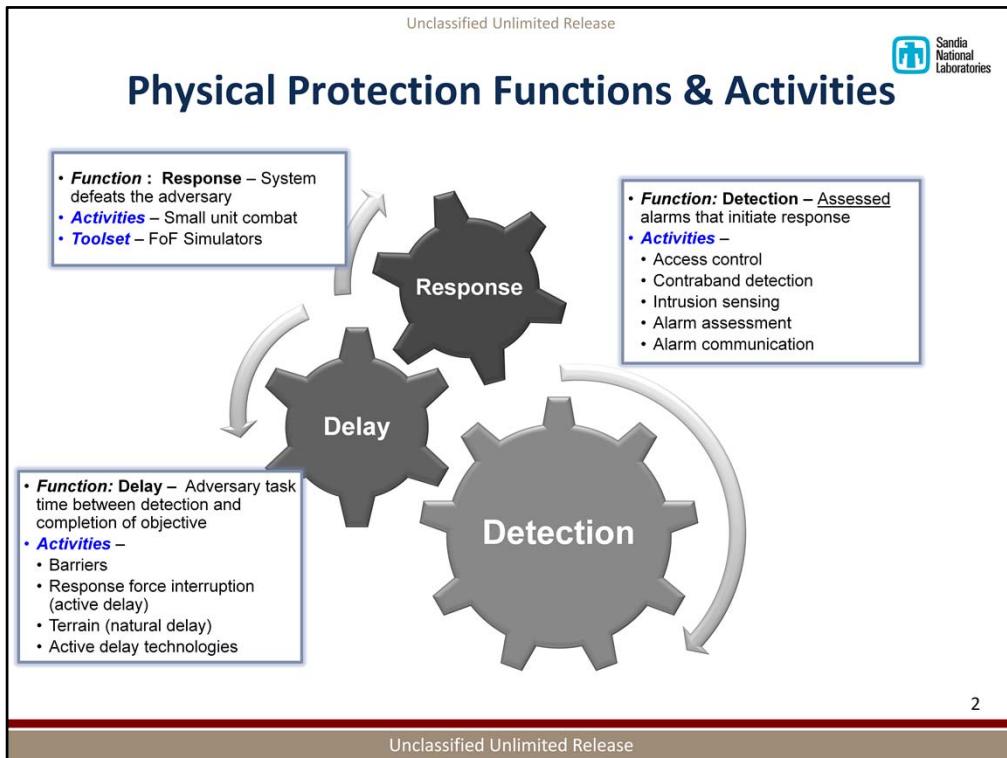


Unclassified Unlimited Release

*Exceptional service in the national interest*




# Use of P<sub>H</sub>P<sub>K</sub> in Modeling & Simulation

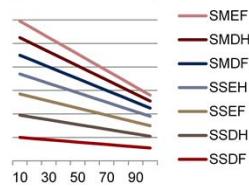
Dean Dominguez  
Security Analysis & Engineering  
Sandia National Laboratories  
15 September 2015



Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000, SAND2015-XXXX

Unclassified Unlimited Release




## History

- Models use P<sub>H</sub>P<sub>K</sub> data for training, analysis, planning & mission rehearsal
- Database contains weapons that were most commonly used in scenarios
- Historically, data largely came from
  - State-sponsored test data
  - State R&D initiatives

## P<sub>H</sub>P<sub>K</sub> Definitions

- Effectiveness = P<sub>H</sub> & the probability that a hit will kill a target at specified range
- P<sub>H</sub>/P<sub>K</sub> data populates curve sets
- A curve defines the P<sub>H</sub>/P<sub>K</sub> data for a munition-target pairing at discrete ranges for shooter / target state
- Combining the shooter-target states of moving/stationary, defilade/exposed, and flank/head shot creates the curves
- Simulator linearly interpolates between range/probability values

