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Abstract

Understanding and controlling friction in micromachine interfaces is critical to the
reliability and operational efficiency of microelectromechanical systems (MEMS).
The relatively high adhesion forces and friction forces encountered in these devices
often present major obstacles to the design of reliable MEMS devices. Using surface
micromachining, arrays of microstructures are being designed and tested to examine
the adhesion characteristics, static friction behavior, and dynamic friction response.
Emphasis is also being given to the control and actuation of the test structures and the
modeling of the dynamic response and contact mechanics at the interface.
Specifically, the purpose of the research is to fabricate and test MEMS devices in
order to obtain insight into the effect of surface topography, material properties,
surface chemical state, environmental conditions, and contact load on the static and
dynamic characteristics of the contact interface.

Polysilicon micromachines have been designed for the purpose of studying the
tribological properties of microelectromechanical systems (MEMS). A device for



characterizing interfacial adhesion and a device for characterizing friction have been
developed at the University of California at Berkeley. These devices were used to
develop and understanding of the physics controlling the interfacial behavior that is
critical to the reliability and efficiency of micrometer-scale devices. All research
activities were conducted at the University of California at Berkeley by Shannon
Timpe, awardee of the Excellence in Engineering Fellowship that was established
with this LDRD project. Shannon Timpe successfully completed his research project
and published several relevant papers on this topic. Shannon also received his M.S
from UC Berkeley in May 2004 and his Ph.D. from UC Berkeley in May 2007.
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1. INTRODUCTION

Increasing demands for smaller feature sizes in microelectronics have increased the impact of
surface forces on microdevice reliability. To understand the origins and evolution of these
surface forces, it is necessary to develop specialized microstructures and experimental techniques
for accurate characterization of the interfacial phenomena occurring at the nano-/microscale. For
this purpose, unique microdevices fabricated with surface micromachining were designed and
tested to examine interfacial phenomena encountered under typical conditions of

microelectromechanical systems (MEMS).
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2. RESEARCH OVERVIEW

The static adhesion force was examined under controlled loading and environmental
conditions using the microdevice shown in Figure 1. Both van der Waals forces and capillary
forces were found to contribute to the magnitude of the adhesion (pull-off) force at the inception
of surface separation. These attractive forces intensified with the increase of the apparent contact
pressure due to plastic deformation at asperity contacts. An enhancement of the contribution of
the capillary forces to the total adhesion force was encountered with the increase of the relative
humidity.

The effect of electrical activation on the adhesion behavior at MEMS contact interfaces
was examined with the adhesion testing device in Figure 1. At low interfacial voltages, the
insulating native oxide layer prevented significant asperity damage. However, increasing the
interfacial voltage produced a transition behavior characterized by dielectric leakage and higher
adhesion forces, attributed to both thermal effects (i.e., thermal expansion and fusion of asperity
contacts) and electrical effects (i.e., charge trapping in the oxide surface layer). At relatively high
interfacial voltages, high current flow across the contact interface promoted interfacial bonding,
resulting in permanent surface adhesion. The obtained results illustrate the interdependence of
microscale electrical, thermal, and adhesion phenomena at MEMS contact interfaces. The effect
of electrical activation on adhesion was examined in the context of the predominant electrical

and thermal phenomena occurring at the contact interface.



Polysilico
structural layers

Silicon nitride
isolation layer
_“_y:..'

Figure 1. Scanning electron microscope image of the sidewall adhesion testing device
used to examine the adhesion properties under controlled environmental and loading
conditions.

Using the device shown in Figure 2, the measured adhesion force was coupled with static
friction measurements to define the true coefficient of friction, which includes both external and
internal force components of the total normal force. It was found that the true coefficient of
friction is independent of environment and contact load, as shown in the data (see Figure 3)
obtained at ambient pressures ranging from 760 — 10~ torr, temperatures ranging from 35 -
120°C, and relative humidity ranging from ~0 — 95%. The exploration of the true friction
coefficient revealed the partial elastic recovery of contacting asperities, resulting in an

observable difference between in-contact adhesion force and pull-off force.
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Main shuttle

Figure 2. SEM micrograph of the friction testing surface micromachine used to perform
friction and adhesion experiments showing the two comb-driven shuttles that come into
contact along their sidewall surfaces.
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Figure 3. Interfacial shear strength versus normal contact pressure several
environmental conditions. Data points represent averages of ten experiments and error
bars indicate one standard deviation above and below the corresponding average values.

