct401074s)

119) "Prediction of Experimentally Unavailable Product Branching Ratios for Biofuel Combustion: The Role of Anharmonicity," J. Zheng, R. Meana-Pañeda, and D. G. Truhlar, *Journal of the American Chemical Society* 136, 5150-5160 (2014). [dx.doi.org/10.1021/ja5011288](https://doi.org/10.1021/ja5011288)

120) "Quantum Mechanical Fragment Methods Based on Partitioning Atoms or Partitioning Coordinates," B. Wang, K. R. Yang, X. Xu, M. Isegawa, H. R. Leverenz, and D. G. Truhlar, *Accounts of Chemical Research* 47, 2731-2738

(2014). (Special Issue: Beyond QM/MM: Fragment Quantum Mechanical Methods) dx.doi.org/10.1021/ar500068a

121) "Zero-Point Energy, Tunneling, and Vibrational Adiabaticity in the Mu + H₂ Reaction," S. L. Mielke, B. C. Garrett, D. G. Fleming, and D. G. Truhlar, *Molecular Physics* 113, 160-175 (2014).
dx.doi.org/10.1080/00268976.2014.951416

122) "Improved Methods for Feynman Path Integral Calculations and Their Application to Calculate Converged Vibrational–Rotational Partition Functions, Free Energies, Enthalpies, Entropies, and Heat Capacities for Methane," S. L. Mielke and D. G. Truhlar, *Journal of Chemical Physics* 142, 044105/1-18 (2015). dx.doi.org/10.1063/1.4905526

123) "Multi-Path Variational Transition State Theory for Chiral Molecules: The Site-Dependent Kinetics for Abstraction of Hydrogen from Hydroperoxyl Radical, Analysis of Hydrogen Bonding in the Transition State, and Dramatic Temperature Dependence of the Activation Energy," J. L. Bao, R. Meana-Pañeda, and D. G. Truhlar, *Chemical Science* 6, 5866-5881 (2015).
dx.doi.org/10.1039/C5SC01848J

124) "Kinetics of the Hydrogen Abstraction Reaction from 2-Butanol by OH Radical," J. Zheng, G. Odeyepo, and D. G. Truhlar, *Journal of Physical Chemistry A* 117, 12182-12192 (2015). dx.doi.org/10.1021/acs.jpca.5b06121 (in the special issue)

125) "Dynamics of Molecular Collisions XXV – Fifty Years of Chemical Reaction Dynamics". pubs.acs.org/doi/pdfplus/10.1021/acs.jpca.5b08530)

126) "Path-Dependent Variational Effects and Multidimensional Tunneling in Multi-Path Variational Transition State Theory: Rate Constants Calculated for the Reactions of HO with tert-Butanol by Including all 46 Paths for Abstraction at C and All Six Paths for Abstraction at O," J. L. Bao, P. Sripa, and D. G. Truhlar, *Physical Chemistry Chemical Physics* 18, 1032-1041 (2016).
dx.doi.org/10.1039/c5cp05780a

127) "A Whole-Path Importance-Sampling Scheme for Feynman Path Integral Calculations of Absolute Partition Functions and Free Energies," S. L. Mielke and D. G. Truhlar, *Journal of Chemical Physics* 144, 034110/1-9 (2016).
dx.doi.org/10.1063/1.4939869

128) "Kinetics of Hydrogen Radical Reactions with Toluene by Chemical Activation Theory Employing System-Specific Quantum RRK Theory Calibrated by Variational Transition State Theory," J. L. Bao, J. Zheng, and D. G. Truhlar, *Journal of the American Chemical Society* 138, 2690-2704 (2016).
dx.doi.org/10.1021/jacs.5b11938

129) "Conduction and Surface Effects in Cathode Materials: Li₈ZrO₆ and Doped Li₈ZrO₆," S. Huang, Y. Fang, B. Wang, B. E. Wilson, N. Tran, D. G. Truhlar, and A. Stein, *Journal of Physical Chemistry C* 120, 9637-9649 (2016).
dx.doi.org/10.1021/acs.jpcc.6b02077

130) "Benchmark Calculations for Bond Dissociation Enthalpies of Unsaturated Methyl Esters and the Bond Dissociation Enthalpies of Methyl Linolenate," X. Li, X. Xu, X. You, and D. G. Truhlar, *Journal of Physical Chemistry A* 120, 4025-4036 (2016). dx.doi.org/10.1021/acs.jpca.6b02600

Chapters in books

- 1) "Multilevel Methods for Thermochemistry and Thermochemical Kinetics," B. J. Lynch and D. G. Truhlar, in *Recent Advances in Electron Correlation Methodology*, edited by A. K. Wilson and K. A. Peterson (Oxford University Press, American Chemical Society Symposium Series Volume 958, Washington, DC, 2007), pp. 153-167. dx.doi.org/10.1021/bk-2007-0958.ch009
- 2) "Variational Transition State Theory and Multidimensional Tunneling for Simple and Complex Reactions in the Gas Phase, Solids, Liquids, and Enzymes," D. G. Truhlar, in *Isotope Effects in Chemistry and Biology*, edited by A. Kohen and H.-H. Limbach (Marcel Dekker, Inc., New York, 2006), pp. 579-619.
- 3) "Variational Transition State Theory in the Treatment of Hydrogen Transfer Reactions," D. G. Truhlar and B. C. Garrett, in *Hydrogen-Transfer Reactions*, edited by J. T. Hynes, J. P. Klinman, H.-H. Limbach, and R. L. Schowen (Wiley-VCH, Weinheim, Germany, 2007), Vol. 2, pp. 833-874. dx.doi.org/10.1002/9783527611546.ch27
- 4) "Variational Transition State Theory," B. C. Garrett and D. G. Truhlar, in *Theory and Applications of Computational Chemistry: The First Forty Years*, edited by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (Elsevier, Amsterdam, 2005), pp. 67-87. CODEN: 69HSJX
- 5) "Variational Transition State Theory with Multidimensional Tunneling," A. Fernandez-Ramos, B. A. Ellingson, B. C. Garrett, and D. G. Truhlar, in *Reviews in Computational Chemistry*, Vol. 23, edited by K. B. Lipkowitz and T. R. Cundari (Wiley-VCH, Hoboken, NJ, 2007), pp. 125-232.

Software

We have developed several software packages for applying variational transition state theory with optimized multidimensional tunneling coefficients to chemical reactions. These packages include reaction-path, reaction-swath, and variable-reaction-coordinate dynamics; they are well documented and distributed with manuals, installation scripts, and test suites. The two most popular packages are POLYRATE and GAUSSRATE; all told, there are nine RATE programs. The latest relevant date for which statistics are available at the present time is the period ending March 17, 2015. As of that date, the total number of requests fulfilled for all RATE programs since we began keeping statistics in 1995 is 3040.

We also distribute the program (*MSTor*) for torsional anharmonicity. Beginning with version 2011, we have distributed *MSTor* through both the *Computer Physics Communications* web site (<http://www.cpc.cs.qub.ac.uk>) and own web site (t1.chem.umn.edu/truhlar/index.htm#software). Approximately 200 copies have been distributed.