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Abstract

Remote sensing systems have expanded the set of capabilities available
for and critical to national security. Cooperating, high-fidelity sensing sys-
tems and growing mission applications have exponentially increased the
set of potential schedules. A definitive lack of advanced tools places an
increased burden on operators, as planning and scheduling remain largely
manual tasks. This is particularly true in time-critical planning activities
where operators aim to accomplish a large number of missions through op-
timal utilization of single or multiple sensor systems. Automated schedul-
ing through identification and comparison of alternative schedules remains
a challenging problem applicable across all remote sensing systems. Previ-
ous approaches focused on a subset of sensor missions and do not consider
ad-hoc tasking.

We have begun development of a robust framework that leverages the
Pyomo optimization modeling language [1, 2] for the design of a tool to as-
sist sensor operators planning under the constraints of multiple concurrent
missions and uncertainty. Our scheduling models have been formulated
to address the stochastic nature of ad-hoc tasks inserted under a variety
of scenarios. Operator experience is being leveraged to select appropriate
model objectives. Successful development of the framework will include
iterative development of high-fidelity mission models that consider and
expose various schedule performance metrics. Creating this tool will aid
time-critical scheduling by increasing planning efficiency, clarifying the
value of alternative modalities uniquely provided by multi-sensor systems,
and by presenting both sets of organized information to operators. Such
a tool will help operators more quickly and fully utilize sensing systems,
a high interest objective within the current remote sensing operations
community.

Preliminary results for mixed-integer programming formulations of a
sensor-scheduling problem will be presented. Assumptions regarding sen-
sor geometry and sensing activity time constraints, durations, priorities,
etc. will be outlined. Finally, solver speed and stochastic programming
details for uncertain activities and scheduling impediments will be dis-
cussed.
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1 INTRODUCTION

We describe mathematical programming formulations for managing a constel-
lation of remote sensors scheduled to monitor physical locations in space and
time. The focus herein will be on remote sensing systems where available sensor
time is less than the time required to observe all requested activities [3]. The
models herein have are particularly relevant for earth observing satellites, such
as NASA’s fleet that now includes the joint U.S. Geological Survey’s LANDSAT
8, and space observing satellites, such as the U.S. Air Force’s Geosynchronous
Space Situational Awareness Program (GSSAP) satellites. It should be noted
that the models developed herein are also aimed at describing a variety of ter-
restrial sensor networks including those with stationary video cameras or others
that are comprised of drones or other airborne sensing systems.

Management of mobile sensors is challenging because they provide very flex-
ible capabilities for simultaneously monitoring a diverse range of locations and
events. In the following, we assume that the performance of mobile sensors will
be evaluated with respect to a fixed set of activities that are defined by:

• Start time: when the activity starts.

• Duration: fixed and known before building a constellation schedule.
Some activities may be divisible.

• Physical location: the location that needs to be observed ; the precise
requirements for observing a location will depend on the nature of the
sensor technology.

• Configuration: the operational configuration required to observe a loca-
tion; dependent on the nature of the sensor technology and the observable.

• Quality: a minimum quality for the observation, which may be impacted
by the physical location of the sensor, the time of day, and other factors.
Quality is measured relative to the observable.

• Priority: the importance of this activity relative to other activities. Pri-
ority is normalized between 0 and 1, inclusive.

• Category: a hierarchal system establishing the necessity of an activity
for a given sensor.

Managing sensors involves determining which activity is to be scheduled on
each sensor, at each moment in time, and doing so to optimize the resultant set
of observations. In general, we assume that time is suitably discretized. It is
further assumed that the position of each sensor is known accurately enough at
each time-step so that activities can be scheduled on an appropriate sensor at
a feasible time-step. Additionally, the time-windows of certain activities may
shrink and move with time. Hence, there is a general need to schedule activities
to enable resilient rescheduling of sensors.

Finally, there are several general observations that need to be considered:
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• Although we use the term scheduling here, there are no precedence con-
straints amongst most activities. Hence, a schedule of sensors simply
reflects the quality, number, and selection of activities that they cover.

• There may be times where sensors cannot be employed (e.g. it is too
dark to use an optical sensor). This could be captured with a low quality
assessment for the sensor scheduled for that activity at those times, or
through an explicit modeling constraint.