Dynamic sliding contact experiments were performed to determine the critical parameters
affecting device lifetime. The development of wear debris was examined and the observations
were compared to the evolution of critical interfacial properties including the adhesion force,
static friction force, and dynamic friction force. In this study, microscale stick-slip phenomena
were observed in situ as shown in the device sliding waveforms of Figure 4. In the dynamic
friction experiments, the two distinct wear patterns depicted in Figure 5 were seen for devices

experiencing nominally identical conditions. The first wear pattern lead to the development of

12



large-scale wear debris and surface deformation with minimal increase in the adhesion force. The
second wear pattern showed no visible wear debris, but resulted in a dramatic increase in the
measured adhesion force. By examining the evolution of the relevant tribological forces and
theoretical failure envelopes (see Figure 6), device failure in dynamic sliding contact was

attributed to the development of excessive static friction at stop points of dynamic oscillation.

Displacement, x (pum)

-8.0 T T
0 90 180 270 360

Waveform phase, ¢ (deg.)

Figure 4. Shear displacement as a function of the voltage waveform phase for out-of-
contact (free) oscillation and in-contact (sliding) oscillation after the accumulation of 1.55
x 10° sliding cycles revealing the occurrence of several stick-slip instances throughout
the motion range.
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Figure 5. Adhesion force versus number of sliding cycles of micromachines
characterized by low-adhesion/high-wear and high-adhesion/low-wear behaviors. Data
points represent averages of five experiments and error bars indicate one standard
deviation above and below the corresponding average value.
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Figure 6. Normalized static friction force versus sliding cycles. A binary behavior of the
static friction force occurs with the onset of stick-slip at ~5 x 10° sliding cycles which
defines the operational region. Failure occurs when the upper limit of the static friction
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3. CONCLUSIONS

Under this research, a thorough and complete method for evaluating the dominant
tribological mechanisms in microelectromechanical systems was defined and executed under
controlled conditions. Insight into the critical surface phenomena influencing adhesion, static
friction, dynamic friction, and wear was gained. The current methodology provides a means for
determining the basic parameters that are significant in the development of contact-mode MEMS
technology.

A list of publications resulting from this research, throughout the duration of the
University of California at Berkeley Excellence in Engineering Fellowship, is included in the

next section.
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APPENDIX A: PHD DISSERTATION EXIT SEMINAR

A detailed overview of the results obtained during the course of the fellowship is
presented in this appendix. This presentation was given by Shannon Timpe as his PhD
dissertation seminar exit presentation at the University of California at Berkeley on April 18,

2007.
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Dynamic Sliding Experiments
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Dynamic Sliding Experiments
Characteristic High-Cycle Data

High eyvle shding contact
displays an emerging stick-
glip behavior m which stop
points ocenr periodically
during the movement
between the endpoints

Shanion James Timpe

Dynamic friction failore is
predicted when the motion
range is reduced to zero

=@ Out of Contact
£
én
E
£
e
£
a
0 20 I!SI] 25’0 360
Waveform phase (%)
—— PhD Disseriation Seminar
—— Undversilly of Caiffornia at Berkeley
Dynamic Sliding Experiments
Characteristic High-Cycle Data
3.0
= Out of Contact
) 3 155,000 Cycles
s
4.0+ |
H
31
E 00fa————"——-
:
=
E
a
-4.04
-8.0 T T 1
0 20 180 270 360
Waveform phase (°)
——— PhD Dissertation Seminar