| Range (m) | SSDF | SSDH | SSEF | SSEH | SMDF | SMDH | SMEF | SMEH | MSDF | MSDH | MSEF | MSEH | MMDF | MMDH | MMEF | MMEH |
|-----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 10        | 100  | 95   | 90   | 85   | 80   | 75   | 70   | 65   | 60   | 55   | 50   | 45   | 40   | 35   | 30   | 25   |
| 20        | 95   | 90   | 85   | 80   | 75   | 70   | 65   | 60   | 55   | 50   | 45   | 40   | 35   | 30   | 25   | 20   |
| 30        | 90   | 85   | 80   | 75   | 70   | 65   | 60   | 55   | 50   | 45   | 40   | 35   | 30   | 25   | 20   | 15   |
| 40        | 85   | 80   | 75   | 70   | 65   | 60   | 55   | 50   | 45   | 40   | 35   | 30   | 25   | 20   | 15   | 10   |
| 50        | 80   | 75   | 70   | 65   | 60   | 55   | 50   | 45   | 40   | 35   | 30   | 25   | 20   | 15   | 10   | 5    |
| 60        | 75   | 70   | 65   | 60   | 55   | 50   | 45   | 40   | 35   | 30   | 25   | 20   | 15   | 10   | 5    | 0    |
| 70        | 70   | 65   | 60   | 55   | 50   | 45   | 40   | 35   | 30   | 25   | 20   | 15   | 10   | 5    | 0    | 0    |
| 80        | 65   | 60   | 55   | 50   | 45   | 40   | 35   | 30   | 25   | 20   | 15   | 10   | 5    | 0    | 0    | 0    |
| 90        | 60   | 55   | 50   | 45   | 40   | 35   | 30   | 25   | 20   | 15   | 10   | 5    | 0    | 0    | 0    | 0    |
| 100       | 55   | 50   | 45   | 40   | 35   | 30   | 25   | 20   | 15   | 10   | 5    | 0    | 0    | 0    | 0    | 0    |



4

## Problems

- Difficult to obtain usable data for ALL targets available
- Data not representative of all weaponry /skill levels (Insurgents vs. Special Forces)
  - Caution: Major issues exist with linearly degrading values
- Difficult to obtain usable data for ALL condition sets (stationary shooter, stationary target, etc.)
  - Alternate conditions are extrapolated
- Difficult to obtain data for all combat situations



## Lessons Learned (Solutions)

- Values must be relative to each other and remain internally consistent
- Kill types must be clearly defined
  - F, K, and M values for various vehicles
  - Appropriate K values for people, dependent on State's definition of combat ineffective.
- Data must be based on performance metrics (vetted by SME judgement)

## Lessons Learned

- Differentiation needed for moving shooters / moving targets
- Weapon training and tactical deployment must be factored in
  - Operators not trained to “spray and pray”
  - CQB (interior or exterior) must be heavily factored in
  - Data should represent well-qualified shooters, but not necessarily the elite (data evens out)
- Small arms effects against vehicles should be incorporated (do not assume vehicle invulnerable)
- Differentiation is needed between ammunition type
- Needs to be “fitted” for use in simulators, but remain flexible for other applications.
  - Probabilistic (as opposed to cumulative – single shot data)
  - Separation of  $P_H$  and  $P_K$  (Conditional probability of kill)
  - Mutually exclusive kill probabilities (only one possible outcome per hit)
- Rates of Fire must be incorporated; these have as large an impact on  $P_N$  results as the  $P_H P_K$  values themselves

Unclassified Unlimited Release



## Rates of Fire

| Weapon                     | Rounds per Minute | Seconds per Round |
|----------------------------|-------------------|-------------------|
| Pistol                     | 120               | 0.5               |
| Shotgun                    | 60                | 1                 |
| 5.56mm Assault Rifle       | 86                | 0.7               |
| 5.56mm Machine Gun         | 725               | 0.08              |
| 7.62mm Assault Rifle       | 60                | 1                 |
| 7.62mm Sniper Rifle        | 30                | 2                 |
| 7.62mm Machine Gun         | 613               | 0.10              |
| 7.62mm Minigun             | 3000              | 0.02              |
| 8.6mm Sniper Rifle         | 20                | 3                 |
| 10.4mm Sniper Rifle        | 12                | 5                 |
| 12.7mm Anti-Materiel Rifle | 8.6               | 7                 |
| 12.7mm Machine Gun         | 500               | 0.12              |
| 25mm Machine Gun           | 150               | 0.40              |
| RPG                        | 6                 | 10                |

**Ultimately, the Probability of Kill given an engagement  
=  $[1 - (1 - (PH * PK))^x]$ , where x = the total number of rounds fired**

## Current $P_H P_K$ Precautions

- Data often represents standard shooter in standard conditions, degradation for weather, visibility, etc difficult to determine
- Values do not incorporate the probability of acquiring a target
- DB do not grant the shooter the option of aiming at a particular part of a target
  - Example: you cannot increase  $P_K$  for a “head-shot” on a person, or choose to aim at the engine block of a vehicle in hopes of increasing the M value at the expense of the K and F values
- The values should not be considered independently accurate
  - The values are meant to be relative to each other, not predictive of a single event
  - Cannot expect that weapon X will stop a vehicle with a 23% probability
    - Development of DB intended to have relative values

## Data Is Probabilistic – Not Cumulative

- A small, non-zero chance that any munition can kill any target, even though it is nearly impossible for a single round to do so
- Sometimes results in an “unrealistic” attrition, but accounts for volume of fire
  - Not accounting for volume of fire will sometimes result in “unrealistic” survival

Unclassified Unlimited Release



## QUESTIONS?

11

Unclassified Unlimited Release