• Mobile sensors may need to regularly schedule activities where they are
off-line (e.g. to refuel or recalibrate). This may be accomplished with
constraints for the interval allowed between the activities or by assigning
suitable priorities and time windows for those activities.

• Depending on a variety of criteria, multiple sensors may be able to cover
an activity simultaneously (though perhaps with different quality scores).

2 A COVERAGE MODEL

We begin with a simple coverage model for sensor management. Let I =
{1, . . . , I} be the set of sensors that are being managed and let T = {1, . . . , T} be
the scheduling horizon, or number of time steps that are to be scheduled. Each
sensor shares the same scheduling horizon. In other words, Ti = {1, . . . , T},
∀i ∈ I. For simplicity, we assume that all sensors are distinct. In the case
of a satellite or platform with multiple sensors, each individual sensor is mod-
eled separately. In general, the following objectives might be considered when
scheduling a sensor network:

• minimize the number of sensors.

• minimize the planning horizon (e.g. minimize the “make span”).

• maximize the average priority of scheduled activities.

• maximize the quality of scheduled activities.

• maximize the number of scheduled activities.

2.1 ACTIVITY SPECIFICATION

Let K = {1, . . . ,K} be the set of activities to be scheduled. For each activity k
we have

• (ek, lk) is the time window over which this activity can be started.

• dk is the duration of the activity.

• qikt is the quality of observing activity k with sensor i at time t. It is
assumed that the quality of sensor observation can be precomputed in
advance.
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• qmin
k is the minimal allowed quality for activity k when it is scheduled; by

convention qmin
k > 0.

• pk is the priority associated with a given activity where pk ∈ [0, 1].

2.2 ACTIVITY CATEGORIES

In addition to the above specifications, activities are organized into one of four
categories to denote the necessity of being scheduled on a given sensor or a
potential set of sensors.

• Category 1 activities are unique to a given sensor. They are constrained
to be scheduled and are therefore not assigned priority. Examples of this
category of activity include solar outage or other sensor safety activities.

• Category 2 activities are also unique to a given sensor. These activities
cannot be scheduled during category 1 activities. Category 2 acivities are
limited to be within the priority range pk2 ∈ [p2, 1], with 0 < p2 < 1 and
p2 generally much larger than 0. Higher priority category 3 and category
4 activities can preempt category 2 activities. Examples of this type of
activity include periodic calibration or maintenance activities.

• Category 3 activities cannot be scheduled during category 1 activities.
category 3 activities represent the largest portion of activities to be sched-
uled. They are capable of being scheduled on multiple sensors and span
the range of activity priorities. Category 3 activities consist of any type
of observation activity and are limited to be within the priority range
pk3 ∈ [0, p3), with 0 < p3 < 1.

• Category 4: activities have the priority pk4 = 1 but cannot preempt
category 1 activities. These activities have start time windows that are
time-varying. It is assumed that the time windows are monotonically de-
creasing in span. Examples include uncertain or evolving activities where
uncertainty decreases with time such as observing wildfires or flooding
near critical infrastructure.

2.3 DECISION VARIABLES AND OBJECTIVE FUNC-
TIONS

Let δikt be a binary decision variable where δikt = 1 if sensor i is scheduled to
observe activity k starting at time period t. We assume that the set of activities
are organized into the categories given above. Category 1 activities must be
scheduled, but category 2 and 3 activities may be deferred due to scheduling
limitations; let K̄ ⊆ K be the indices of the categroy 1 activities. A natural
objective may be to maximize the number of category 2 and 3 activities that
are scheduled:

max
∑

k∈K\K̄

ωk (1)
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where
ωk =

∑
i∈I

∑
t∈T

δikt,∀k ∈ K. (2)

The following constraint ensures that all category 1 activities are scheduled:

ωk = 1,∀k ∈ K̄. (3)

To enforce that each category 2 or category 3 activity can be scheduled at most
once, the following constraint is used:

ωk ≤ 1,∀k ∈ K \ K̄. (4)

Optionally, to enforce a minimum quality of sensor observation, we have∑
i∈I

∑
t∈T

qiktδikt ≥ qmin
k ,∀k ∈ K̄ (5)

and ∑
i∈I

∑
t∈T

qiktδikt ≥ qmin
k ωk,∀k ∈ K \ K̄. (6)