42




Universily of Caiifernia at Berkeley Shannon James Timpe

Dynamic Sliding Experiments
Characteristic High-Cycle Data

Static frction failure is
predicted when the
mechanical restoring force
and the maximum
g electrostatic fores are
‘g msufficient {0 overcome the
Eﬂ static friction force
:
=
& At the inception of stick-slip
8 instances, the failure limit is
redueed due to the smaller
mechanical restoring force
available
] 90 180 270 360
Waveform phase (%)
—— PhD Disseriation Sentdnar
Universily af California ot Berkeley Shanicor James Timpe
Dynamic Sliding Experiments
In Sltu Dynamlic Frictlon Data
90.0 , e
Dynaric friction faiture limit l Dynamie friction foree
B 4 - — 4 increases with the number of
e : sliding eycles
.
= 60.04 '
@ ¥
Z ' 3
= 1 &
(=
: 30.04 / %_ |
= T 1
: T :
E ey it Operational region % |
- - B- D= == |
Y ' : ' '
0.0 5.0 10.0 15.0 20.0

Sliding cycles (x 104

—— PhD Dissertation Semiinar

43



Undversily of Cailfornta af Berkeley

Shannon James Timpe

Dynamic Sliding Experiments

In Sltu Dynamlc Frictlon Data

90.0

Dynawic friction failure lmic 1
) ° B S e e diaid
"QI#H :
£ |
=
< 0.0+ !
g ¥
1 =
& 1 B
E I s
&
& -
= 30.04 _Oo_
% e |
e 1
E il e § ; 1
:2 P rad regi I
J@.’..--———o-—-ﬁw-ﬂ-——— puRocbafion |
00fZ . . : '
0.0 5.0 10.0 15.0 20,0

Sliding cycles (x 104

Stick-slip phenomena and
the generation of wear debris
leads to fluctuation between
two distinet limits

—— PhD Disseriafion Sentinar

Universily of California af Berkeley

Shanion James Timpe

Dynamic Sliding Experiments

In Sltu Dynamlic Frictlon Data

90.0

Trynamic friction faiture limit | Faﬂpre = Pfeqi‘;ted when the
‘fsa ______________ Z'— = d - — 4 motion range is reduced to
w‘&‘* : ZRIO
< 60.0+ :
: 2
I =
& 1 B
= | =
5 -
g 1A
= 30.01 1
% ______ I
. L
: @Rt O :
E ey Operational region % I
- e
-0 8- |
0.0 r T T '
0.0 50 10.0 15.0 20.0
Sliding cycles (x 104
—— PhD Disseriation Senifnar

44




—— Universtly of Caiffornia at Berkeler

Shannon James Timpe

Dynamic Sliding Experiments

In Sltu Dynamlc Frictlon Data

90.0

[

60.04

30.04

Neormalized dynamic friction force, Ff'{fljd

Dynamic friction failure limit

Device failure

0.0 5.0 10.0
Sliding cycles (x 104

—— PhD Disseriafion Sentinar

20,0

Observed device failure
oceurred well within the
operational hmits for
dynamie friction

—— Undversilly of Caiffornia at Berieley

Shanwon James Timpe

Dynamic Sliding Experiments
In Sltu Static Frictlon Data

_
W
=

&

o

9.0

6.0

3.04

Normalized static friction force, g‘uﬁ,’

Device failure

0.0 5.0 10.0
Sliding cycles (x 104

1
1350

20.0

Static fidetion force increases
with the number of sliding
eycles

—— PhD Dissertation Semiinar

45




—— Universtly of Caiffornia at Berkeler

Shannon James Timpe

Dynamic Sliding Experiments
In Sltu Statlc Frictlon Data
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Dynamic Sliding Experiments
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Conclusions

« The pull-out force shows a linear dependence on applied load unique to
each environmental condition

= The engineering coefficient of friction shows a power law dependences on
applied load unique to each environmental condition

= The interfacial shear strength shows a linear dependence on the total
normal load that is independent of environmental conditions

= Under dynamic sliding contact, the adhesion force, static friction force and
dynamic friction force increase with the number of cycles

» Microdevices fail in static friction at operation stop points or during the
commencement of stick-slip

= A binary wear behavior is observed characterized by high-adhesion/low-
wear and low-adhesion/high-wear result

—— PhD Dissertation Seminar
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