Now if a sensor is scheduled to begin observing an activity at time t̄, then it
will continue to observe the activity for the next dk − 1 time steps. Let C(k, t̄)
be the set of feasible time steps where activity k could have been started prior
to time step t̄ and for which the sensor observation would conflict with starting
a new sensor observation beginning at time step t̄. Thus

C(k, t̄) = max(ek, t̄− dk + 1), . . . ,min(lk, t̄− 1). (7)

The constraint to prevent concurrent observations over sensor i’s scheduling
horizon is ∑

k∈K

δikt̄ ≤ 1−
∑
k∈K

∑
t∈C(k,t̄)

δikt̄,∀t̄ ∈ T , i ∈ I. (8)

This constraint prohibits scheduling an activity k at time t̄ if another activity
was scheduled “recently”, where that refers to some time t ∈ C(k, t̄).

The right hand side of equation (8) is closely related to the definition of a
gap in a sensor schedule. Notably, if we define the following

git̄ := 1−
∑
k∈K

∑
t∈C(k,t̄)

δikt̄, t̄ ∈ T , i ∈ I (9)

then on sensor i whenever no activities are scheduled for a given time t ∈ C(k, t̄)
or whenever an activity starts at time t̄, git̄ = 1. In light of this, we can define
a schedule gap for sensor i at time step t̄ as:

git̄ −
∑
k∈K

δikt̄, t̄ ∈ T , i ∈ I. (10)
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Depending on the scheduling strategy, gaps can be incorporated into the schedul-
ing model in one of two ways. Gaps can be prohibited with constraints. Al-
ternatively, gaps can be penalized with a time-weighted term in the objective
function to discourage gaps at certain times. There may be strategies where
one or the other is preferred over the other. By making use of equation (10), we
can propose an alternative objective function that penalizes gaps in any sensor’s
schedule, penalizes lower quality activities, and penalizes activities that don’t
make it on to any of the sensor schedules:

min

∑
i∈I

∑
t∈T Zit[git −

∑
k∈K δikt]

+
∑
i∈I

∑
k∈K

∑
t∈T [qkmax − qikt]δikt

+
∑
k∈K q

k
max[1− ωk].

(11)

Above, Zit is the time-dependent penalty for sensor i and where qkmax is the
maximum possible quality for activity k, determined a priori.

2.4 PRIORITY AND QUALITY OBJECTIVE FUNC-
TION

The purpose of this section is to define an alternative to the objective functions
given in Equations (1) and (11). The following objective function has been the
focus of recent model analysis. Sensor operators and planners have worked ex-
tensively with priority-based scheduling of activities. A scheduling model that
also includes measures of sensor performance that are activity and sensor de-
pendent provides several potential scheduling enhancements. Depending on the
nature of the activity and the customer requesting the activity, different com-
binations of measures of sensor performance can be used to define quality and
their relative weightings can be adjusted by sensor experts and/or customers.
By using quality thresholds, activities with large time windows, span(ek, lk), can
be scheduled according to time and sensor dependent quality. Subsequently, if
a certain level of quality cannot be achieved, it represents an opportunity to
prevent sensor resources from be wasted by producing observations that are
unsatisfactory and instead scheduling an alternative activity that meets its re-
spective quality threshold.

The goal of the objective function given below is to promote a schedule in
which long duration, high priority activities are scheduled at times that result in
high quality observations. Higher priority, higher quality, and longer duration
activities are preferred over other scheduled activity arrangements.

max
∑
i∈I

∑
k∈K

∑
t∈T

(δikt)(p
k)(dk)(qikt)

σn
(12)

In Equation (12), the variable σn denotes a normalization constant. Let σn :=
100/(

∑
k∈K p

kdkq
∗
k) so that an objective function value of 100 will denote a set

of sensor schedules in which all activities are scheduled. As defined above, this
normalization constant will depend on the set of a priori activities. Using the
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constraints defined above, together with the objective function in (12), we get
the following mixed-integer program:

max
∑
i∈I

∑
k∈K

∑
t∈T

(δikt)(p
k)(dk)(qikt)
σn

s.t. ωk =
∑
i∈I

∑
t∈T δikt ∀k ∈ K

ωk = 1 ∀k ∈ K̄
ωk ≤ 1 ∀k ∈ K \ K̄∑
i∈I

∑
t∈T qiktδikt ≥ qmin

k ∀k ∈ K̄∑
i∈I

∑
t∈T qiktδikt ≥ qmin

k ωk ∀k ∈ K \ K̄∑
k∈K δikt̄ ≤ 1−

∑
k∈K

∑
t∈C(k,t̄) δikt̄, ∀t̄ ∈ T , i ∈ I.

δikt = 0 ∀i ∈ I, k ∈ K, and t < ek or lk < t
δikt ∈ {0, 1} ∀i ∈ I, k ∈ K, t ∈ T

(13)

3 PRELIMINARY RESULTS

In this section, we provide preliminary results from realistic examples using the
mixed-integer program of Equation 13. Models were coded in Python and made
use of the Pyomo optimization modeling language. In general, the solver used
to produce sensor schedules was the IBM CPLEX mixed-integer program solver.
The solver ran on a shared Linux machine with 1TB of RAM and 64 cores. No
special tuning of solver parameters was employed. Several experiments were
run and are summarized in the table below. Each row represents preliminary
results of a set of experiments described by:

• the number of sensors I to produce schedules for,

• the number of category 2 and category 3, K2 and K3 respectively, activities
to be scheduled,

• the periodicity ω, periodicity variation, and duration dk of the category 2
activities in time steps,

• the number of time steps to produce a schedule over T ,

• and the approximate wall clock time taken to compute a 95% optimal
solution, or better, and the optimal solution. By a 95% optimal solution,
we are referring to a gap between the solution and the optimal linear
relaxation.

For reference, 1440 time steps is a 24-hour schedule discretized at minute reso-
lution. For the experiments, the time durations of the category 2 activities were
determined from a histogram of common activity durations for a set of earth
observing sensors. A seeded random number generator was used to generate
activity durations for each set of a priori activities so that solution times could
be compared across different sets. It should be noted that for these preliminary
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Table 1: Preliminary results for priority and quality based objective function.
I K3 K2 ω2 ± dk T 95% solution time time to optimal
2 40 20 20 2 1 200 10-30s 30-120s
2 353 72 20 2 1 1440 50-180s > 12 hours
4 706 144 20 2 1 1440 180s . . .

Figure 1: Example sensor schedule.

results, it was assumed that observation quality across the activities’ time win-
dows did not change. This may have introduced additional symmetry to the
set of feasible solutions, possibly resulting in slower average solution times. An
example schedule is depicted in Figure 1. Priority is denoted by the shade of
blue in each of the activities. Darker blue denotes higher priority. Category
2 activities are colored black. Activities alternate above and below the sensor
timeline to clearly show where one activity ends and the next begins. Schedule
gaps are shown as space between activities.

4 STOCHASTIC MIXED-INTEGER LINEAR
PROGRAM

Current research includes a focus on constructing a scenario-based stochastic
mixed-integer program (SMIP) to address common areas of remote sensing un-
certainty. Observation quality can be heavily impacted by weather at the loca-
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tion to be observed. Historical and future forecast data will be aggregated and
studied, from a service such as [4], to build scenario distributions over areas of
interest and across the globe. An additional use for a near-real time weather
forecast service is to build quality values nearer to the time the sensor schedules
are built.

Another source of uncertainty that that the scenario-based SMIP aims to
address is caused by the effects of category 4 activities on remote sensor sched-
ules. The planned approach will build scenarios for category 4 activities that
have time windows that span longer than the scheduling horizon. The scenarios
will assume that if a category 4 or set of category 4 activities need to be sched-
uled, they will displace any activity that was previously scheduled. It will be
assumed that the duration of the category 4 activities will be known a priori.
The goal will be to minimize the disruption in the overall schedule by placing
activities according to the category 4 probability distributions.

5 FUTURE WORK

There are many opportunities for continued research of these remote sensor
scheduling models. A thorough sensitivity and scalability analysis of solution
time with respect to activity time window, time window overlap, priority, du-
ration, and quality will help establish the utility of the approach. Further in-
teraction with remote sensor operators and planners as well as continued use
of activity distributions from a variety of remote sensors will guide research
into additional types of constraints, quality functions for different observation
activities, and development of the stochastic program discussed in Section 4.
Distributions for weather and ad hoc activity scenarios will need to be derived.
Finally, a large amount of work will be focused on studying optimal time hori-
zons over which a schedule should be constructed and the effects on schedule
optimality stemming from the associated period of rescheduling.
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